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Abstract: The aim behind principal component pursuit is to recover a low-rank matrix and a sparse
matrix from a noisy signal which is the sum of both matrices. This optimization problem is a priori
and non-convex and is useful in signal processing, data compression, image processing, machine
learning, fluid dynamics, and more. Here, a distributed scheme described by a static undirected
graph, where each agent only observes part of the noisy or corrupted matrix, is applied to achieve a
consensus; then, a robust approach that can also handle missing values is applied using alternating
directions to solve the convex relaxation problem, which actually solves the non-convex problem
under some weak assumptions. Some examples of image recovery are shown, where the network of
agents achieves consensus exponentially fast.

Keywords: consensus; image recovery; principal component pursuit; static graph

1. Introduction

Consensus algorithms [1] have been studied as powerful tools for distributed net-
works [2] in multiple applications [3] such as control [4], estimation [5] and the internet of
vehicles [6]. They are based on a graph that describes the interconnections of the agents
in the network, and the goal of the network is to achieve agreement upon some data,
policy or action. Different approaches have been developed, including static, directed [7],
undirected—meaning that the communication between two agents over an edge of the
graph is bidirectional—and time-varying graphs [8].

Recent developments in consensus algorithms emphasize their adaptability and scala-
bility in dynamic networks, facilitating robust, distributed decision-making processes [9,10].
These advancements have led to enhanced methodologies for reaching a consensus in
networks with complex interconnections and varying topologies, demonstrating their
effectiveness in a broader range of applications beyond traditional settings.

Moreover, the utility of PCA extends into the realm of big data and high-dimensional
data analysis, where it plays a crucial role in dimensionality reduction, feature extraction,
and data compression [11]. The ability to distill essential features from large datasets while
preserving the integrity of the underlying structure has profound implications for compu-
tational efficiency and the interpretability of data in machine learning and data science.

There are many applications where PCA is relevant; some examples are video surveil-
lance, face recognition [12], latent semantic indexing [13], ranking and collaborative filtering
to anticipate tastes, image analysis including fluid dynamics [14], machine learning and
food identification [15], among others. Examples of PCA applied to face image processing
and fluid flows are shown in Figures 1 and 2. The video processing is similar, where each
frame is re-shaped as a column vector, and they are stacked together in the new matrix,
as shown in Figure 2.
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Figure 1. Removing shadows, peculiarities, and saturation from face images [16].

Figure 2. Schematic of PCA filtering applied to corrupt flow-field data [14].

Integrating consensus algorithms with PCA in a distributed setting is a novel ap-
proach to tackling the challenges of large-scale data analysis. By leveraging the strengths
of consensus algorithms to achieve a unified view from multiple distributed agents, com-
bined with the PCA’s capacity for dimensionality reduction, this methodology offers a
compelling solution for decentralized data processing and analysis. The consensus-based
PCA optimization framework enables distributed agents to collaboratively compute PCA
decompositions, thereby overcoming limitations related to data privacy, storage, and com-
putational bottlenecks [17–22].

In this article, an intersection of consensus algorithms and the optimization problem
of principal component analysis (PCA) [23,24] is addressed. A consensus is reached along
with a particular type of relaxation called convexification. It allows the network to solve
the optimization with a low computational cost.

The PCA problem addresses the following case. Suppose it is given a large data matrix
M ∈ Rn×n with missing and noisy data, such that this matrix can be decomposed into a
low-rank matrix L ∈ Rn×n and a sparse one S ∈ Rn×n, where both matrix entries are of an
arbitrary magnitude. The PCA question is how these components can be recovered with
enough accuracy or even exactly recovered.

Now consider there are multiple agents, which can be sensors, where each agent
measures part of a global matrix M, possibly with redundant data between agents. This
aims for a local rule such that each sensor will find the same decomposition of the global M.
This situation can emerge, for instance, in a vertical or horizontal arrangement of cameras,
where they cover a bigger image than what can be covered by a single agent.

