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Abstract: The demand for compact housing is on the rise, driven by the need for floor plans that
accommodate stakeholders’ preferences. However, clients frequently struggle to convey their spatial
needs to professionals, such as architects, due to a lack of means to present evidence, such as spatial
configurations or cost projections. This study seeks to develop a methodology that translates sketched,
data-driven spatial requirements into 3D building components within BIM (Building Information
Modeling) to enhance spatial comprehension and offer building performance analysis, assisting in
budget considerations during the initial design stages. The research methodology encompasses the
formulation of a process model, its implementation, and subsequent validation. The process model
outlines the data flow within the system and delineates necessary functionalities. Implementation
includes the creation of systems and user interfaces for the integration of various components.
Validation confirms the system’s capability to automatically transform sketched spatial requirements
into BIM model elements, such as walls, floors, and roofs, and to autonomously compute material
and energy expenses based on the BIM model. This system enables clients to effectively generate
3D building components from sketches, aiding stakeholders in spatial understanding and building
performance evaluation through the generated BIM models.

Keywords: building information modeling; deep learning; sketched data retrieval; building perfor-
mance analysis; cost estimation

1. Introduction

The incidence of single-person households is steadily increasing [1], and the discourse
on providing compact housing to enhance residential satisfaction for single and two-person
households continues to gain momentum in South Korea [2]. These residential preferences
indicate a preference for personalized living spaces, a trend mirrored in the design of
compact and micro-housing units [3]. Such housing types allow for the client’s spatial
requirements to be actively incorporated into the floor plan, operating within a more
modest budget for construction and maintenance costs compared to detached houses [3].
However, clients encounter limitations in providing concrete evidence of their spatial needs,
such as spatial configurations or cost estimates, prior to engaging in floor plan discussions
with professionals, including architects. This indicates that considerable time and effort are
expended by the clients to accurately convey their spatial requirements to stakeholders.

During the early design stages, non-professional clients, including homeowners
(clients), often struggle to articulate their spatial needs—such as size and layout—into
concrete building components and envision the final structure without a considerable
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investment of time and effort, or the aid of architectural experts, such as architects. While
floor plans, perspectives, and interior perspective images are provided to assist clients
in understanding space, these limited resources necessitate more explicit materials for a
comprehensive understanding of spatial arrangements and circulation [4]. Consequently,
there are steady needs for creating an effective platform that accurately captures clients’
spatial needs right from the conceptual and early design phases. This platform should
facilitate a better grasp of spatial layouts, offering a clearer and more impactful alternative
to 2D data using 3D visualizations [5].

Furthermore, relying on 2D information during the initial design phases has proven
inefficient for generating construction cost estimates and for the analysis of building per-
formance, including material qualities, physical attributes, and energy consumption [6–8].
Additionally, clients consistently seek a system that enables an efficient assessment of their
spatial needs within budgetary limits. Therefore, it is essential to create a methodology
that enables clients to visualize their spatial concepts clearly in 3D during the early de-
sign stages, as well as to use these 3D models to analyze building performance, thereby
evaluating budget feasibility.

This study aims to develop a methodology that actualizes spatial requirements de-
rived from sketches provided by clients, encompassing non-expert homeowners, into 3D
architectural elements during the initial design phase. This enables a thorough examina-
tion of spatial visualization and facilitates an analysis of the associated construction and
maintenance costs. The developed framework from the methodology automatically gener-
ates a Building Information Modeling (BIM) model from the spatial requirements (sketch
information) expressed through a sketching tool. It extracts shape and material property
information from the components of the BIM model, directly computing building perfor-
mance analysis information such as material costs and electricity and gas usage charges.
The 3D spaces created through the developed framework can support users in explicitly
understanding the spatial arrangement, and the derived building performance analysis
information can serve as evidence for decision-making support in budget management.

2. Literature Reviews

In the initial design phase, research supporting clients’ decision-making on spatial
configuration has been extensively conducted, and such decisions in the early stages
of space arrangement significantly influence the final quality and cost estimation of a
building [9]. However, studies on developing an environment that provides clients with
explicit spatial understanding, construction cost estimation, and comprehensive building
performance analysis at this stage are still limited.

