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Abstract: In recent years, machine learning models have become a potential approach in accurately
predicting the concrete compressive strength, which is essential for the real-world application of
geopolymer concrete. However, the precursor system of geopolymer concrete is known to be more
heterogeneous compared to Ordinary Portland Cement (OPC) concrete, adversely affecting the
data generated and the performance of the models. To its advantage, data enrichment through
deep learning can effectively enhance the performance of prediction models. Therefore, this study
investigates the capability of tabular generative adversarial networks (TGANs) to generate data on
mixtures and compressive strength of geopolymer concrete. It assesses the impact of using synthetic
data with various models, including tree-based, support vector machines, and neural networks. For
this purpose, 930 instances with 11 variables were collected from the open literature. In particular,
10 variables including content of fly ash, slag, sodium silicate, sodium hydroxide, superplasticizer,
fine aggregate, coarse aggregate, added water, curing temperature, and specimen age are considered
as inputs, while compressive strength is the output of the models. A TGAN was employed to
generate an additional 1000 data points based on the original dataset for training new predictive
models. These models were evaluated on real data test sets and compared with models trained on
the original data. The results indicate that the developed models significantly improve performance,
particularly neural networks, followed by tree-based models and support vector machines. Moreover,
data characteristics greatly influence model performance, both before and after data augmentation.

Keywords: geopolymer concrete; compressive strength prediction; machine learning; deep learning;
data augmentation; tabular GAN

1. Introduction

Concrete stands as the most extensively utilized man-made material worldwide [1].
The incessantly rising demand for concrete translates into a parallel surge in the need for
cement, evidenced by a reported 12% increase in 2019 and an anticipated doubling by
2050 [2]. Nonetheless, the production of cement imposes diverse environmental reper-
cussions [2]. Each ton of cement manufactured emits 0.6–1 ton of CO2, contingent upon
production methods, contributing 5–7% to global CO2 emissions [1]. Additionally, lime-
stone exploitation for cement production triggers water and land pollution, disturbing
local ecosystems and biodiversity [3]. Therefore, numerous studies have been conducted to
explore alternative materials to replace cement. In recent years, alkali-activated materials,
such as geopolymers, have emerged as a promising alternative to OPC-based materials due
to their lower carbon footprint and utilization of industrial by-products [4]. Geopolymers
are polymeric aluminosilicate cementitious materials that involve industrial wastes (i.e., fly
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ash, slag, and silica fume) as the precursors under the action of alkaline chemicals such as
sodium hydroxide and sodium silicate [5].

Similar to OPC concrete, the strength of geopolymer concrete is influenced by var-
ious parameters, including both external and internal factors. External factors such as
temperature, duration, curing types, humidity, and air containment play significant roles
in determining the strength of geopolymer concrete [6]. On the other hand, internal factors,
such as material quality and mixture compositions, also have a substantial impact. Because
of the intricate relationships and inconsistencies in precursors and alkaline activators, a
mixture proportion can yield a wide range of compressive strengths [7]. Therefore, calcu-
lating the distribution and predicting the intensity using empirical and theoretical methods
pose significant challenges.

With the growth in ML applications, researchers are increasingly turning to ML
to address the problem of compressive strength prediction for geopolymer concrete [8].
ML models heavily rely on large, high-quality datasets and models trained on datasets
containing fewer than 1000 data points are prone to overfitting problems [9]. However,
according to the research of Li et al. (2022) [9], only 11% of the studies on applying ML
to concrete science utilize datasets containing more than 1000 samples. Also, the average
sample size is estimated to be 174 [9]. To mitigate the challenge of data scarcity in concrete
science, several studies have adopted generative models such as Generative Adversarial
Networks (GANs) [10], Conditional Generative Adversarial Networks (CGANs) [11], Cycle-
Consistent Deep Generative Adversarial Networks (CDGANs) [11], and TGANs [12,13] to
generate synthetic data for ML models. The use of synthetic data has shown significant
improvements in model performance, particularly noticeable with TGAN and CDGAN
models [11,13]. However, existing research predominantly focuses on generating data for
OPC concrete with less emphasis on geopolymer concrete. Meanwhile, geopolymer mixtures
involve a more intricate ingredient system including alumino-silicate precursors and alkali
activators, which are more complex than the cement–water system of OPC concrete [5].
Moreover, geopolymer precursors exhibit significant variations in chemical composition and
reactivity across different factories, regions, and time periods [5]. Conversely, cement exhibits
greater standardization in these aspects, resulting in more consistent data collection and
synthesis. Consequently, the impact on generating and utilizing synthetic data on geopolymer
strength prediction models may differ from that of OPC concrete. However, research focusing
on the effectiveness of data augmentation specifically for geopolymer concrete remains limited.

Therefore, this study aims to investigate the ability of TGANs to generate data for
geopolymers and the impacts of synthetic data on various algorithms with different mathe-
matical principles and assumptions, including tree-based models, SVM, and neural net-
works. To achieve this objective, this study uses datasets collected from the open literature
to ensure diversity in sources and the chemical composite of precursors. The dataset col-
lected for this study consists of 930 instances. Specifically, 10 variables are considered as
inputs, including the content of fly ash (FA), slag (S), sodium silicate (SS), sodium hydroxide
(SH), superplasticizer (SP), fine aggregate (Fag), coarse aggregate (Cag), added water (W),
curing temperature (CT), and specimen age (Age). The output of the models is the compres-
sive strength (CS). Subsequently, a TGAN was employed to generate data pertaining to fly
ash- and slag-based geopolymer concrete mixtures and their corresponding strengths based
on the collected dataset. The generated data was then utilized to train different models,
including LightGBM, SVM, and cascade forward neural networks (CFNNs). Next, models
using synthetic data will be compared with models using original data with evaluation
metrics such as R-squared (R2), Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), Mean Absolute Percentage Error (MAPE), Root Mean Square Residual (RSR), and
Weighted Mean Absolute Percentage Error (WMAPE). Additionally, SHAP analysis was
performed to facilitate the interpretation of model performance and data influence.
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2. Literature Review
2.1. Machine Learning Models for Prediction

