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Abstract: FIDO (Fast Identity Online) is a set of network identity standards established by the
FIDO Alliance. It employs a framework based on public key cryptography to facilitate multi-
factor authentication (MFA) and biometric login, ensuring the robust protection of personal data
associated with cloud accounts and ensuring the security of server-to-terminal device protocols
during the login process. The FIDO Alliance has established three standards: FIDO Universal Second
Factor (FIDO U2F), FIDO Universal Authentication Framework (FIDO UAF), and the Client to
Authenticator Protocols (CTAP). The newer CTAP, also known as FIDO2, integrates passwordless
login and two-factor authentication. Importantly, FIDO2’s support for major browsers enables
users to authenticate their identities via FIDO2 across a broader range of platforms and devices,
ushering in the era of passwordless authentication. In the FIDO2 framework, if a user’s device
is stolen or compromised, then the private key may be compromised, and the public key stored
on the FIDO2 server may be tampered with by attackers attempting to impersonate the user for
identity authentication, posing a high risk to information security. Recognizing this, this study aims
to propose a solution based on the FIDO2 framework, combined with blockchain technology and
access control, called the FIDO2 blockchain architecture, to address existing security vulnerabilities in
FIDO2. By leveraging the decentralized nature of the blockchain, the study addresses potential single
points of failure in FIDO2 server centralized identity management systems, thereby enhancing system
security and availability. Furthermore, the immutability of the blockchain ensures the integrity of
public keys once securely stored on the chain, effectively reducing the risk of attackers impersonating
user identities. Additionally, the study implements an access control mechanism to manage user
permissions effectively, ensuring that only authorized users can access corresponding permissions
and preventing unauthorized modifications and abuse. In addition to proposing practical solutions
and steps, the study explains and addresses security concerns and conducts performance evaluations.
Overall, this study brings higher levels of security and trustworthiness to FIDO2, providing a robust
identity authentication solution.

Keywords: FIDO2; blockchain; access control; identity authentication

1. Introduction

With the rapid development of information and internet technologies, most informa-
tion systems are facing significant security challenges. For instance, in industrial control
systems, identity verification is crucial to prevent unauthorized access and potential security
issues. Due to the unique nature of the industrial control environment, cybersecurity inci-
dents can have severe consequences, including production downtime, equipment damage,
and even harm to personnel [1]. However, the risks faced by information systems extend
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beyond industrial control systems. Essentially, most information systems require user
authentication for identity verification, which in turn introduces the risk of system attacks.

Currently, using account passwords and Public Key Infrastructure (PKI) for user
identity verification is a common practice. However, a study titled “Brute-force and
dictionary attack on hashed real-world passwords” demonstrated that it is relatively easy
to crack most user-created passwords using simple and predictable patterns [2].

As a result, other forms of passwordless authentication technologies have emerged,
such as biometric technologies and PKI, among others. However, biometric technologies
also face many challenges and threats, such as biometric feature theft and forgery, leading
to authentication failures and security vulnerabilities [3]. The passwordless authentication
technology is now widely regarded as a more usable and secure alternative to traditional
password-based methods [4].

The FIDO (Fast Identity Online) [5] Alliance provides a more secure and reliable
identity authentication solution, with a robust passwordless login standard that enables
safer and more convenient identity verification. Chadwick et al. [6] proposes a method
for solving existing identity management system issues using FIDO and W3C VC. It
details the conceptual model, architecture, and protocols used. By extending FIDO’s
UAF, it achieves robust identity authentication and authorization. The paper establishes
a pilot implementation for NHS patients in the UK, allowing them to access restricted
NHS websites for appointment scheduling, cancellation, and prescription ordering using
biometric authentication on mobile devices. Initial user trials with 10 UK NHS patients
found the system easy to use, with biometric authentication preferred over usernames
and passwords. The advantages of FIDO lie in its high security, effective phishing attack
prevention, and convenient user authentication experience, significantly enhancing system
security and usability.

The FIDO Alliance has issued three sets of specifications aiming to enhance user
authentication by providing simpler yet more robust mechanisms: FIDO Universal Second
Factor (FIDO U2F), FIDO Universal Authentication Framework (FIDO UAF), and the Client
to Authenticator Protocols (CTAP). CTAP complements the Web Authentication (WebAu-
thn) specification by the World Wide Web Consortium (W3C), together forming the FIDO2
standard. In short, FIDO2 provides passwordless login and two-factor authentication,
integrating browser support through WebAuthn. This means users can log in without
passwords using biometric authentication via their browsers, or they can use their own
devices, such as USB drives or smartphones with built-in authentication capabilities, in
conjunction with the CTAP protocol as authentication devices during login. Addition-
ally, FIDO2 adopts public key cryptography, and the FIDO2 authentication server only
stores the public key/verification, avoiding the upload of users’ personal data and better
safeguarding user privacy [7].