Choi et al. and Jung et al. [10,11] provided an environment that enables the review of
circulation, floor and elevation plans, along with construction costs during the initial design
phase. However, clients continue to demand information for decision-making regarding
budget appropriateness by reviewing not only construction costs from a financial perspec-
tive but also information on building maintenance costs through building performance
analysis, such as energy consumption, at the early design stages.

Cho et al. [12] facilitated intuitive understanding of space for users by translating floor
sketches into building components within a BIM model framework during the initial design
phase. However, there is an additional need for an environment capable of generating the
basis for decision-making support in budget management, such as construction costs and
building performance analysis information.

Recent studies emphasize the need for research focused on efficiently generating
preliminary design models in BIM. This effort aims to firmly establish the spatial and
performance criteria of buildings as defined by stakeholders. The objective of this research
is to facilitate the effective creation of Building Information Modeling (BIM) models from
sketches supplied by clients. The developed framework automates the translation of the
sketched information into precise architectural elements, such as walls, floors, and roofs,
in a BIM model. The resultant BIM models not only precisely reflect the requirements of
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the stakeholders—enhancing architects’ grasp of their intentions—but also incorporate
material attributes. This incorporation is crucial for the preliminary assessment of building
performance, including energy consumption and cost estimation of materials, via the BIM
models. As a result, the framework is instrumental in aiding the decision-making process
for spatial planning and construction, ensuring that the initial design decisions are in line
with both functionality and budgetary constraints.

3. Developing a Framework for Data-Driven Generation of Building Information
Modeling from Sketch Information

To address the limitations identified in existing research, this study develops a frame-
work that efficiently generates BIM models based on floor sketches reflecting clients’ spatial
requirements and effectively computes building performance analysis outcomes using
the BIM models. Clients employ sketching tools to articulate spatial information, such as
floor plan configurations and flooring shapes. This sketch information is utilized by the
framework to automatically create 3D building components, including walls, floors, and
roofs, within the BIM model, and the framework then automatically calculates material
costs and annual electricity and gas energy expenses. Through the developed framework,
stakeholders, including non-professional clients, can access the following functionalities
during the early design phase.

• Providing spaces constructed from 3D building components, enabling a more intuitive
and explicit visualization of space than would be possible with 2D drawings and
interior images.

• Supplying a data model capable of efficiently conveying building performance analysis
outcomes to stakeholders via the BIM model.

• Presenting stakeholders with a detailed overview of specific spatial arrangements,
direct material expenditures, and results of energy performance analysis.

In this research, we delineated two distinct phases to develop a framework aimed at
the automated generation of BIM models from sketch information, incorporating building
performance analysis such as cost estimation and energy consumption evaluation: (1) de-
velopment of a process model, (2) implementation of the framework, and (3) validation of
the framework. The development of the process model involved identifying and defining
the specific steps required for framework development, as well as articulating and defining
the relationships between data inputs, processing, and outputs. To develop the process
model, we identified the flow of data and established a series of steps comprising activities.
In the framework implementation phase, the activities defined in the process model were
realized through system and user interfaces. The implementation of the system interface
involved coding the algorithms defined in the process model and defining methods for data
exchange between disparate activities. The user interface was developed to enable users to
interact with the system interface and operate the system effectively. The validation verifies
whether the framework can automatically translate sketch information into a BIM model
consisting of walls, floors, and roofs, as well as conduct building performance analysis.

3.1. Development of a Process Model

The process model was designed to define the processes required for the development
of the framework. It established a series of activities that describe the system’s functionali-
ties and defined the information required for these activities, as well as the relationships
between these pieces of information.

For the development of the process model, the International Organization for Standard-
ization’s Integration Definition for Function Modeling 0 (IDEF0) technique was utilized [13].
To implement the process model, the standardized IDEF0 method was employed to depict
the relationships between activities and between disparate activities using diagrams and
textual descriptions involving boxes and arrows. The specific representation techniques of
the IDEF0 modeling method employed in this study are as follows.