In recent years, there has been an increasing number of studies using ML to predict the
strength of geopolymers. Among these, artificial neural networks (ANNs) have emerged
as the most prominent, with numerous studies demonstrating promising prediction capa-
bilities [14–16]. Alongside ANNs, convolutional neural networks (CNNs) [17] and deep
neural networks (DNNs) [18] are also utilized. Additionally, tree-based algorithms includ-
ing decision tree (DT) [19], random forest (RF) [20], LightGBM [20], and MP5-tree [21]
are employed, showing advantages in model interpretation and handling skewed data.
Similarly, recently emerged algorithms known as gene expression programming (GEP) [22]
and its variants exhibit superior model interpretation capabilities compared to neural
network models. SVM [15] is another popular algorithm that yields results comparable to
ANN. To further enhance model performance, various optimization algorithms such as
grey wolf optimizer (GWO) [23] and particle swarm optimization (PSO) [23] are employed.
Additionally, stacked and ensemble models are utilized in several studies, demonstrating
improved performance compared to individual models.

The input variables in these studies typically include mixture proportions, chemical
compositions of precursors, specimen age, and external factors such as curing temperature
and curing regimes. Table 1 presents the inputs, dataset sizes, and algorithms used in some
related studies.

Table 1. Statistical description for the features in the dataset.

Refs. ML Technology Dataset Inputs

[24] LR, EL, SVMR, GPR,
optimized EL, optimized
SVMR, optimized GPR

275 Fly ash, coarse aggregate, fine aggregate, Na2SiO3, NaOH, SiO2, molarity of
NaOH and Na2O

[19] DT, AdaBoost, RF 363 Water/solids ratio, molarity of NaOH, gravel 4/10 mm, gravel 10/20 mm,
Na2SiO3, NaOH, fly ash, GGBS, fag

[20] RF, GB, AdaBoost, DT,
lightGBM, XGB, kNN,
MVR, GPR, CatB

158 Fly ash, superplasticizer, extra water added, Na2SiO3, NaOH, coarse aggre-
gate, fine aggregate, slag, specimen age, rest period, curing temperature,
molarity, alkali/binder, and Na2SiO3/NaOH

[14] ANN, MLR, MNLR 289 Fly ash, slag, rest period, curing temperature, age, NaOH/Na2SiO3, super-
plasticizer, extra water, molarity of NaOH, alkali/binder, coarse aggregate,
fine aggregate

[15] SVM, DT, RFR 75 Molarity of NaOH, curing temperature, age, % of Na2SiO3, NaOH, fly ash,
coarse aggregate, fine aggregate, Na2SiO3, NaOH

[25] ANN, M5P, LR, MLR 220 Alkali/binder, fly ash, Si/Al of fly ash, GGBS, Si/Ca of GGBS, coarse aggre-
gate, fine aggregate, Na2SiO3, NaOH, Na2SiO3/NaOH, molarity of NaOH

[26] ANN, MARS 208 Water/solid ratio, alkali/binder, Na-Silicate/NaOH, fly ash/slag ratio,
NaOH molarity

[27] RF, GBR, AdaBoost 321 GGBS, Na2SiO3 + NaOH (total alkali), coarse aggregate, fine aggregate,
water, water/binder, age

[23] LR, GA, PSO, SVR, GWO,
Differential Evolution

268 Water, curing temperature, water/binder, GGBFS/
binder, coarse aggregate, fine aggregate,
superplasticizer

[28] ANN 81 GGBS, silica fume

[16] ANN, BLR 625 Na2O:SiO2, Na2O:H2O, GGBFS:H2O, molarity of NaOH, Na2SiO3/NaOH,
AS/GGBS, GGBS/water
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Table 1. Cont.

Refs. ML Technology Dataset Inputs

[29] DT, Bagging, LightGBM 351 Specimen age, molarity of NaOH, natural zeolite, silica fume, GGBFS

[22] ANFIS, ANNs, GEP 245 Chemical composition of fly ash, mixing procedures, curing regime, activa-
tor content, fine aggregate, coarse aggregate, water, activator/fly ash, and
molarity of NaOH

LR: Linear Regression, EL: Elastic Net, SVM: Support Vector Machine, GPR: Gaussian Process Regression,
DT: Decision Tree, AdaBoost: Adaptive Boosting, RF: Random Forest, GB: Gradient Boosting, lightGBM:
Light Gradient Boosting Machine, XGB: XGBoost, kNN: k-Nearest Neighbors, MVR: Multivariate Regression,
CatB: CatBoost, ANN: Artificial Neural Network, MLR: Multinomial Logistic Regression, MNLR: Multinomial
Naive Bayes Logistic Regression, M5P: M5’ Model Tree, MARS: Multivariate Adaptive Regression Splines,
GA: Genetic Algorithm, PSO: Particle Swarm Optimization, GWO: Grey Wolf Optimizer, BLR: Bayesian Linear
Regression, Bagging: Bootstrap Aggregating, LSBoost: Least Squares Boosting, ANFIS: Adaptive Neuro-Fuzzy
Inference System, GEP: Gene Expression Programming.

Table 1 indicates that neural network algorithms, tree-based models, and support
vector algorithms are of significant interest. Furthermore, it is observed that the sample
size in the majority of studies is insufficient for ML models, particularly when utilizing
neural networks and deep learning. This scarcity of data, coupled with data complexity,
can lead to high-dimensionality and data-bias problems [30]. Hence, data augmentation
becomes essential in scenarios of limited experimental data availability.

2.2. Data Augmentation

In the field of concrete science, GANs are employed as powerful tools for data genera-
tion in conjunction with ML models. One notable application is the generation of images.
For example, Yasuno et al. (2020) [10] utilized GANs to generate damaged images by map-
ping tri-categorical labels to real damaged images through image-to-image translation. In
another study, Dunphi et al. (2022) [31] investigated the performance of a CNN architecture
for multiclass damage detection on concrete surfaces.