In scenarios where the cost of communication between agents is prohibitively high—such
as in privacy-sensitive environments, conflict zones, or geographically remote areas where
energy resources are scarce—it becomes imperative to minimize inter-agent communi-
cation while still achieving an accurate consensus on matrices L and S. This research
introduces an innovative approach that significantly reduces the necessity for frequent
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communication by optimizing the local computations at each agent. We propose a method
where agents communicate only the essential information required to converge towards a
unified decomposition of the global matrix M. This methodology leverages the inherent
efficiency of local optimization steps, thus enabling the recovery of L and S with minimal
communication overheads. Our approach is particularly suited for a distributed principal
component analysis (PCA) under the constraints of a high communication cost or stringent
privacy requirements.

We demonstrate through theoretical analysis and empirical validation that this strategy
not only preserves the accuracy of matrix decomposition but also ensures a substantial
reduction in communication costs. The feasibility and effectiveness of our method are
supported by recent advancements in distributed optimization and consensus algorithms
that emphasize communication efficiency [25,26].

More specifically, we propose an algorithm to recover a low-rank and a sparse matrix
in a static undirected graph where each agent measures some components of the global
corrupted matrix. The convexification process to relax the PCA into a computationally
efficient problem is employed along with the Alternating Direction Method of Multipliers
(ADMM) [27]. An application of mapping and image recovery is shown, demonstrating
exponentially fast convergence.

Contributions

Mainly, other algorithms communicate during a complete PCA. This is undesirable
in the context of very restrictive communication due to safety reasons or very high-cost
communications. We prove and show how this does not have to be the case for a distributed
PCA since the agents can communicate only until some agreement is reached on the global
matrix formation. Then, each agent can optimize alone, minimizing the communication
as much as possible. We present proof of the proposed algorithm along with a multi-
camera application.

We also provide a simple but rigorous viewpoint to overcome the issue of overlapped
regions of view or common measurement/knowledge of each agent in the network. We
show how this is an issue for the classical consensus, showing over-prediction in the
overlapped regions. We show this from the perspective of a distributed camera network
application. We also show how to handle colored images, since most researchers use binary
black and white scales for images.

We investigate the impact on the convergence of different network sizes and densities.

2. Problem Formulation

Suppose there are l agents represented by nodes in an undirected connected graph
G = {V, E}, where V = {1, 2, ..., l} is the set of vertices, and the edges E ⊆ V × V.
There is an edge (i, j) ∈ E if and only if agent i can communicate with j and vice versa.
The neighborhood of agent i is defined as

Ni := {j ∈ V : (i, j) ∈ E} (1)

This graph has an associated adjacency matrix A ∈ Rl×l and each agent i at iteration
k has a state xk

i ∈ Rn×m.
There is a global noise-corrupted matrix M ∈ Rn×m that is the sum of a low-rank

matrix L ∈ Rn×m and a sparse matrix S ∈ Rn×m, (2).

M = L + S (2)

Unlike the small noise term S in classical PCA, the entries in S can have an arbitrarily large
magnitude. Hence, it is called robust PCA. Each agent can only observe part of M, and
different agents can also have some coincident measurements. The distribution of what
part of M every agent is measuring is irrelevant; they can have equal-row-distributed data
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or a sparse distribution. The restriction is that each agent knows which matrix values are
being measured by itself, such that there are zeros in the unobserved entries.

An algorithm is hypothesized such that every agent obtain the same estimation of L
and S based only on its own measurements and the neighbor’s information, solving:

min
L,S

rank(L) + ∥S∥0 s.t. L + S = M (3)

where ∥S∥0 counts the number of nonzero elements in S, quantifying how sparse it is.
However, (3) is NP-hard [28] and neither the rank(L) nor the ∥S∥0 terms are convex.

3. Algorithm

Because each agent measures only a part of M, it is expected to use a distributed
consensus. The question is whether it is required to solve the optimization problem in a
distributed way while the consensus is reached in the solution, or if there is another, more
straightforward way to achieve this still only using local information.

The method studied and implemented here is to reach the first consensus based on
local information to converge to the global matrix M. Since it is allowed that agents share
redundant measurements, a filter is proposed such that the agent does not change its own
initial measurements; however, note that this is still a local rule since each agent knows
which data it measured. In other words, the algorithm updates a subset Xi of the full matrix
indices corresponding to the unobserved entries; hence, only xk

i (Xi) is updated. In the
results section, an example of why this step is required is presented. The only global shared
parameter is the number of agents l.