• Activity: Represented textually within a box.
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• Input: Denoted by arrows entering the box from the left.
• Output: Indicated by arrows exiting the box to the right.
• Condition: Expressed by arrows coming into the box from the top.
• Mechanism: Shown by arrows entering the box from the bottom.
• Sequence of Activities: Depicted by connecting diverse boxes with arrows.

Figure 1 illustrates the process model developed through the IDEF0 modeling tech-
nique. The process model is composed of three stages: (1) Extracting vector information
(Activity 1, A1); (2) Creating a BIM model (Activity 2, A2); (3) Performing building perfor-
mance analysis (Activity 3, A3).
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3.1.1. Extracting the Vector Information

The process of extracting vector information, as depicted in Figure 1’s Activity 1,
utilizes sketch information provided by the clients as input and outputs vector information
used for generating building components, such as walls from the sketch information. Given
that the sketch information is in an analog format using paper and pen, it was converted
into a digital image format through digital image acquisition portable devices, such as
smartphones. Smartphones were employed for their ease of converting sketch information
into a digital format, compared to more complex devices, such as scanning equipment and
Sensors following the LiDAR technology.

The digitally converted sketch information (sketch image) includes not only the sketch
strokes that represent the centerline information of walls and the scale bars indicating scale
information but also unnecessary elements, such as shadows, reflections, and the desk sur-
face. To efficiently extract vector information used for creating building components from
the sketch information, image preprocessing was conducted to remove these unnecessary
details from the sketch image. The image preprocessing utilized techniques including (1) a
perspective transformation algorithm, (2) a sketch information recognition model, and (3) a
thinning algorithm.

Through the perspective transformation algorithm, the selected area within the sketch
image was transformed into a predefined rectangular shape, effectively removing unneces-
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sary information, such as the desk surface, existing outside the paper boundary. To select
the internal area of the paper for perspective transformation within the sketch image, a set
of rules for choosing the paper’s outer corner points was defined. The sketch information
recognition model identified sketch strokes within the sketch image and eliminated un-
necessary elements such as shadows and reflections inside the paper, excluding the sketch
strokes. The implementation of the sketch information recognition model utilized the
Pytorch 1.8.2+cu111 [14] deep learning framework, and a thinning algorithm was applied
to reduce the thickness of the sketch strokes to a single pixel in the sketch image. Pytorch, a
scientific computing and deep learning library, accelerates computations via GPUs, poten-
tially speeding up operations by up to 50 times compared to CPUs. It also offers models
for numerical optimization, streamlining the development of deep learning models. This
preprocessing step was performed to efficiently extract the centerline information of walls
from the sketch strokes. The preprocessed sketch image was then separated into images
of the wall centerlines and scale bars, each saved as individual image files. The centerline
image of the wall was created to extract the central line information from individual sketch
strokes, and the scale bar image was generated to adjust the centerline information to the
actual lengths intended by the user, based on which dimension information was calculated.

To extract the centerline information used for generating building components from
the centerline images of walls, a deep learning-based line detection model, LETR [15], was
employed. The LETR model detected the centerline information (vector information) from
individual sketch strokes (pixel information) in the input centerline images of walls. The
extracted centerline information was converted into a Scalable Vector Graphics (SVG) file
format, and the vertical and horizontal resolution of the SVG files was adjusted to transform
the lengths to those actually intended by the client. The specific values for adjusting the
image resolution were calculated using the predefined scale information (1:50) and the
width of the scale bar in the scale bar image (34 pixels). The length-transformed centerline
information was defined within a database mechanism to be convertible into a Comma
Separated Values (CSV) file format, facilitating information exchange with BIM authoring
tools such as Revit [16].