Recently, several variants of GANs have been used for generating tabular data for
concrete strength prediction problems. The study of Marani et al. (2020) [13] used TGAN
to generate 6513 plausible synthetic data for RF, extra trees (ETR), and GBR models from
810 experimental instances. The results indicate that the developed models achieved
outstanding predictive performance. GAN, DCGAN, and WGAN were used to generate
data in the study by Chen et al., 2022 [11]. DCGAN performed better than the remaining
models and helped improve the performance of deep learning models. In another study,
TGAN was used in generating synthetic data on the shear capacity of FRP-reinforced
concrete beams [13]. The study demonstrates that the TGAN technique could address
the lack of availability of experimental datasets in engineering problems by synthesizing
numerous probable data points.

The previous studies evidence that TGANs are a powerful tool for generating tabular
data, particularly in the case of concrete gradation and strength. In light of this, the present
study employs a TGAN for data generation to examine the effects of the synthetic data on
the performance of various models.

3. Methodology
3.1. Tabular Generative Adversarial Networks

To address the scarcity of available data, GANs have been proposed as a solution for
generating synthetic data from original data [32]. GANs draw inspiration from the concept
of zero-sum games in game theory. In this framework, there exist two networks: a generator
network (G) and a discriminator network (D). The GAN leverages the independent and
adversarial relationship between G and D to train and produce specified data samples. G
receives a random noise vector as input, from which it generates new relevant data. D,
on the other hand, receives both the actual data and the data generated by G as input.
These two networks engage in continuous competition, each pursuing its own objectives
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independently. As the distribution of the generated data gradually converges to that of the
real data, it becomes increasingly challenging for D to differentiate between them, signaling
the completion of the GAN model training. Remarkably, various GAN variations have
emerged for generating synthetic data, spanning images, text, and numerical data, among
others. One notable advancement is the TGAN, which excels in generating both discrete
and continuous tabular data simultaneously, showcasing promising efficiency [12].

TGANs employ the Adam optimizer for training, with a long short-term memory
(LSTM) network acting as the generator and a multi-layer perceptron (MLP) functioning
as the discriminator. One interesting feature of a TGAN is its capability to transform non-
Gaussian distributions into continuous columns using a clever mode-specific normalization
method. This enables it to capture the inherent distribution of the original data and
effectively model the relationships between features. In the optimization phase, the loss
function incorporates both KL divergence and cluster vector terms to enhance model
stability. The formulation of the loss function is provided in Equations (1) and (2).

Generator:

LossG = −Ez N(0,1)logD(G(z)) +
nc

∑
i=1

KL(u′
i, ui) +

nc

∑
i=1

KL(d′i, di) (1)

Discriminator:

LossD = −Ev1:nc ,u1:nc ,d1:nd
P(T)logD(v1:nc ,u1:nc ,d1:nd

) + Ez N(0,1)logD(G(z)) (2)

where u′
i and d′i are synthetic data, ui and di are original data, and nc and nd are the numbers

of continuous and discrete variables, respectively.
Figure 1 illustrates the architecture of a TGAN. In this investigation, a TGAN was

trained utilizing the TGAN package implemented in Python.
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Figure 1. TGAN model in this study.

3.2. Machine Learning Predictive Models

Based on a preliminary literature review, this study recognizes tree-based algorithms,
support vector algorithms, and neural networks as prominent choices for intensity predic-
tion tasks in geopolymers. Consequently, the study intends to evaluate how the utilization
of synthetic data impacts the performance of these models. Specifically, LightGBM, SVM,
and CFNN were investigated to represent the aforementioned three algorithm groups.
The advantages and disadvantages of these algorithms in compressive strength prediction
scenarios are summarized in Table 2. In the context of this study, these ML techniques do
not require the data to follow a normal distribution, making them suitable for the collected
dataset in this study.
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Table 2. Comparison of the three models.

Algorithms Advantages Disadvantages

LightGBM [33] - Efficient and faster training compared to traditional gradient boost-
ing algorithms

- Handles large-scale data and high-dimensional features effectively
- Automatically handles missing values
- Resistant to overfitting and provides good accuracy and general-

ization performance

- Limited support for certain data types, such as text or
images (requires feature engineering)

- Can be sensitive to noise or outliers in the data
- Model complexity can increase with the number of trees

SVM [34] - Effective for high-dimensional data and can handle large fea-
ture spaces

- Provides good generalization performance, even with limited
training data

- Robust to overfitting and works well with non-linear data by using
kernel tricks

- Training time can be slow for large datasets
- Not well-suited for large datasets with noise or outliers
- Limited interpretability compared to some other models

CFNN [35,36] - Highly versatile and can model complex non-linear relationships
- Capable of automatic feature extraction and learning hierarchical

representations
- Scalable to large datasets with the availability of computational

resources

- Require large amounts of training data to achieve good
performance

- Can be computationally expensive, especially for deep
architectures

- Limited interpretability and often considered as “black
boxes”

3.3. LightGBM

Light GBM, developed by Microsoft Research [37], is a variant of Gradient Boosting
Decision Trees based on a decision-tree technique. LightGBM constructs trees leaf by leaf,
employing a histogram-based technique to partition leaf nodes. This approach yields
notable efficiency and memory savings [38]. Although the leaf-wise tree growth enhances
model complexity, LightGBM can achieve greater accuracy improvements with each itera-
tion of the algorithm. However, this method poses a significant risk of overfitting, which
is addressed through regularization terms. To render LightGBM a swift, effective, and
dependable ensemble method, two strategies are employed: gradient-based one-side sam-
pling (GOSS) and exclusive feature bundling (EFB) [38]. GOSS selectively retains samples
with higher gradients during the training phase, as they contribute more to information
gain, discarding those with lower gradients. Consequently, compared to traditional meth-
ods like DT, RF, and gradient boosted decision trees (GBDT) that examine all data for
information gain calculation, LightGBM with GOSS significantly reduces computation
time. On the other hand, EFB clusters exclusive features together in a sparse feature space,
reducing dimensionality and enhancing efficiency. Particularly in scenarios involving high
feature dimensions, LightGBM combined with EFB substantially enhances model efficiency
and scalability compared to standard approaches (e.g., RF, DT, and GBDT). Consequently,
this adaptation markedly accelerates the computation process and minimizes memory
usage while preserving prediction accuracy.