Then, using convex relaxation in the optimization problem, together with alternate
direction optimization, each agent can exactly reproduce the original global L and S
under some weak assumptions. To solve (3), each agent performs convex relaxation [14],
which optimally actually recovers the original solution under some assumptions, of the
following form:

min
L,S

∥L∥∗ + β∥S∥1 s.t. L + S = M (4)

where ∥ · ∥∗ is the nuclear norm, given by the sum of singular values, which is a proxy for
the rank of the matrix, and ∥ · ∥1 is the one-norm of the matrix viewed as a vector, given by
the sum of the magnitudes of each entry in the matrix, which is a proxy for the ∥ · ∥0 norm
of a matrix. The hyperparameter β = 1√

max(n,m)
[16].

Here, the strategy of the augmented Lagrange multiplier is implemented:

θ(L, S, Y) = ∥L∥∗ + β∥S∥1 + ⟨Y, M− L− S⟩+ µ

2
∥M− L− S∥2

F (5)

A generic Lagrange multiplier would solve this by updating the Lagrange multiplier
with Yk+1 = Yk + µ(M− Lk − Sk) after finding Lk, Sk by minimizing θ(L, S, Y). However,
here, we avoid solving a sequence of convex programs by first minimizing θ with respect
to L, with S fixed, minimizing θ with respect to S with L fixed, and then updating the
Lagrange multiplier matrix Y.

This method speeds up the computation since minimizing θ with respect to L and
S separately is straightforward. In fact [16], the argument that minimizes θ with respect
to S is Sβµ(M− L + µ−1Y), where Sτ [x] = sgn(x)max(|x| − τ, 0) is a shrinkage operator
applied to each element of the matrix.

Similarly, let Dτ(X) denote the singular value thresholding operator given by Dτ(X) =
USτ(Σ)V∗, where X = UΣV∗ is any singular value decomposition. Then, the argument
that minimizes θ with respect to L is Dµ(M− S− µ−1Y). This strategy is summarized in
Algorithm 1.



Appl. Sci. 2024, 14, 3619 5 of 12

Algorithm 1 Consensus and Optimization

k← 1
Converge← 0
Xi ← unobserved indices of agent i
while Converge ̸= 1 do

for i ∈ V do
U ← ∑j∈Ni

Aijxk
j ▷ Consensus

xk+1
i (Xi)← U(Xi) ▷ Update only unobserved

k← k + 1
end for

end while
for i ∈ V do ▷ Same optimization for each agent

S← Y ← 0
µ← 10β ▷ Any µ > 0
M← lxk

i ▷ Need to know number of nodes
while iter < max do

▷ ADMM: update L and S
Lk+1 ← Dµ(M− Sk − 1

µ Yk)

Sk+1 ← Sβµ(M− Lk+1 + 1
µ Yk)

Yk+1 ← Yk + µ(M− Lk+1 − Sk+1)
end while

end for

Additionally, some restrictions on A, L, and S are required for the method to converge
and to solve the optimization problem.

Theorem 1. Consider a global matrix M that can be decomposed into low-rank L and sparse S
matrices as M = L + S and a static undirected connected graph of agents xi described by an adjacency
matrix A. Each agent measures part of the global matrix M in such a way that M is totally observed,
with possibly overlapped entries. Algorithm 1 provides the steps such that at the end of the algorithm
each agent knows L and S of the global M.

We outline the proof.

Proof. Given a network of agents with interactions described by a doubly stochastic matrix
A, we assume the following properties for A:

1. λ1(A) = 1 and |λi| < 1 for all i > 1, indicating A has a dominant eigenvalue of 1.
2. A1 = 1 and 1T A = 1T , showing A is doubly stochastic and the vector of ones, 1, is

both a right and left eigenvector corresponding to the eigenvalue 1.

The consensus update rule for agent i is:

xk+1
i (Xi) = ∑

j∈Ni

Aijxk
j (Xi) (6)

To prove convergence, we utilize the eigenvalue decomposition of A, A = VΛV−1,
and leverage the geometric decay of components associated with eigenvalues |λi| < 1.
As k→ ∞, all components except those aligned with 1 diminish, leading to convergence
towards an average state across the network.