However, it should not be assumed that FIDO2 technology is entirely secure [8], as it
may still face potential risks. For instance, if a user’s device is stolen or subjected to other
attacks, the private key could be compromised, thereby jeopardizing the authentication
process. Moreover, as the public key is stored on the FIDO2 server, attackers might attempt
to tamper with the public key and impersonate the user for authentication, posing high
risks to information security.

Based on the above, with the development of information systems applications, iden-
tity authentication and access management have become essential tasks. Identity au-
thentication and access control are two commonly integrated security mechanisms that,
when combined, can provide comprehensive protection and management capabilities.
The identity authentication mechanism ensures that only legitimate users can access the
system, while access control further restricts users’ access rights to specific sensitive data
or functions.

Therefore, this study will integrate the FIDO2 identity authentication standard with
blockchain technology and enhance access control mechanisms. Utilizing the immutability
and decentralized nature of the blockchain, the tamper-proof characteristics effectively
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ensure the integrity of identities. The decentralization aspect ensures the system can
continue to operate even if certain nodes are attacked or experience failures. By storing
identity and permission mappings on the blockchain, permission administrators can easily
modify identity privileges without the need to individually adjust settings for each machine
or site. This approach offers a more efficient and precise permission management method
while ensuring the security of identities and permissions, leading to a more secure identity
and access management system.

2. Related Work
2.1. The FIDO2 Architecture

FIDO2 is a standardized identity authentication framework that offers efficient, se-
cure, and convenient methods of authentication. Users can utilize the same authentication
method across different websites and applications, reducing the burden of remembering
and managing multiple accounts and passwords. FIDO2 provides various authentication
methods, including various biometric technologies and USB security keys, to offer a more
convenient user experience. Additionally, FIDO2 supports multi-factor authentication,
allowing users to use multiple authentication methods simultaneously, thereby enhancing
the security of identity authentication. Its goal is to establish a unified identity authenti-
cation standard, enabling users to use the same authentication method on any website or
application, thereby reducing the hassle of remembering different passwords for different
websites or applications and mitigating risks such as phishing attacks.

2.2. The FIDO2 Registration and Login Process

In the FIDO2 system, FIDO2 WebAuthn is a modern identity verification technol-
ogy that offers users a more secure and convenient authentication experience. It utilizes
asymmetric encryption techniques to achieve identity authentication, allowing the client
and server to provide identity verification services while ensuring the confidentiality and
integrity of the identity. The WebAuthn identity authentication process consists of two
stages: registration and authentication [9,10].

2.2.1. Registration Phase

As shown in Figure 1, FIDO2’s registration process involves the user sending a regis-
tration request to the RP Server, which then sends a challenge to the authenticator. After
biometric verification, the authenticator generates a new key pair and signs the challenge
using the private key. The signed challenge and public key are then returned to the RP
Server for verification and storage. Authenticators can be biometric devices, smart cards,
USB keys, or mobile devices used for identity verification, while the RP Server is responsible
for registering and authenticating user identities. ECDSA is used in this process, providing
efficient and secure digital signatures based on elliptic curve cryptography [11–13]. Below
is a description of the eight steps based on the registration process diagram.

Step 1. Registration request:
When a user wants to register an authenticator, the browser initiates a registration

request and sends the UserAccount to the RP Server. During this process, it is recommended
to collect aliases for the authenticators. Aliases can help users easily identify them when
multiple authenticators are registered.

Step 2. Generating PublicKeyCredentialCreationOptions:
Upon receiving the registration request from the browser, the RP Server generates a

challenge and creates an empty object called PublicKeyCredentialCreationOptions. This
object contains information related to User Info, RP Info, and the required credential types.