To enhance the performance of the LightGBM in this study, grid search cross-validation
was employed to explore various hyperparameter combinations for LightGBM, resulting
in the selection of optimal values: n_estimators = 300, learning_rate = 0.3, max_depth = 10,
num_leaves = 30, and min_child_samples = 20.

3.4. Support Vector Machine (SVM)

The SVM method employs non-linear decision boundaries to carry out regression
and classification tasks, offering significant flexibility within the feature space where these
boundaries reside. It relies on principles of statistical learning and structural risk reduction.
However, SVM parameters are not predetermined, and there is no prior knowledge about
the distribution of inputs and outputs. During training, input and output values are aligned
in training sets, enabling the derivation of decision functions to classify new datasets based
on these alignments. The equation representing the SVM-derived plane is expressed as
Equation (4) [39].

f (x) = (w, x) + b (3)
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In this context, the weight vector w and the scalar constant b play crucial roles. The
training data is denoted by n-dimensional vector x. By computing the dot product of w
and x, and adding the scalar b, the function’s result is obtained. Each training datum is
represented by an n-dimensional vector. The dataset, comprising m data points, assigns
each data point to one of the elements in the set y ∈ {+1,−1}. The SVM model illustrates
class samples as points in space, aiming to separate instances of different classes with an
open vector, maximizing the space between them [39].

In this work, SVM hyperparameters were fine-tuned, leading to optimal parameters:
C = 133, epsilon = 0.02, and gamma = 0.7.

3.5. Cascade forward Neural Networks (CFNNs)

CFNN is a specialized form of the MLP with a unique network structure. Generally,
CFNN includes an input layer, one or more hidden layers, and an output layer, mirroring
the architecture of the MLP model. However, unlike the MLP, which employs a feedforward
network structure to transmit data from the input to output layers via hidden layers, CFNN
introduces additional direct connections between the input and output layers [40]. This
difference results in CFNN having a denser interconnection of weights and biases compared
to the traditional MLP. The CFNN architecture in this study is depicted in Figure 2.
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Figure 2. CFNN architecture in this study.

The CFNN model constructs its cascade architecture within the network by incorpo-
rating newly added neurons and their connections. The additional connections between
the input layer and subsequent layers potentially enhance the learning rate of the network
by adjusting the weights of the newly formed neurons exclusively [40]. The total inputs of
the jth hidden node from the ith input node are described as Equation (5):

ninputs,j =
N

∑
i=1

wijui 1 ≤ j ≤ N (4)

where N represents the count of input variables; wij signifies the weight connecting the ith
input node to the jth hidden node; and ui is the ith input.

The output of the jth hidden node is determined as Equation (6).

Ohidden,j = f (ninput,j) (5)



Appl. Sci. 2024, 14, 3601 8 of 21

Ultimately, the output of the CFNN model is calculated as Equation (7).

Yn = g(
M

∑
j=1

w2
jnOj +

N

∑
i=1

w3
i,nui) for 1 ≤ n ≤ N (6)

where M is the number of hidden nodes.
To improve the CFNN, the architecture and training parameters of the model were

optimized using the GWO, specifying the number of neurons, learning rate, batch size, and
epochs for two networks. The parameter bounds were set to [(0.0001, 0.01), (8, 128), (8, 128),
(8, 128)] with 50 iterations and 20 wolves. After tuning, the model commences with an
input layer that matches the dimensionality of the feature space (10 neurons), followed by
the first hidden layer comprising 26 neurons. Subsequently, two additional hidden layers
are introduced in a cascaded fashion, with 128 and 21 neurons, respectively. Each of these
hidden layers is connected to the input layer and all the preceding hidden layers. The
activation function employed for the hidden layers is the Rectified Linear Unit (ReLU),
which introduces non-linearity into the model and enables it to learn complex patterns
present in the data. The output layer consists of a single neuron, aiming to predict the
compressive strength of the geopolymer concrete. During the training process, the Adam
optimizer is utilized. The MSE serves as the loss function, optimizing the model to minimize
the squared differences between the predicted and actual compressive strength values.

To measure the performance of the predictive models, six types of indicators are
utilized, namely, R2, MAE, RMSE, MAPE, RSR, and WMAPE. The chosen evaluation
metrics offer specific benefits in comparing the models. R2 elucidates how well each model
captures the variance in the target variable, crucial for assessing predictive capability
and overall model fit. MAE and RMSE provide tangible measures of prediction accuracy,
enabling direct comparison of error magnitudes and helping identify which model yields
predictions closer to actual values. RSR normalizes errors by dataset variability, facilitating
assessment of model fit relative to inherent data characteristics, which is particularly
valuable when dealing with datasets of varying scales or levels of variability. WMAPE,
by considering the weighted average of absolute percentage errors, offers a nuanced
evaluation that accounts for the relative importance of different observations and scales of
data, thus providing insight into model performance across diverse subsets. These metrics
collectively provide a comprehensive understanding of the strengths and weaknesses of
models trained on both authentic and synthetic data. These metrics are presented in the
following equations:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (7)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (8)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (9)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (10)

RSR =
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2 (11)

WMAPE =
∑n

i=1 wi|yi − ŷi|
∑n

i=1 wi
× 100% (12)
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wherein yi and ŷi are observed and predicted value of the dependent variable for the ith
observation; ȳ presents the mean of the observed values of the dependent variable y; and
wi in WMAPE equation is weight assigned to observation i.

3.6. Study Framework

This study investigates the effect of synthetic data on various ML models. Figure 3
illustrates the process of developing and assessing TGAN, as well as ML models for
predicting geopolymer compressive strength. Initially, the data is partitioned into training
(80%) and testing (20%) sets. Models including LightGBM, SVR, and CFNNs are constructed
in Python and trained with the training set and evaluated using metrics such as R2, MAE,
RMSE, MAPE, RSR, and WMAPE. Concurrently, the training set is used to train a tabular
GAN model to generate synthetic data. This dataset, including the original training set and
1000 newly generated data points, is utilized to train LightGBM, SVR, and CFNNs models.
Subsequently, these models are evaluated on the original test set using the same metrics.
By analyzing the obtained results, this study derives and presents insights into the impact
of employing synthetic data across various algorithmic forms in the following section.