The optimization problem is formulated as:

min
L,S
∥L∥∗ + β∥S∥1 s.t. L + S = M (7)

and by introducing the augmented Lagrangian, the problem is rephrased as:
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θ(L, S, Y) = ∥L∥∗ + β∥S∥1 + ⟨Y, M− L− S⟩+ µ

2
∥M− L− S∥2

F (8)

where ∥ · ∥∗ denotes the nuclear norm (sum of singular values), ∥ · ∥1 denotes the l1 norm
(sum of absolute values of the matrix entries), ⟨·, ·⟩ represents the inner product, and ∥ · ∥2

F
is the Frobenius norm squared.

Update L with S and Y fixed.
Given S and Y, the update for L is obtained by minimizing θ(L, S, Y) with respect to L.

This step involves solving:

Lk+1 = arg min
L

(
∥L∥∗ +

µ

2
∥M− L− Sk + µ−1Yk∥2

F

)
(9)

This problem is a proximal operation that can be efficiently solved using the singular
value thresholding (SVT) operator Dτ , defined as:

Dτ(X) = U · Sτ(Σ) ·V∗ (10)

where X = UΣV∗ is the singular value decomposition of X, and Sτ(Σ) applies a shrinkage
operation to the singular values Σ, reducing each singular value σi by τ, but not to below
zero. In this context, τ = µ−1.

Update S with L and Y fixed.
After updating L, S is updated by minimizing θ(L, S, Y) with Lk+1 and Yk fixed,

leading to:

Sk+1 = arg min
S

(
β∥S∥1 +

µ

2
∥M− Lk+1 − S + µ−1Yk∥2

F

)
(11)

This optimization step is akin to a soft thresholding operation on each element of the
matrix M− Lk+1 + µ−1Yk and can be efficiently solved using the shrinkage operator Sβµ,
which for a given matrix X and threshold τ, requires:

Sτ [X]ij = sign(Xij)max(|Xij| − τ, 0) (12)

Update Y.
Finally, the Lagrange multiplier Y is updated to account for the discrepancy between

M and the current approximation Lk+1 + Sk+1:

Yk+1 = Yk + µ(M− Lk+1 − Sk+1) (13)

Convergence.
The iterative updates for L, S, and Y guarantee convergence to the global optimum

under convex conditions. The SVT and shrinkage operators ensure that each step moves
towards minimizing the objective function while adhering to the constraint L + S = M.
Updating Y adjusts for the equality constraint violation, ensuring that as k→ ∞, Lk + Sk →
M, thus solving the original decomposition problem.

Finally, we need to prove that convex relaxation solves the original non-convex prob-
lem. It could be that there is not enough information to perfectly disentangle the low-rank
and sparse components. To prevent this from happening, the assumption that the low-
rank component L is not sparse is employed; this is called the incoherence condition [29].
Another identifiability issue arises if the sparse matrix is low-rank. Then, the following
assumptions are required [16].

Write the singular value decomposition of L ∈ Rn1×n2 as

L = UΣV∗ =
r

∑
i=1

σiuiv∗i , (14)
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where r is the rank of the matrix, σ1, . . . , σr are the positive singular values,
U = [u1, . . . , ur], V = [v1, . . . , vr] are the matrices of left- and right-singular vectors, and V∗

is the conjugate transpose. Then, the incoherence condition with parameter µ states that

max
i
∥U∗ei∥2

2 ≤
µr
n1

, max
i
∥V∗ei∥2

2 ≤
µr
n2

, (15)

and

∥UV∗∥∞ ≤
√

µr
n1n2

. (16)

Suppose L is n× n and obeys the incoherence condition and that the support set of S is
uniformly distributed among all sets of cardinality m. Then, there is a numerical constant c
such that with a probability of at least 1− cn−10 (over the choice of support of S), the convex
relaxation solution solves the nonconvex PCA problem exactly, given that:

rank(L) ≤ ρrnµ−1(log n)−2 and m ≤ ρsn2. (17)

In the above, ρr and ρs are positive numerical constants.

4. Results

First, it is shown why it is important for each agent i to only update the unobserved
entries Xi. This step is required since redundant measurements between agents are allowed,
which, in the case of surveillance, would mean a shared vision field, as in the example in
Figure 3.

Figure 3. Two agents with redundant measurements in the overlapping field of view (gray region).