User Info includes relevant data about the user account, where the userAccount can be
associated with the credential by the authenticator. This association enables the verification
of the user’s identity when using the same userAccount and authenticator for future
authentication purposes. RP Info refers to the organization or service responsible for
registering and authenticating users.
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Step 3. Generating clientData:
When the browser receives the relevant information, it verifies whether the rpId in RP

Info matches the origin (original URL). If the verification is successful, then the browser
generates clientData, which is a piece of data generated by the browser, as shown in Table 1.
It includes the origin, challenge, and type. Its significance lies in preventing phishing
attempts and replay attacks. After generating clientData, it is hashed, and then the RP Info,
User Info, and clientDataHash are passed to the authenticator.
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Table 1. The parameter list for clientData in FIDO2 registration.

challenge Randomly generated random value.
origin The origin string must be verified to match the origin of the application.
type Verify if the string matches “webauthn.create”.

Step 4. Verifying user identity:
After receiving the RP Info, User Info, and clientDataHash, the authenticator performs

biometric authentication on the user. Once the authentication is successful, the authenticator
creates a new pair of asymmetric keys and stores the private key within the authenticator.
The public key becomes part of the attestation. The private key is then used to sign the
clientDataHash and attestation.

Step 5. Returning attestationObject and clientData to the browser:
After generating the PublicKey, CredentialID, and other attestation data, they are

combined to form the attestationObject, which is then sent to the browser along with the
clientDataHash. The contents of the attestationObject are shown in Table 2.
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Table 2. The parameter list for attestationObject in FIDO2 registration.

fmt indicates how attestation data should be parsed and verified.
authData contains information about the created credential, including CredentialID and PublicKey.

attStmt contains the signature data related to the public key credential itself and the creation
of the authenticator.

Step 6. Generating PublicKeyCredential:
The browser parses the clientDataHash and attestationObject, and generates the

PublicKeyCredential, which is then returned to the RP Server for verification. During the
registration phase, the PublicKeyCredential is created using the “publicKey” option, allowing
for the creation of a new Credential. The structure of the PublicKeyCredential is shown in
Table 3.

Table 3. The parameter list for PublicKeyCredential in FIDO2 registration.

id Credential ID.

response
attestationObject: It contains the authenticator data and attestation statement.
clientData: Data transmitted from the client to the authenticator for generating
the credential.

type Type is public key.

Step 7. Verification:
The RP Server extracts the public key from the authData field of the PublicKeyCredential

and verifies the correctness of the signature in the attStmt of the attestationObject. It also
validates the integrity of the clientDataHash.

After validating the signature, the RP Server will further verify if the challenge in the
clientData matches the original request, if the origin is correct, and if the type is set to “create”
These validations ensure that the registration process is authentic. Once the validation is
complete, the RP Server will store the PublicKey, CredentialID, and aaguid in the database,
associating them with the user’s account.

Step 8. Returning registration result:
Finally, the RP Server will return the registration result to the browser, completing this

registration process.

2.2.2. Login Phase

Figure 2 depicts the authentication architecture of FIDO2. During the authentication
process, the user selects a previously registered security key for identity verification. When
the user wants to log in using the FIDO2 security key, the RP Server generates a challenge
and sends it to the authenticator device. The authenticator device verifies the user’s identity
using methods such as biometrics or a PIN. Upon successful authentication, the device
uses its private key to sign the challenge and sends it back to the RP Server. The RP Server
then verifies the signature using the corresponding public key and checks if the request
is from an authorized user. Below is a description of the eight steps based on the login
process diagram.

Step 1. Login request:
When a user requests to log in, the browser initiates a login request and sends the

UserAccount to the RP Server.
Step 2. PublicKeyCredentialRequestOptions:
The RP Server creates a PublicKeyCredentialRequestOptions and returns it to the

browser, which includes the challenge, allowCredentials, and other parameters. Among
them, allowCredentials lists the previously registered credential list to perform the authen-
tication process, as shown in Table 4.
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Table 4. The parameter list for allowCredentials in FIDO2 login.

id The CredentialID is obtained during registration.
type The type of the credential, which is public key.
transports Specifies the transport methods to be used, such as USB, Bluetooth, or NFC.

Step 3. Verifying origin:
When the browser receives the relevant information, it verifies whether the rpId in

RP Info matches the origin. If the verification is successful, then the browser generates
clientData, which is data generated by the browser and has the same content as the one
generated during registration. clientData includes origin, challenge, and type. After
generating clientData, it is hashed, and then rpId and clientDataHash, along with other
information, are passed to the authenticator.

Step 4. Verifying user identity:
During the identity verification process, the authenticator searches for a Credential

that matches the rpId and performs user authentication through methods such as biometric
verification. Once the authentication is successful, the authenticator creates a new assertion.
The authenticator uses the private key generated during registration for this account to
sign the clientDataHash and authenticatorData.