Original
data

Train
dataset

Test
dataset

Tabular GAN Synthentic
dataset

SVM model
SVR

Tree-based
technique
LightGBM

Deep learning
CFNNs

Deep learning
CFNNs

R2  
MAE

RMSE
MAPE
RSR

WMAPE

R2  
MAE

RMSE
MAPE
RSR

WMAPE

Comparison

Train

Test Test

Train

SVM model
SVR

Tree-based
technique
LightGBM

Figure 3. Evaluation flowchart of data augmentation and predictive models.

4. Results and Discussion
4.1. Data Collection and Preparation

This study utilized 930 data points derived from laboratory experiments to develop
and test prediction models. The data, extracted from peer-reviewed articles [41–59], per-
tained to mixtures and compressive strength of alkali-activated concrete using fly ash and
slag. The data were manually curated from text, tables, and figures within the publications.
The dataset comprises 10 input variables and 1 output as depicted in Table 3. Notably,
natural aggregates served as both coarse and fine aggregates for the model. Additionally,
the concrete specimen sizes varied across articles according to adopted standards, namely
cube size (150 mm) and cylinder size (150 mm × 300 mm, 100 mm × 200 mm). Since the size
of the testing sample influences compressive strength, all data points were standardized to
a consistent size (150 mm × 300 mm cylinder) using the Elwel table [60].

To understand the details of the variables in the collected dataset, a statistical analysis
was performed with IBM SPSS Statistics 27.0. Based on the initial analysis, the distributions
of the SP and CP were skewed and contained significant numbers of outliers, which could
severely reduce the performance of ML models. To address this issue, the interquartile range
(IQR) method was employed to identify and remove outliers from these two parameters.
The interquartile range is a robust measure of scale that is not influenced by outliers [61]. It
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is calculated as the difference between the 75th percentile (Q3) and the 25th percentile (Q1)
of the data:

IQR = Q3 − Q1 (13)

For the SP and CP parameters, the IQR was calculated, and any data point that fell
outside the range of [Q1 − 1.5 × (IQR), Q3 + 1.5 × (IQR)] was identified as an outlier
and removed from the dataset [61]. After removing the outliers from the SP and CP, the
remaining data points in the dataset were used for further analysis and modeling. Figure 4a
depicts the box plot of the dataset after outlier removal.

The Pearson correlation coefficients between all pairs of input parameters were calcu-
lated and illustrated in the correlation matrix shown in Figure 4b. The heatmap indicates
that there are no parameters having strong linear relationship with each other. So, all the
parameters are kept to construct the train and test datasets.

The statistical description of the dataset after outlier removal is presented in Table 3.
The content of fly ash and GGBS varied significantly, with values ranging from 0 to
620 kg/m3 and 560 kg/m3, respectively. This wide range is attributed to the dataset
including mixtures utilizing solely FA or GGBS, as well as combinations of both materials.
The age of the concrete ranged from 1 to 56 days and the compressive strength ranged from
1.25 to 80.51 MPa.
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Figure 4. Data analysis. (a) Box plot after outlier removal. (b) Correlation matrix.

Table 3. Statistical description for the features in the dataset.

Feature Name Symbol Unit Mean STD Min Max Skewness

Fly ash FA kg/m3 246.72 159.99 0.00 620.00 −0.3385
GGBS GGBS kg/m3 176.27 177.38 0.00 560.00 0.4777
Sodium silicate SS kg/m3 117.56 36.08 32.00 205.50 0.2317
Sodium hydroxide SH kg/m3 44.78 22.51 0.00 108.00 0.1219
Superplasticizer SP kg/m3 1.52 2.57 0.00 9.00 1.3455
Fine aggregate fag kg/m3 656.26 81.65 495.00 887.00 0.3134
Coarse aggregate cag kg/m3 1082.58 239.87 525.40 1381.35 −1.3052
Added water w kg/m3 64.72 62.10 0.00 216.00 0.4727

Curing temperature CT ◦C 48.16 28.21 19 100 0.4981
Curing period CP days 21.76 14.99 1 56 0.6225

Compressive strength CS MPa 38.45 14.95 1.25 80.51 0.1296

In summary, the analysis of box plots, correlation heatmaps, and various statistical
parameters reveals that the dataset contains few outliers and can accommodate all 10 input
variables without multicollinearity issues. However, certain variables exhibit high skew-
ness, indicating non-normal data distribution. This deviation from normality contradicts
the assumptions of classical ML algorithms [62] like linear regression and Gaussian Naive
Bayes. Therefore, the algorithms applied should be non-parameter algorithms or neural
networks which do not explicitly assume that the input features (independent variables)
are normally distributed or have a symmetric distribution [62].
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4.2. Performance of Models before Data Augmentation

Figure 5 show the results of the three models (LightGBM, SVM, and CFNN) before data
augmentation. The scatter plots in Figure 5a–c visually depict the models’ performance by
comparing the predicted and observed values for both the training and test sets. Figure 5a
demonstrates that LightGBM provides a moderate fit to the data. Figure 5b, which repre-
sents the SVM model, exhibits more scattered points that deviate further from the ideal
line, indicating a poorer performance compared to LightGBM. Figure 5c, corresponding to
the CFNN model, reveals that the data points are more tightly clustered around the ideal
line, suggesting the best fit among the three models.

The time series plots in Figure 5d–f depict the tendency of the models in the test set.
In Figure 5d, corresponding to the LightGBM model, the predicted values show some devi-
ations from the observed values, indicating over- or underestimation tendencies for certain
samples. Figure 5e, representing the SVM model, exhibits more pronounced deviations
between the predicted and observed values, with noticeable over- or underestimation for
some samples. Figure 5f, corresponding to the CFNN model, shows that the predicted
values closely follow the observed values, suggesting minimal over- or underestimation
tendencies across the test set samples.
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Figure 5. Model performance before data augmentation.