3.1.2. Creating a BIM Model

The creation of a BIM model, depicted in Figure 1’s Activity 2, involves using vector
information, specifically centerline data converted into a CSV format, as input. This
process creates a BIM model that accurately represents building components, including
walls, floors, and roofs. A BIM authoring tool and visual programming techniques were
employed to automatically create 3D building components within the BIM model. When
generating building component objects in BIM models using Revit, overlapping errors
between different objects at the same location can prevent automatic creation. To automate
the creation of building component objects in BIM models, a line correction algorithm was
developed. This algorithm adjusts the lengths of input centerlines and removes lines with
similar positions, directions, and lengths. Additionally, the line correction algorithm was
used to adjust digital floor plans from various sketching techniques used by different users.
The corrected centerline information, along with attribute information, such as material
(concrete) and location (first floor), was utilized to create building component objects such
as walls. An algorithm to extract the outermost lines from the centerline information
was defined for generating polygons used in creating building components such as floors
and roofs. The extracted outermost lines, along with attributes such as material and floor
information, were employed to generate floor and roof objects.

3.1.3. Performing Building Performance Analysis

The procedure for conducting building performance evaluations, as depicted in Fig-
ure 1’s Activity 3, leverages the BIM model and material cost information as inputs. This
process calculates building performance metrics, encompassing direct material expenses
and annual charges for electricity and gas energy. In this research, building performance is
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defined in terms of construction costs and energy consumption, which can be estimated
from the BIM model at the conceptual design stage. Construction costs are defined as
direct material costs, and energy consumption is defined as annual charges for electricity
and gas energy use. To calculate these building performance analysis data, algorithms
were employed that automatically extract attribute information (volume, area) from objects
in the BIM model and utilize BIM authoring tools and visual programming techniques
to run these algorithms. An algorithm was defined to calculate direct material costs by
extracting the total volume of wall objects from the BIM model, summing the volume of
the floors, and applying the unit volume price of materials (concrete). To calculate energy
charges, an algorithm was defined that extracts the area of floor objects from the BIM
model and applies the unit area price for energy use. The unit area price for gas energy use
was set at KRW 17,201 which is the currency code for the South Korean won (
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electricity use at KRW 5912, based on energy consumption statistics from the Ministry of
Land, Infrastructure, and Transport in Korea. The calculated building analysis information
was defined to be convertible into a CSV file format through a database mechanism.

3.2. Implementation of the Framework

Through the process model, the input and output information for each stage of the
framework was defined, and based on the individual activities of the process model, both
the system interface and user interface were implemented. In implementing the system
interface, every algorithm specified in the process model was executed, and a methodology
for integrating data across different systems was formulated.

The implementation of the framework utilized the Python programming language [17]
and the OpenCV computer vision library [18]. For the implementation of the sketch infor-
mation recognition model in Activity 1 (A1), as shown in Figure 1, the Pytorch v.1.8.2+cu111
deep learning framework was employed. To implement Activities 2 (A2) and 3 (A3), the
BIM authoring tool Revit 2024 [16] and the visual programming tool Dynamo [19] were
used. Figure 2 illustrates the process through which the framework creates a BIM model
based on sketch information provided by the user and calculates building performance
analysis data from the created BIM model.
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conducts building performance evaluations.

3.2.1. Implementation of Extracting Vector Information System

The vector information extraction system implemented the process associated with
Figure 2’s Activity A1. A system for extracting vector information from sketch data, used
to create wall, floor, and roof objects in a BIM model, was implemented using the Python
programming language and the Pytorch deep learning framework. Table 1 displays the
input data for the vector information extraction system and the data output through the
applied mechanisms.
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Table 1. Description of the vector data retrieval system.