Step 5. Returning the signed information to the browser:
The authenticator sends the authenticatorData, clientDataHash, and the signature to

the browser. The signature is generated by signing the concatenation of the authenticator-
Data and clientDataHash.

Step 6. Generating PublicKeyCredential:



Appl. Sci. 2024, 14, 3551 7 of 18

The browser parses the authenticatorData, clientDataHash, and signature and con-
structs a PublicKeyCredential object. This object is then returned to the RP Server for
verification. The PublicKeyCredential differs from the one used during registration in
that it includes the signature but does not include the public key. Refer to Table 5 for the
structure of the PublicKeyCredential.

Table 5. The parameter list for PublicKeyCredential in FIDO2 login.

id CredentialID.

response

authenticatorData: Data related to the authenticator device during the
verification process.
clientData: Data provided by the client to the authenticator device for generating
the credential.
signature: The signature generated by the private key associated with the credential.

type The type of the credential, which is public key.

Step 7. Parsing and verification:
The RP Server retrieves the public key from its database and performs signature verification.
Also, it confirms whether the challenge signed by the authenticator matches the chal-

lenge generated by the RP Server, and verifies whether the rpId matches the expected value.
Step 8. Returning result:
Finally, the RP Server will return the verification result to the browser to complete the

authentication process.

2.3. Blockchain

The blockchain is composed of cryptographic algorithms, consensus mechanisms,
distributed data storage, and peer-to-peer communication. It possesses characteristics such
as transparency, immutability, anonymity, and high security. Transactions are stored in
blocks, and cryptography is used to ensure the security, reliability, and transparency of
transactions [14]. These blocks are linked together in a chain. This is illustrated in Figure 3.
The core feature of the blockchain is decentralization, which means there is no single central
authority or administrator. Instead, it is operated by multiple nodes. Each node maintains
a complete copy of the blockchain database and can verify and record transactions. When a
transaction is initiated, the node broadcasts it to the entire network for validation. Validated
transactions are included in a block, which is then broadcast to the entire network. When
a block accumulates a certain number of transactions, it is added to the blockchain and
permanently recorded, becoming unchangeable [15]. The blockchain has the following
characteristics [16,17]:

• Decentralization: The blockchain system operates without a central authority, and all
nodes have equal power. Nodes can communicate and transact with each other. This
decentralized feature makes the system more democratic and open, reducing the risk
of a single point of failure.

• Immutability: Transactions recorded in the blockchain are packaged into blocks and
linked together. Each block contains validation information from the previous block,
forming an expanding chain. Any modification to the content of a block would affect
the entire blockchain and require changing the content of all subsequent blocks. This
immutability ensures that data in the blockchain have a high level of trustworthiness
and security.

• Openness: On a fully public blockchain, anyone can access and query the records
on the chain. Although the data are anonymous, transaction records and balances of
users are publicly transparent.

• Non-repudiation: The data structure of the blockchain is permanent and immutable.
Once data are recorded on the blockchain, they cannot be deleted or modified; only
new additions are possible. When a transaction is confirmed, its record is broadcast to
all nodes in the blockchain network, ensuring that all nodes have the same information.
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Blockchain technology solves the problems of traditional identity verification, and the
thesis [18] proposes a smart contract-based identity management and authentication model
with several advantages. It provides higher security as identity information is stored on
a decentralized blockchain network, making it difficult to be attacked or tampered with.
It also eliminates the need for intermediaries, allowing users to directly perform identity
verification, thereby improving efficiency and convenience. This demonstrates the potential
and future applications of the blockchain in the field of identity verification. With the
continuous development and maturity of blockchain technology, we can anticipate seeing
more innovative applications in various identity verification scenarios in the future.

3. Materials and Methods
3.1. The FIDO2 Blockchain Framework

This section will introduce the architecture of the FIDO2 integrated blockchain tech-
nology proposed in this study, which we refer to as the FIDO2 blockchain. This system
combines the FIDO2 identity verification standard with blockchain technology, leveraging
the characteristics of the blockchain to enhance the FIDO2 identity verification standard
and achieve trustless identity authentication. It eliminates reliance on a single authentica-
tion authority and provides a more secure, reliable, and decentralized identity verification
solution. The system can be divided into two main stages.

3.1.1. FIDO2 Blockchain Register Phase

Figure 4 depicts the registration architecture of the FIDO2 blockchain. During the
registration process, the user sends a registration request to the smart contract. The
smart contract sends a challenge to the authenticator. Upon receiving the challenge, the
authenticator prompts the user for biometric verification and generates a new pair of keys.
The authenticator signs the challenge using the private key and returns the signed challenge
and public key to the smart contract for verification and storage.