Table 4 provides an overview of the performance of models trained on the original
dataset in predicting the compressive strength of geopolymer concrete. Accordingly, the
CFNN model exhibited superior performance across all evaluation metrics. It achieved the
highest R2 values of 0.902 and 0.842 for the training and test sets, respectively. Additionally,
the CFNN model had the lowest error values, with an MAE of 2.973 and 3.940, and an
RMSE of 3.348 and 6.442 for the training and test sets, respectively. The CFNN model
also demonstrated low percentage errors, with a MAPE of 6.00% for the training set and
18.00% for the test set. Furthermore, the RSR value of 0.411 for the test set suggests a
relatively low standardized RMSE compared to the standard deviation of the measured
data. The LightGBM model showed a reasonably good fit with R2 values of 0.819 and
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0.805 for the training and test sets, respectively. However, it exhibited higher error values,
with an MAE of 4.357 and 5.593, and an RMSE of 6.287 and 7.24 for the training and test
sets, respectively. The MAPE was 17.50% for the training set and 20.10% for the test set,
suggesting relatively low percentage errors. The RSR value of 0.600 for the test set indicates
a moderate standardized RMSE compared to the standard deviation of the measured data.
Similarly, the SVM model displayed signs of overfitting, with a high R2 of 0.893 on the
training set but a lower value of 0.783 on the test set. Despite the lower R2 on the test set,
the model had lower MAE and RMSE values compared to LightGBM, with an MAE of 3.945
and 4.918, and an RMSE of 5.277 and 7.309 for the training and test sets, respectively. The
MAPE was 26.00% for the training set and 22.00% for the test set, indicating low percentage
errors. The RSR value of 0.496 for the test set suggests a relatively low standardized RMSE.
Overall, the CFNN model demonstrated the most promising performance in predicting the
compressive strength of geopolymer concrete among the models evaluated.

Table 4. Model performance before data augmentation.

Model Dataset R2 MEA RMSE MAPE RSR WMAPE

LightGBM Train 0.819 4.357 6.287 17.50% 0.409 11.067%
Test 0.805 5.593 7.24 20.10% 0.600 14.921%

SVM Train 0.893 3.945 5.277 26.00% 0.333 11.276%
Test 0.783 4.918 7.309 22.00% 0.496 13.749%

CFNN Train 0.902 2.973 3.348 6.00% 0.227 3.444%
Test 0.842 3.940 6.442 18.00% 0.411 10.758%

4.3. Synthetic Dataset

Table 5 demonstrates a statistical description of the synthetic compared to original
data. The mean values of the features in the synthesized data closely approximated those
of the original dataset, indicating that the TGAN model effectively captured the central
tendencies inherent in the data. Additionally, the standard deviations exuded by the
generalized data were compatible with those of the original data, subsuming that the
TGAN model successfully replicated the disposition or variability present in the dataset.
The examination of the minimum and maximum values of each feature further revealed
that the range spread by the synthetic data aligned well with that of the original data,
ensuring that the synthetic data does not contain any unrealistic outliers or values outside
the valid range. Furthermore, skewness, a measure of asymmetry in the distributions, was
highly similar between the two datasets, indicating that the TGAN model retained the
shape characteristics of the original data distributions. The fact that the mean, standard
deviation, minimum, maximum, and skewness values of the features in the synthetic data
are effectively the same as those of the original data suggests that the generated data points
capture the key statistical properties and patterns present in the real dataset.

Table 5. Comparison of original and synthetic datasets.

Symbol Unit
Mean STD Min Max Skewness

Original Synthetic Original Synthetic Original Synthetic Original Synthetic Original Synthetic

FA kg/m3 246.72 238.01 159.99 150.28 0.00 0.00 620.00 546.91 −0.34 −0.20
GGBS kg/m3 176.27 188.92 177.38 172.51 0.00 0.00 560.00 560.00 0.48 0.40
SS kg/m3 117.56 119.44 36.08 36.01 32.00 33.11 205.50 203.66 0.23 0.23
SH kg/m3 44.78 48.60 22.51 23.93 0.00 3.26 108.00 108.00 0.12 0.09
SP kg/m3 1.52 1.69 2.57 2.54 0.00 0.00 9.00 8.33 1.35 1.13
fag kg/m3 656.26 656.37 81.65 80.66 495.00 496.07 887.00 859.69 0.31 0.18
cag kg/m3 1082.58 1063.82 239.87 246.23 525.40 528.40 1381.35 1351.08 −1.31 −1.08
w kg/m3 64.72 70.93 62.10 60.39 0.00 0.00 216.00 212.41 0.47 0.29
CT ◦C 48.16 49.90 28.21 28.09 19.00 19.00 100 100.00 0.50 0.41
CP days 21.76 22.54 14.99 14.44 1.00 1.00 56 56.00 0.62 0.63
CS MPa 38.45 35.05 14.95 16.48 1.25 0.00 80.51 80.51 0.13 0.12

Figure 6 presents a t-SNE plot comparing the original data and the synthetic data
generated by the TGAN model. The t-SNE algorithm is a dimensionality reduction tech-
nique that projects high-dimensional data into a lower-dimensional space (in this case, a
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2D plane) while preserving the local structure and relationships between data points [11].
In the t-SNE plot, each data point is represented as a colored dot, with the original data
points shown in one color (e.g., blue) and the synthetic data points generated by the TGAN
model shown in another color (e.g., orange). The proximity of the data points in the plot
indicates their similarity in the high-dimensional feature space. The t-SNE plot shows that
the synthetic data points generated by the TGAN model are well-distributed and inter-
mixed with the original data points. This suggests that the TGAN model has successfully
captured the underlying patterns and distributions present in the original data, and the
generated synthetic data points share similar characteristics and relationships with the real
data points.

The ability of the TGAN model to generate high-quality synthetic data is crucial
for data augmentation techniques, as it can help increase the size and diversity of the
training dataset without introducing unrealistic or inconsistent data points. By generating
1000 additional data points using the TGAN model, the total training dataset size has been
increased, potentially improving the performance and generalization capabilities of the ML
models trained on this augmented dataset.
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Figure 6. t-SNE visualization of the synthetic and original data.