Step
Process

(1) Remove Noises
from Outside in the

Sheet

(2) Remove Noises
from Inside in the

Sheet

(3) Retrieve Center
Lines (4) Split the Image (5) Retrieve Vector Data

Input

Sketch image Pre-processed image Wall image Pre-processed image Center line image
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A perspective transformation application was developed to eliminate unnecessary
information, such as the desk surface outside the paper boundary in sketch images, that is
not part of the sketch strokes. This application utilized perspective transformation functions
and functions for accessing and editing image files provided by the OpenCV library. The
perspective transformation application allows users to select four corner points of the
paper boundary in a clockwise direction within the sketch image. Following selection,
the area defined by these corner points is saved as an image with a predefined resolution
(width: 2016 pixels, height: 1512 pixels). It also offers functionality for users to select the
area (four corner points) for perspective transformation application through a left mouse
click. Table 1’s column, “Remove noises from outside the sheet”, illustrates the removal of
unnecessary information from outside the paper boundary in the sketch image through the
perspective transformation application.

A sketch information recognition model was developed to eliminate extraneous infor-
mation, such as shadows, reflections, and paper texture, within the sketch image that is not
part of the sketch strokes. The development of the sketch information recognition model
utilized the skip connection, encoding, and decoding architecture of Unet++ [20], with
individual Convolution units of Unet++ implemented as Residual units from ResUnet [21].
The sketch information recognition model was developed using ResUnet architecture,
originally designed for road detection in remote sensing images due to its effective binary
classification with minimal training data. This study leveraged the morphological par-
allels between roads in remote sensing and sketch strokes, alongside the similar binary
classification challenge of differentiating sketch strokes from non-stroke elements. Thus, a
deep learning model based on ResUnet was created to accurately identify sketch strokes
in images. The architecture of Unet++ was employed to accurately identify pixels corre-
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sponding to sketch strokes in sketch images, while the Residual units of ResUnet were
used to facilitate model training with a limited amount of training data. The combination
of both models allowed for the implementation of the sketch information recognition
model capable of high-accuracy recognition of sketch information with limited training
data. The model was implemented with an encoding and decoding structure of Unet++
composed of 15 Residual units. Each individual Residual unit in the encoding structure
was progressively connected to each Residual unit in the decoding structure through skip
connections. Each Residual unit performed operations combining a 3 × 3 convolution layer,
batch normalization, and ReLU activation function, followed by an addition operation
with the initial input variable, x. The Pytorch deep learning framework and the Python
programming language were used to implement the sketch information recognition model.
For training the model, a dataset of 50 images with a resolution of 224 pixels in width and
height was created, consisting of input images and mask images. The input images used
were perspective-transformed sketch images, and the mask images were used to represent
images with sketch strokes. Choosing the right loss and optimization functions is essential
for a deep learning model to effectively optimize parameters and improve accuracy. For a
sketch recognition model, which aims to classify pixels in a sketch as either strokes or not,
the Binary Cross Entropy loss function was selected for its relevance to binary classification
problems. This function measures the model’s output against the true segmentation. Given
the non-linear and complex nature of sketch information, which includes variations in
spatial requirements, pen thickness, and the effect of hand tremor, the Adam [22] optimizer
was used to efficiently adjust the model’s parameters. Both components were implemented
via Pytorch. The number of training epochs was set to 150, and the batch size was set to 16.
Table 1, column 2 “Remove noises from inside the sheet”, illustrates the model’s ability to
recognize sketch strokes (white pixels) and classify non-stroke information (black pixels) in
the sketch image.

A wall shape representation image (wall image) was generated using the sketch
information recognition model from sketch images. To convert the thickness of sketch
strokes in the wall image to a single pixel, a thinning algorithm [23] was implemented
using the OpenCV library. This algorithm removed pixels not central to individual sketch
strokes in the wall image. An algorithm was developed to save the thinned wall image into
designated areas within the image as separate files for the scale bar image and the wall’s
centerline image. Table 1, in the column “Retrieve center lines”, illustrates the application
of the thinning algorithm to convert the thickness of sketch strokes to a single pixel, and
the “Split the image” column shows the process of separating the wall image into the scale
bar image and the wall’s centerline image.