In this study, the ECDSA based on elliptic curve cryptography is utilized for generating
new asymmetric keys. This key consists of a private key and its corresponding public key,
which can be used for performing digital signatures and other related operations.

Step 1. Registration request:
When a user wants to register with the validator, the client-side initiates a registration

request. During the registration process, the user’s wallet address (userWalletAddress) is
passed to the smart contract.

Step 2. Generating PublicKeyCredentialCreationOptions:
Upon receiving the registration request from the client-side, the smart contract gener-

ates a challenge and creates an empty object called PublicKeyCredentialCreationOptions.
This object is then returned to the browser. PublicKeyCredentialCreationOptions contains
information about the user, contract, and the required credential type. The User Info section
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contains relevant data about the user’s account. The UserAccount within User Info can
be associated with the credential by the verifier, allowing for the verification of the user’s
identity in future authentication attempts using the same UserAccount and verifier. The
Contract Info section contains information about the organization or service responsible for
registering and authenticating users.
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Step 3. Generating clientData:
When the browser receives the relevant information, it verifies whether the Contract

Address in the Contract Info matches the origin. If the verification is successful, then the
browser generates clientData, which is a data structure containing the origin, challenge,
and type, as shown in Table 6. After generating the clientData, it is hashed. The Contract
Info, User Info, and clientDataHash are then passed to the verifier.

Table 6. The parameter list for clientData in FIDO2 blockchain register.

challenge A random value passed from the browser.
origin Verification of whether the origin string matches the Contract Address.
type Verification of whether the string matches “webauthn.create”.

Step 4. Verifying user identity:
The authenticator will perform biometric authentication or other verification methods

on the user. Once the verification is successful, the authenticator will generate a new pair
of asymmetric keys. The private key is stored within the authenticator, while the public key
becomes part of the attestation. The private key is then used to sign the clientDataHash
and attestation.
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Step 5. Returning attestationObject and clientData to the browser and parsing attesta-
tionObject:

After the PublicKey, CredentialID, aaguid, and signature are generated, they are
combined to form the attestationObject. The clientDataHash and attestationObject are
then sent to the browser. The attestationObject is structured according to the information
provided in Table 7.

Table 7. The parameter list for attestationObject in FIDO2 blockchain register.

fmt Indicates how to parse and verify the attestation data.
authData Information about the created credential, including CredentialID and PublicKey.
attStmt Signature data related to the public key credential itself and the creation of the authenticator.

Step 6. Generating PublicKeyCredential:
The browser parses the attestationObject received, extracting attStmt and authData. It

then generates the PublicKeyCredential object and returns it to the smart contract for verifi-
cation. During the registration phase, PublicKeyCredential is created using the “publicKey”
option, allowing for the creation of a new Credential.

Step 7. Verification:
The smart contract verifies the signature of the attStmt within the clientDataHash and

the attestationObject and using the public key.
Afterwards, the smart contract will parse the challenge within the clientData to ensure

it matches the original request. It will also verify if the origin is correct and if the type is
set to “create,” indicating a user registration. Once the verification is completed, the smart
contract will store the PublicKey, CredentialID, and aaguid on the blockchain and associate
them with the user.

Step 8. Returning result:
Finally, the smart contract will return the registration result to the browser to complete

the registration process.

3.1.2. FIDO2 Blockchain Login Phase

In Figure 5, the authentication architecture of the FIDO2 blockchain is depicted. During
the verification process, the user selects a previously registered security key or device for
identity authentication. If the user chooses to log in using a security key, then the smart
contract generates a challenge and sends it to the authenticator device. The authenticator
device verifies the user’s identity using biometric authentication. Once the verification is
successful, the authenticator device signs the challenge using its private key and sends
it back to the smart contract. The smart contract then uses the corresponding public key
to verify the signature and determine if the requesting user is an authorized user for
the desired service. After successful verification, the smart contract checks the user’s
permission records on the blockchain to confirm the user’s authorization for accessing
the system.

Step 1. Login request:
The browser initiates a verification request to the smart contract for login. During the

login process, the user’s wallet address (userWalletAddress) is passed to the smart contract.
Step 2. PublicKeyCredentialRequestOptions:
The smart contract creates PublicKeyCredentialRequestOptions and returns it to the

browser, which includes information such as the challenge and allowCredentials. The
allowCredentials field contains a list of previously registered credentials for the user, which
is used for the verification process as shown in Table 8.
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Table 8. The parameter list for allowCredentials in FIDO2 blockchain login.

id The CredentialID obtained during registration.
type The type of credential, which is public key.
transports Specifies the transport methods to be used, such as USB, Bluetooth, or NFC.