4.4. Performance of Models after Data Augmentation

The data augmentation approach using the tabular GAN to generate synthetic sam-
ples led to substantial improvements in the predictive performance of all three models,
as evidenced by Figure 7. The scatter plots show that the data points representing the
predicted versus observed compressive strength values lie much closer to the ideal line
after augmentation, indicating a stronger agreement between predictions and observations
across the entire data range. The LightGBM and SVM models also exhibit improved perfor-
mance with reduced scatter compared to their pre-augmentation results; their predictions
still deviate more from the ideal line, particularly for higher strength values. For the CFNN
model, the augmented data enabled the model to learn more robust patterns. This suggests
that the CFNN model benefited more from the augmented data in capturing the underlying
complexities and nuances of the problem.

The tendency plots in Figure 7d–f further corroborate these observations. For the
CFNN, the predicted values closely track the actual observed values across the entire test
set, with minimal discrepancies on a sample-by-sample basis. In contrast, the LightGBM
and SVM models, while improved, still exhibit noticeable fluctuations and deviations from
the observed values, indicating a higher propensity for over- or underestimation on certain
test samples.
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Figure 7. Model performance after data augmentation.

Also, the performance of the models is demonstrated in more detail in Table 6. Overall,
the models achieved better performance after data augmentation. The CFNN model
exhibited substantial improvements across all metrics after data augmentation. The R2

increased from 0.902 to 0.956 on the training set and 0.842 to 0.942 on the test set, indicating
better explained variance and goodness of fit. The MAE decreased from 2.973 to 1.037 MPa
on the training set and 3.940 to 1.546 MPa on the test set, representing reductions of 65.12%
and 60.74% respectively. Similarly, the RMSE dropped from 3.348 to 2.982 MPa on the
training set (10.9% reduction) and 6.442 to 3.836 MPa on the test set (40.5% reduction). The
MAPE saw a notable decrease from 6.00% to 18.10% on the training set, though it improved
from 18.00% to 5.283% on the test set. The RSR also reduced from 0.227 to 0.181 on the
training set and 0.411 to 0.194 on the test set, indicating smaller errors relative to data
variability. Overall, the CFNN demonstrated consistent and substantial improvements
across all metrics after augmentation.

For LightGBM, the R2 increased from 0.819 to 0.913 on the training set and 0.805 to
0.877 on the test set after augmentation. The MAE decreased from 4.357 to 3.004 MPa (31.1%
reduction) on the training set and 5.593 to 3.366 MPa (39.9% reduction) on the test set. The
RMSE also saw improvements, dropping from 6.287 to 4.676 MPa (25.7% reduction) on the
training set and 7.240 to 4.657 MPa (35.6% reduction) on the test set. The MAPE decreased
from 0.175% to 0.1% on the training set and 0.201% to 0.10% on the test set. Lastly, the RSR
improved from 0.409 to 0.282 on the training set and 0.600 to 0.413 on the test set. While
LightGBM showed improvements across all metrics, the magnitude of improvement was
generally smaller compared to the CFNN model.

The SVM model also benefited from data augmentation, with the R2 increasing from
0.893 to 0.922 on the training set and 0.783 to 0.863 on the test set. The MAE improved
from 3.945 to 1.373 MPa (39.9% reduction) on the training set and 4.918 to 2.897 MPa (41.1%
reduction) on the test set. The RMSE decreased from 5.277 to 3.256 MPa (38.2% reduction)
on the training set and 7.309 to 5.61 MPa (23.2% reduction) on the test set. The MAPE
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remained relatively unchanged at 0.06% on the training set but improved from 0.18% to
0.21% on the test set. Finally, the RSR saw improvements, decreasing from 0.333 to 0.281 on
the training set and 0.411 to 0.399 on the test set.

Table 6. Model performance.

Model Dataset R2 MAE RMSE MAPE RSR WMAPE

LightGBM Train 0.913 3.004 4.676 10.00% 0.282 7.679%
Test 0.877 3.366 4.657 10.32% 0.413 9.413%

SVM Train 0.922 2.373 4.256 12.00% 0.281 4.323%
Test 0.863 2.897 4.61 21.00% 0.399 5.757%

CFNN Train 0.956 1.037 2.982 18.10% 0.181 2.717%
Test 0.942 1.546 3.836 22.83% 0.194 3.265%

4.5. Discussion and Limitations

The comparison of model performance before and after data augmentation is visu-
alized in Figure 8. The findings align with relevant studies that have utilized synthetic
data for ML models in predicting the compressive strength of concrete [11,13]. Research
conducted by Chen et al. (2022) [11] highlights the effectiveness of integrating synthetic
data, showcasing a significant improvement in the accuracy of deep learning models (i.e.,
CNNs), compared to traditional ML models. Similarly, this study underscores the efficacy
of data augmentation methods in enhancing model predictive capabilities, particularly for
CFNNs, despite the inherent variability in precursor chemicals. Additionally, the results
suggest that the implementation of data augmentation techniques for SVMs leads to more
substantial improvements compared to tree-based models, although the distinction may not
be immediately apparent. While the use of synthetic data has proven effective in enhancing
the performance of the LightGBM and CFNN models, as evidenced by the improvements
in metrics such as MAE, RMSE, RSR, and WMAPE, its impact on the MAPE of the SVM
model remains limited. This can be attributed to the inherent sensitivity of SVM models to
the presence of outliers in the dataset [63]. Consequently, the outliers observed in the coarse
aggregate and fine aggregate features may have adversely influenced the SVM model’s
performance relative to the LightGBM and CFNN models.

Figure 8. Comparison of R2 and error indices of the models before and after data augmentation.

Notwithstanding the observed enhancements in model performance, it is crucial
to acknowledge that the generation of synthetic data in this study does not necessarily
augment the generalizability of the models. As demonstrated in Table 5, the minimum,
maximum, and skewness values of the synthetic data are either reduced or maintained at
the same level as the original dataset. However, it is worth noting that generating data
with broader coverage may potentially introduce model uncertainty due to extrapolation,
thus necessitating further investigation to assess the trade-offs between model performance
and generalizability.
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Despite the high performance in the test set, it should be noted that the test set and
training set in this study are constructed using the same dataset obtained from open litera-
ture. This can cause overoptimistic performance estimates because the data distribution
in both sets is identical. Additionally, it is important to consider that data sourced from
previous studies may not always be reliable and the presence of measurement biases among
multiple studies further adds to the uncertainty of prediction outcomes. Moreover, the data
collected in this study is confined to specific countries and regions, notably China, India,
Iran, and Australia, where geopolymer research has received considerable attention. Con-
sequently, the dataset lacks comprehensive international representation, thereby limiting
its scope and exhaustiveness.