For extracting the central line information (centerlines) of individual walls from the
wall’s centerline image, the LETR model by [15] was adopted. The LETR model, upon
inputting an image, detects lines within the image and outputs the x, y coordinates of the
start and end points of individual lines. The centerline extraction mechanism utilizing the
LETR model was set in two stages: (1) extracting morphological features of neighboring
pixels in the wall’s centerline image, and (2) selecting detailed line objects in the wall’s
centerline image. The wall’s centerline image was input into the LETR model with a
resolution of 256 pixels in width and height, and Table 1’s column “Retrieve vector data”
displays the extraction of centerlines from the wall’s centerline image using the LETR
model. An algorithm was developed to save the centerlines at a resolution of 512 pixels in
width and 362 pixels in height in a Scalable Vector Graphics (SVG) file format, adjusting the
length of the centerlines to the length intended by the user, utilizing the OpenCV library.
The adjustment of the SVG file’s vertical and horizontal resolution and the length of the
centerlines were calculated using the width of the white pixels in the scale bar image
(34 pixels), the physical length of the scale bar represented on the paper (2 cm), and a
predefined scale ratio (1/50). An algorithm was implemented in the Python programming
language to extract the (x, y) coordinates of the start and end points of the centerlines from
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the resolution-adjusted SVG file and to save them in the Comma Separated Values (CSV)
file format.

3.2.2. Implementation of Creating a BIM Model System

The BIM model creation system implemented the process associated with Figure 2’s
Activity A2. A system that utilizes CSV files, containing information on centerlines (lines),
as the initial input data to create a BIM model representing walls, floors, and roofs in the
BIM authoring tool Revit, was implemented using the Python language and the visual
programming tool Dynamo in Table 2. The BIM model generation system is structured into
five detailed steps: (1) generating points and lines from the CSV file, (2) applying a line
correction algorithm, (3) applying an outermost line extraction algorithm, (4) creating wall
objects, and (5) creating roof and floor objects.

Table 2. Development of the BIM model creation system.

Dynamo Nodes to Create the BIM Model in Revit
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output x, y coordinates are then set as input data for the Dynamo nodes that create points
in Revit, facilitating the output of the start and end points of the lines. In Table 2, the
“Create points” under the “Create lines” column illustrates the start and end points of the
centerlines created in Revit, where the generated points, as shown in the red box in “Create
points” under the “Create lines” column are scattered instead of being at the same location.
The algorithm for aligning neighboring points takes the start and end points of lines as
input data, generates a circle of a fixed radius (0.2 m) around each point, and eliminates
all points on each circle except for one. “Merge points” under the “Create lines” column
in Table 2 displays the integration of points into a single point. The algorithm for creating
lines sets the start and end points as input data for the Dynamo nodes (nodes that create
points) and implements the output of lines, with “Create lines” under the “Create lines”
column in Table 2 showing the lines created in Revit.

The line correction algorithm comprises three stages: (1) removing and trimming lines,
(2) extending lines, and (3) trimming lines. The removing and trimming stage employ lines
as input data to eliminate all lines that overlap, share similar lengths and angles, except for
the longer lines, and to remove segments that pass through the intersection of two different
lines. To define lines that overlap and share similar lengths and angles for the first stage,
lines from the input data that meet the following three criteria were selected.
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The extending lines phase was implemented to use lines as input data, targeting
different lines that do not intersect within a specific distance (0.1 m), to output lines whose
lengths have been extended. In Table 2, “Extend lines” under the “Correct lines” column
displays the process of extending the length (0.3 m) of lines based on their individual
starting and ending points, which do not intersect with each other. The extended lines
intersect with other lines, necessitating the use of the previously implemented “Remove
and trim lines” step in Table 2 under the “Correct lines” column to eliminate portions that
pass-through intersection points. “Trim lines” in Table 2 under the “Correct lines” column
shows the trimming performed on the extended lines.