Step 3. Verifying origin:
When the browser receives the relevant information, it verifies whether the Contract

Address in Contract Info matches the origin. If the verification is successful, then the
browser generates clientData, which is a data segment generated by the browser and has
the same format as the content generated during registration. clientData includes origin,
challenge, and type. Once clientData is generated, it is hashed, and the information, includ-
ing Contract Info and clientDataHash, is passed to the authenticator for further validation.

Step 4. Verifying user identity:
During the identity verification process, the authenticator searches for a credential

that matches the Contract Address. The authenticator then verifies the user’s identity
through biometric authentication or other verification methods. Once the verification is
successful, a new assertion is created. The authenticator uses the private key generated
during registration for this account to sign the clientDataHash and authenticatorData.

Step 5. Returning the signed information to the browser:
The verifier sends the authenticatorData, clientDataHash, and signature to the browser.

The signature is generated by signing the concatenation of authenticatorData and client-
DataHash using the private key associated with the authenticator.

Step 6. Generating PublicKeyCredential:
The browser parses the authenticatorData, clientDataHash, and signature and gen-

erates a PublicKeyCredential object. This object is then returned to the smart contract for
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verification. The PublicKeyCredential object differs from the one used during registration
in that it includes the signature but does not include the public key. The structure of the
PublicKeyCredential object is shown in Table 9.

Table 9. The parameter list for PublicKeyCredential in FIDO2 blockchain login.

id CredentialID

response

authenticatorData: Data related to the authenticator device.
clientData: Data provided by the client to the authenticator, used for generating
the credential.
signature: The signature generated by the private key associated with the credential.

type The credential type, which is public key.

Step 7. Parsing and verification:
To verify the signature, the smart contract retrieves the stored PublicKey from the

blockchain and performs signature verification.
After successful verification, the relevant information will be passed to the smart con-

tract through the getPermission function. The required information for the getPermission
function is shown in Table 10.

Table 10. The information required for the getPermission function in FIDO2 blockchain login.

subject The user’s blockchain wallet address (userWalletAddress).
object The machine that can be operated.

Step 8. Returning verification result and permissions:
Finally, the smart contract will return the registration result and the corresponding

permissions to the browser, completing the verification process.

3.2. The FIDO2 Blockchain Permission Management

The permission management approach adopted in this research is the Access Control
List (ACL) method [19,20]. ACL is a method of assigning access permissions to subjects for
operating on objects. Each ACL corresponds to an object and can omit empty elements in a
sparse matrix, thereby addressing the sparse matrix problem. Each ACL element consists
of two parts: the subject and the access rights. These elements are represented as ordered
pairs, such as [subject, right]. Each ordered pair defines a specific object that a subject can
access, and each subject corresponds to a non-empty set of rights. Through ACL, rights
can be configured for different subjects on different objects, enabling fine-grained access
control. Each subject is assigned the rights it possesses, allowing effective management
and control of the access behavior of subjects to objects. The representation method of the
access control list is shown in Figure 6.

The blockchain has great potential in access control. Identity verification and permis-
sion management solutions based on the blockchain have attracted widespread attention
and research. By leveraging the immutability and decentralization of the blockchain, more
secure and efficient identity verification and permission management can be achieved.
In fields with high security requirements, the application of blockchain technology can
provide more reliable security control solutions. It is expected that the blockchain will
continue to play an important role in the field of access control, bringing more innovative
applications and improvements [21].
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4. Results
4.1. Security Analysis

The purpose of this study is to address the security vulnerabilities inherent in the FIDO
architecture and bolster security by integrating blockchain technology. The blockchain,
being decentralized and distributed, offers the potential to mitigate the expenses associated
with implementing a decentralized authentication framework within the FIDO architecture.
Storing public keys on the blockchain can significantly enhance security, decentralization,
transparency, and resistance to tampering. Consequently, blockchain technology holds
promise for fortifying the security of the FIDO architecture. Below, we will outline several
security attacks that are particularly difficult to defend against on the internet and explain
how our architecture is designed to withstand these attacks [22,23].