To interpret the developed model effectively, permutation feature importance and
SHapley Additive exPlanations (SHAP) were adopted, shedding light on the intricate
interplay between input features and their influence on compressive strength. These two in-
terpretability techniques were conducted within CFNNs, recognized as the most promising
model. Permutation feature importance evaluates the variation in prediction error result-
ing from the permutation of feature values. If prediction error remains unchanged after
shuffling values, the feature is considered ’unimportant,’ signifying the model’s disregard
for it in prediction. This approach offers a concise, comprehensive understanding of the
model’s behavior. SHAP, grounded in coalitional game theory, conceptualize prediction as
a game, with features akin to players. The SHAP value assigned to each feature delineates
its average marginal contribution across all conceivable coalitions, thereby elucidating its
impact on attaining a heightened or diminished final prediction outcome.

Figure 9 presents the overall importance of the features. The most influential features
for predicting compressive strength are the specimen age and curing temperature, with
permutation importance of 0.38 and 0.35, respectively. Similar results were observed in the
SHAP analysis, with slight discrepancies in the influence of slag and fine aggregate content
between the two analyses. SHAP analysis presents that higher slag content generally
results in increased compressive strength, denoted by the prominent red coloring on
the right side of the slag feature. Conversely, higher fly ash content tends to have a
detrimental effect on compressive strength, as evidenced by the pink coloring on the right
side of the fly ash feature. The impact of fine aggregate content is more nuanced, with
both positive and negative effects depending on the specific value of the feature. Other
features, such as sodium hydroxide, water content, coarse aggregate, and sodium silicate,
exhibit relatively smaller impacts on compressive strength prediction, as indicated by their
narrower ranges of SHAP values and lower permutation importance. Superplasticizer
content demonstrates a significantly smaller influence compared to the other features
(permutation importance = 0.02).

It can be observed that that variables of specimen age and curing temperature are
the most important features in the decision making of the CFNN model. These factors are
expressed in integers and have a high frequency of repetition according to the curing regime.
Therefore, the TGAN model can capture features and generate better data. Meanwhile,
factors with many outliers such as superplasticizer and coarse aggregate are the least
influential features. These may be the reasons why the CFNN model benefits a lot from
synthetic data. Additionally, a study conducted by Rahmati et al. (2022) [64] highlights the
impact of curing time and curing method (i.e., oven, steam) on the prediction of ML models.
However, these factors were not considered in the current study due to the problem of high
dimensionality associated with the complexity of the dataset. Incorporating these factors
with larger datasets can improve the accuracy of the prediction model.

Considering model characteristics and limitations, a process for deploying and enhanc-
ing models was proposed in Figure 10. The developed TGAN and predictive models can
be refined using real data from users labeled with the prediction results. The effectiveness
of using the results of the ML model to further improve the model is demonstrated in the
research of Ford et al. (2022) [61]. This ongoing learning process ensures that the deployed
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models can enhance generalization and mitigate temporal and measurement uncertainties,
ultimately improving their performance and reliability over time.
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Figure 9. The importance of each feature of CFNN model. (a) Permutation importance.
(b) SHAP value.
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Figure 10. Schematic diagram of model deployment and improvement process.

5. Conclusions and Future Works

This study examines the impact of using synthetic data on ML models that predict the
compressive strength of geopolymer concrete. For this purpose, 930 data points were col-
lected from the open literature. The TGAN method was employed to generate geopolymer
mixture and compressive strength data. The ML model consists of LightGBM, SVM, and
CFNN algorithms, representing tree-based, support vector, and neural network algorithms,
respectively. These models were trained using the generated data and subsequently evalu-
ated using the real dataset. A comparison was made with the corresponding model using
the original dataset. Based on the obtained results, the following conclusions can be drawn:

• TGAN proves capable of generating mixture and compressive strength data for
geopolymer concrete. The synthetic data significantly improves the performance
of ML models, as evident from the increased R2 values and reduced error indices such



Appl. Sci. 2024, 14, 3601 18 of 21

as MAE, RMSE, MAPE, RSR, and WMAPE. The CFNN model exhibited the most
improvement, followed by LightGBM and SVM.

• The enhanced performance of the models indicates that the heterogeneity in the type
or quality of precursors in the collected data does not significantly affect the data
generation ability and performance of ML models.

• Due to the presence of numerous outliers and skewed characteristics of the data, the
SVM model was greatly impacted in both the original and synthetic datasets.

• The generated data statistics demonstrate that the characteristics of the data are quite
similar to the original data. This indicates that the TGAN model generated reliable
data. However, it is important to note that using such data merely improves accuracy
without enhancing the generalization capabilities of the models.

• In addition, this study demonstrates limitations concerning the generalizability of the
model, the scope of inputs, the absence of validation with actual experimental data,
and regional bias within the dataset.

Several avenues for future research can be pursued to address the limitations identified
in this study. Firstly, prioritizing exploration of generator architectures within GANs or
employing of bounded GANs could enable better control over the range of generated data.
Furthermore, the generalization capability of the models can be enhanced through the
implementation of regularization techniques (e.g., dropout, and L1 and L2 regularization),
cross-validation, and the adaptation of open-source algorithms tailored to the characteris-
tics of the data. Instead of solely relying on integration algorithms, future research should
focus on enhancing existing algorithms to better align with the characteristics of data. To as-
sess practical effectiveness, the developed TGAN and predictive models necessitate further
verification through experimental data or real-world project implementation. Moreover,
expanding the scope of input variables, such as the chemical and physical composition of
precursors, curing duration, and methodologies, could potentially improve the predictive
accuracy of the models. Expanding the dataset to include geopolymer research across di-
verse regions and countries also serves to enhance the internationality and generalizability
of the model. The aggregation of a comprehensive dataset holds promise for broadening the
scope of output variables to encompass additional mechanical properties, including tensile
strength, flexural strength, durability, and the effects of aging on geopolymer concrete.
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