Appl. Sci. 2024, 14, 3013 11 of 15

The outermost line extraction phase is organized into three detailed steps: (1) dividing
lines, (2) extracting the outermost lines, and (3) sequentially arranging the points. The
dividing lines stage utilizes lines that have been adjusted by the line-correction algorithm
as input data. It is implemented to split a line into two at an intersection point when an
intersection occurs on the line. “Split lines” under the “Retrieve outer polygon” column
in Table 2 illustrates the division of each line at intersection points. The second detailed
step, extracting the outermost lines, uses the previously divided lines based on intersection
points as input data to output the lines located furthest out. “Retrieve outer polygon” in
Table 2 displays the extracted outermost lines. To utilize the extracted outermost lines for
creating floor and roof objects, they were converted into a polyline format. To convert
into the polyline format, an algorithm was first implemented to arrange the points that
make up the outermost lines in clockwise or counterclockwise order. “Sorting points in
order” under the “Retrieve outer polygon” column in Table 2 shows the points making up
the outermost lines arranged in a clockwise direction. Secondly, the points arranged in a
clockwise direction were used as input data for the Dynamo node that creates polylines,
and the converted outermost polyline was outputted.

The wall object creation phase utilized the output from “Correct lines” in Table 2
(corrected lines) as the centerlines for walls. Additional input data, such as material
information (Generic 200 mm) and wall height (3 m), were used to generate wall objects in
Revit. “Create walls” in Table 2 illustrates the creation of wall objects in Revit.

The floor and roof object creation phase used the output from “Retrieve outer polygon”
in Table 2 (outermost lines) as contours for the floor and roof objects. Additional input
data, including material information (Floor: Generic 150 mm, Roof: Generic 125 mm), were
utilized to generate floor and roof objects in Revit. “Create a floor and roof” in Table 2
displays the generation of floor and roof objects in Revit.

3.2.3. Implementation of Performing Building Performance Analysis System

The building performance analysis system implemented the process associated with
Figure 2’s Activity A3. The system was developed that utilizes the BIM model and unit
price information for building performance analysis as input data to output direct material
costs and electricity and gas energy charges. Table 3 illustrates the implementation of the
building performance analysis information extraction system using Dynamo nodes. The
system for extracting building performance analysis information is structured into three
detailed steps: (1) collecting wall and floor objects, (2) calculating building performance
analysis information, and (3) exporting to CSV files. The stage of collecting wall and floor
objects employs the BIM model as input data to output wall and floor objects from the
building components of the BIM model. The column “Collect walls and floors” in Table 3
shows the extraction of wall and floor objects from the BIM model.

The building performance analysis information extraction phase utilizes wall and
floor objects along with unit price information as input data to calculate direct material
costs and annual electricity and gas energy charges. An algorithm was developed to
access the property information of wall and floor objects to extract volume information and
perform a multiplication operation with the unit volume price of concrete (KRW 70,000) to
calculate direct material costs. To calculate annual electricity energy charges, an algorithm
was implemented that accesses the area information from the floor object properties and
multiplies it by the annual electricity energy price per unit area (KRW 5912). The annual
electricity energy price was defined based on the statistics of energy consumption for
single-family homes from the Ministry of Land, Infrastructure, and Transport in Korea.
For calculating annual gas energy charges, an algorithm was developed that extracts area
information from floor object properties and multiplies it by the annual gas energy price per
unit area (KRW 17,201), which was defined based on the gas billing method from SEOUL
CITY GAS. Table 3’s “Estimate costs” column displays the formulas used for the extraction
of building performance analysis information. The total cost of building performance
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analysis information was calculated by summing the direct material costs and annual
electricity and gas energy charges.

Table 3. Development of the building performance estimation system utilizing dynamo.

Dynamo Nodes to Perform the Building Performance Analysis
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The exporting to CSV file phase was implemented using the calculated building
performance analysis information and the path where the CSV file will be saved as input
data, ensuring that the CSV file (containing building performance analysis information) is
created at the specified path. In Table 3, “Export a CSV file” illustrates the execution of the
created CSV file.