4.1.1. Brute Force Attack

The architecture of passwordless authentication relies on hardware keys or bio-metric
identification devices owned by users. These authentication factors offer high levels of
security, making it challenging for attackers to obtain users’ identity information through
brute force attacks. This architecture significantly enhances system security. This study
adopts the characteristics of a passwordless authentication architecture, eliminating the
need for traditional password login methods. This approach effectively mitigates brute
force attacks, as attackers cannot infiltrate the system by guessing or cracking passwords.

4.1.2. Phishing Attack

In this study, we employ public key encryption technology for identity verification,
thereby reducing the risk associated with entering passwords on untrusted websites. User
passwords are never transmitted, so even if users enter their passwords on a phishing web-
site, attackers cannot obtain the actual password information. Additionally, we introduce
indicators such as lights or touch sensors on hardware keys or biometric recognition devices
to help users identify trusted identity verification operations, thus avoiding interaction
with potential phishing websites or malicious software.

Furthermore, our Contract Address in Contract Info serves as a crucial element in the
authentication process. The Contract Address, generated by the service provider (smart
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contract), is linked to the user’s account during registration. During authentication, the
verifier checks if the registered Contract Address matches the current service provider’s
Contract Address. This verification mechanism ensures that the verifier authenticates only
against the specific service provider and prevents attackers from using forged verifiers for
phishing attacks. By validating the Contract Address, we ensure that users interact only
with the correct service provider, effectively thwarting phishing attacks.

Lastly, we implement a challenge response mechanism. During each authentication, a
challenge is generated, and the user must provide the corresponding signature response.
This mechanism complicates phishing attacks because attackers cannot predict previous
challenges. Even if attackers deceive users into providing a response, the response will be
invalid without the correct challenge. Therefore, the challenge response mechanism serves
as an effective solution to prevent phishing attacks.

4.1.3. Replay Attack

In this study, the challenge response mechanism is implemented to ensure commu-
nication integrity. During authentication, a random challenge is generated by the smart
contract and sent to the user. The user must generate the corresponding response using
their registered security key or device. Since the challenge is random and used for one-time
verification only, attackers cannot intercept and replay the communication, thus enhancing
system security.

Similarly, public key encryption is utilized for secure communication and identity
verification. The user’s security key or device stores a private key, while the server holds
the corresponding public key. During verification, the security key or device encrypts the
challenge using the private key and sends the encrypted result to the server. Since the
private key is only stored in the security key or device, attackers cannot reuse the same
encrypted result in a replay attack, further enhancing security.

Additionally, a one-time verification mechanism is supported, where each identity
verification utilizes a different authentication credential that becomes invalid after success-
ful use. Even if attackers intercept previous communications, they cannot replay the same
authentication credential in subsequent verifications.

Lastly, to safeguard private keys and sensitive data, secure elements within the device
are employed. These secure elements, such as hardware security modules or trusted
execution environments, offer robust protection mechanisms to prevent attackers from
directly accessing or copying the private keys stored within the security key or device,
thereby reducing the risk of replay attacks.

4.1.4. Man-in-the-Middle Attack

To mitigate the threat of man-in-the-middle (MITM) attacks, this research implements
several methods and measures. Public key encryption is utilized to safeguard sensitive
information during the authentication process. Encryption and decryption using a pair
of public and private keys ensure that attackers cannot access or modify transmitted data.
The challenge response verification mechanism is employed, where the smart contract
sends a unique challenge to the client, and the client generates a response by encrypting
the challenge with their private key. Even if attackers intercept the communication, they
cannot replay the same response due to the uniqueness of the challenge.

Moreover, Public Key Infrastructure (PKI) is employed to verify identities and establish
trust. Through digital certificates, signatures, and verification, the system prevents attackers
from executing MITM attacks using forged certificates. Additionally, biometric features are
stored on the device itself rather than being transmitted to the smart contract for verification.
This prevents attackers from intercepting biometric information during transmission. These
mechanisms effectively mitigate the risk of MITM attacks.
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4.1.5. Distributed Denial of Service (DDoS)

In this study, FIDO2 is integrated with the decentralized characteristics of the blockchain
to ensure the authenticity and legitimacy of identity verification information. Each partici-
pant’s identity verification data are recorded on the blockchain, preventing attackers from
impersonating legitimate users for distributed denial of service (DDoS) attacks. Addi-
tionally, the distributed nature of the blockchain aids in distributing network traffic and
load, thereby mitigating the attack pressure on a single target. Since identity verification
and authorization information are stored on multiple nodes, attackers would need to
simultaneously attack multiple nodes to disrupt the system’s availability. Thanks to the
decentralization of the blockchain, the failure of a single node does not result in the entire
system becoming unavailable. Even if certain nodes are under attack or experience failures,
other nodes can continue to provide identity verification services, thereby reducing the
impact of DDoS attacks on the system.

4.1.6. Architecture Analysis

The solution proposed in this study is based on the FIDO standard, which offers sev-
eral advantages. As shown in Table 11, both FIDO2 and this study demonstrate excellent
performance in many aspects. They both support the convenience of two-factor authentica-
tion and can be applied to various platforms and devices. Additionally, they can withstand
a brute force attack, phishing attack, and man-in-the-middle attack. However, they differ
in their ability to defend against DDoS attacks. The FIDO standard itself does not provide
a specific solution for DDoS defense. Nevertheless, when the FIDO standard is combined
with blockchain technology, it can offer a certain level of defense capability, along with
the advantages of decentralized identity verification and traceability. This combination
significantly enhances the security resilience of FIDO. Furthermore, this study goes beyond
identity verification and provides access control mechanisms, allowing only authenticated
users with appropriate permissions to access specific resources.

Table 11. Item Comparison.

Item Comparison FIDO2 Our Method

The convenience of two-factor authentication ✔ ✔

Applicable to multiple platforms and devices ✔ ✔

Resistance against brute force attack ✔ ✔

Resistance against phishing attack ✔ ✔

Resistance against replay attack ✔ ✔

Resistance against man-in-the-middle attack ✔ ✔

Resistance against DDoS attack ✔

Decentralized identity verification ✔

Verification traceability ✔

Access control ✔

4.2. Performance Analysis
4.2.1. Registration and Verification Execution Time

As shown in Figure 7, the time required for the identity authentication scheme de-
signed in the thesis is plotted. The Y-axis represents the average execution time in millisec-
onds for ten registers and logins. The identity authentication process consists of registration
and login phases. During the registration phase, operations such as certificate generation,
key generation, signature generation, and signature verification are performed. On average,
the registration process takes 3506.2 ms. In the login phase, operations such as searching
for previously registered certificates, signature generation, and signature verification are
performed. On average, the login process takes 3513.5 ms.
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4.2.2. Access Control Execution Time

The execution time for access control is presented in Figure 8. The Y-axis represents
the average execution time in milliseconds for ten permission operations. The permission
operations are divided into five different functionalities: adding permission managers,
removing permission managers, adding permissions, removing permissions, and updating
permissions.
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For the operation of adding permission managers, the average execution time is
289.2 ms. On the other hand, the average time for removing permission managers is
313.7 ms. Adding permissions takes an average time of 315.4 ms, while removing permis-
sions requires an average time of 437 ms. Lastly, updating permissions has an average
execution time of 410.7 ms.
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5. Conclusions
5.1. Conclusions

This study has provided a robust identity authentication framework by combining
FIDO2, the blockchain, and access control. The framework offers a secure, efficient, and
trusted solution for identity authentication. The advantages of this framework include
reduced system setup costs, ensuring the trustworthiness and verifiability of public keys,
and employing permission management on the blockchain, allowing for convenient and
easy maintenance of permissions by making a single change on the blockchain instead of in-
dividually modifying each machine. These features collectively contribute to a reliable and
scalable identity authentication framework, providing excellent security and performance
for various application scenarios.

This study integrates the existing FIDO2 architecture with blockchain technology and
cleverly utilizes Access Control List (ACL) methods to enhance its control capabilities. In
addition to improving the security and functionality of the original FIDO2 framework,
the simulation implementation has also been confirmed to operate effectively within a
reasonable timeframe. Therefore, the outcomes of this study hold significant value in en-
hancing the reliability of identity authentication and protecting systems from unauthorized
identity breaches.

5.2. Future Research

Recently, the FIDO Alliance introduced Passkey [5], which eliminates the limitation
of registering a set of keys on each device in FIDO2, thus significantly relaxing the strict
requirement of binding private keys to specific hardware devices. Passkey, while making
some compromises in terms of technology, offers substantial advantages and convenience
in multi-device logins, eliminating cumbersome registration processes and facilitating user
account recovery. This positions Passkey as an exciting and forward-looking solution that
provides users with greater autonomy and flexibility in control.

Therefore, a promising future research direction would be to explore the adoption
of the Passkey architecture in this study, which can enhance users’ login experiences and
account management capabilities. However, before implementation, thorough evaluation
and testing should be conducted to ensure its suitability and security.
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