3.3. Validation

For the verification phase, the framework’s ability to automatically generate a BIM
model using sketch information as input data was assessed, along with its capability to
automatically produce building performance analysis information from the created BIM
model. The validation method involved inputting various sketch information examples into
the developed framework and first verifying whether wall, roof, and floor objects in the BIM
model could be automatically created without errors. Additionally, a second verification
step was established to determine whether direct material costs, and annual electricity and
gas energy charges could be automatically calculated based on the generated BIM model.
Table 4 displays the results of applying the framework to four sketch information examples,
describing the created BIM models and the calculated building performance analysis
information. Through Table 4, it was confirmed that each piece of sketch information (Input
row) was transformed into wall, floor, and roof objects in the BIM model (Output row)
using the developed framework. In the Direct material costs row of Table 4, it was verified
that direct material costs were calculated by extracting volume information from the wall
and floor objects of the BIM model. Similarly, in the Energy costs row, annual electricity
and gas energy charges were calculated by extracting area information from the floor
objects of the BIM model. Consequently, it was verified that the developed framework can
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automatically generate a BIM model from sketch information and automatically produce
building performance analysis information from the generated BIM model.

Table 4. Validation using test cases.

CASE CASE 1 CASE 2 CASE 3 CASE 4

Input
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Energy cost
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(₩)

Electric costs (₩) 156,422 129,365 114,910 137,616

Gas costs (₩) 455,111 376,389 334,333 400,396

Total costs (₩) 2,380,080 2,106,595 1,944,831 1,985,758

4. Conclusions and Discussion

This research developed a framework to support efficient spatial visualization and
comprehensive decision-making based on building performance analysis within the BIM
context during the initial design phase. The developed framework automatically trans-
forms clients’ spatial requirements, expressed through sketches, into BIM-based building
component objects and effectively calculates building performance analysis information
such as direct material costs and energy usage charges. Through the verification phase, it
was confirmed that the framework automatically translates sketch information into wall,
floor, and roof objects in a BIM model, and it was validated that the framework automati-
cally calculates direct material costs, as well as annual electricity and gas energy charges
from the BIM model.

The developed framework allows for the explicit visualization of spatial configurations
from client-defined plan sketches through a BIM model, effectively providing clients with
information on space size, form, and location during the initial design phase. Moreover, by
efficiently calculating and providing direct material costs and annual electricity and gas
energy charges from the generated BIM model, it serves as valuable evidence for budgetary
decision-making at this stage. The generated BIM model can be utilized as a data model to
efficiently convey explicit spatial requirements to professionals such as architects, serving
as a foundational model for preliminary design.

Furthermore, the research aims to refine the framework by conducting case studies
that demonstrate the creation of BIM models for multi-story buildings. Additionally,
the study will explore enhancing the understanding of spatial configurations through
experiences in virtual 3D environments created with BIM models, incorporating elements
such as furniture and openings, including windows and doors. This approach utilizes the
framework developed in this research, facilitating the comprehension of space based on
sketch information provided directly by clients.

A more fundamental investigation into the potential errors within the BIM model
creation system was conducted. The possibility of errors arising from translating sketched
information into BIM components is noted. To investigate the mentioned error rate, six test
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cases were executed. It was confirmed that the average error occurring when translating
sketched information into components of a BIM model is 1.36%. This error rate is attributed
to several factors: the performance limitations of the LETR model, a line detection model
on an object level; distortions in line thickness resulting from the line refinement algorithm
developed in this study; and length discrepancies arising from the wall join function within
the Revit application. Future research will aim to reduce the error rate and improve the
accuracy of the framework by conducting additional training of the LETR model and
refining the line refinement algorithm.

While the framework has been implemented to calculate direct material costs and
annual electricity and gas energy charges based on provided sketch information, further
research is required to enhance the framework with accurate calculation and simulation
techniques for more specific decision support in spatial detailing by providing additional
building performance analysis information. For instance, the system will be further devel-
oped to allow stakeholders to select material information set as default values for building
performance evaluation and to input building height information, offering detailed building
performance analysis results instead of approximate analyses based on unit area.

Additionally, future research will address the general design process (creating mass be-
fore generating walls through spatial division) by enhancing the functionality to determine
whether sketch information represents mass information or wall centerlines.
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