In this case, a showcase model is employed, updating all entries of each agent,
with M ∈ R500×500, with a low-rank component of 5 and a cardinality of the sparse
component of 0.2 with random entries. Each agent will observe the same amount of rows,
but adjacent agents share 20 rows. The result is shown in Figure 4. The highlighted rows in
L are the overlapped field of view; hence, it is clear that it is required to update only the
unobserved entries Xi to avoid this overestimation, as stated in Algorithm 1.

Since it has already been explained why a local update is not performed for every
entry of the matrix state, now, some results of the convergence of the consensus process
and an example of image recovery are shown. Two cases, a and b, are tested with four
agents. The graphs are shown in Figure 5, the respective adjacency matrices are shown in
(6), and the convergence consensus is shown in Figure 6, where exponential convergence
can be observed, which is a known property of this type of static graph.
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Aa =


1/3 0 1/3 1/3

0 1/3 1/3 1/3
1/3 1/3 1/3 0
1/3 1/3 0 1/3

, Ab =


3/4 1/4 0 0
1/4 1/4 1/4 1/4

0 1/4 5/12 1/3

0 1/4 1/3 5/12

 (18)

Figure 4. The agents reach consensus with overestimation (highlighted rows in L) in the overlapping
regions in the field of view when the filter using Xi is not applied.

(a) Case a. (b) Case b.
Figure 5. Connected graphs.

(a) Case a. (b) Case b.
Figure 6. Convergence in consensus.
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The first studied case involves decomposing a corrupted image of the moon’s surface
into a low-rank L and a sparse S matrix. Every agent knows part of the global M, and there is
some amount of redundant values between the agent states, but every agent knows each of
its own observed entries. After reaching a consensus, each agent runs the alternate direction
optimization into the convex relaxation of (3), as described in Algorithm 1. The resulting
low-rank image L is employed to replace the corrupted data in the original image M;
the results are shown in Figure 7.

Figure 7. Moon image recovered by every agent, case a.

To deal with colored RGB images, the algorithm splits the original image M ∈ Rn×n×3

into three matrices, MR ∈ Rn×n, MG ∈ Rn×n, and MB ∈ Rn×n, one for each color channel,
and a consensus is reached and optimization is carried for each matrix. Finally, each low-
rank matrix is employed to replace the corrupted data in each RGB channel, and then they
are stacked into an RGB image. Further examples are shown in Figures 8 and 9.

Figure 8. Earthimage recovered by every agent.

Figure 9. Marsimage recovered by every agent.
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Now, we investigate the impact of the size of the network. We designed random,
strongly connected graphs with different number of nodes, and we ran the toy model of
Figure 4. We compared the maximum Frobenius norms of any two agents in the network at
step 20. The graphs for 20 and 100 agents are shown in Figure 10. The convergence results
are shown in Table 1. The results show that the convergence speed is improved with the
number of agents for a small network. In the case of 100 agents, the convergence is still
higher than the smallest network of 4 agents, but worse than the other cases, probably
caused by sparsity.

(a) Network of 20 agents. (b) Network of 100 agents.

Figure 10. Random, strongly connected graphs.

Table 1. Maximum Frobenius norm between agents for different network sizes.

Number of Agents Maximum Frobenius Norm between Any Two Agents at Step 20

4 0.28
5 0.001
6 0.0002
20 0.0008

100 0.04

Finally, we compare the convergence results after 20 iterations for a network with a
fixed number of agents (nodes) with a different number of edges, meaning lower-density
communication. We tested a network of 50 agents. The results are shown in Table 2. It can
be seen that an overly dense network slows down the convergence.

Table 2. Maximum Frobenius norm between any two agents at step 20 for different network densities
with a constant number of agents of 50.

Number of Edges Max Norm

1051 0.059
851 0.055
651 0.060
451 0.044
251 0.027

5. Future Work

Under the present scheme, a global parameter must be known for each agent, namely,
the number of agents in the network. Future research could involve how to exactly estimate
this parameter using the consensus algorithm or finding a different consensus scheme that
does not require this parameter.

Moreover, the network studied is static and undirected; hence, the main generalization
of the method accounts for time-varying directed graphs. Further research could compare
the time and energy costs of this methodology to the paired treatment of optimization
and consensus.
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6. Conclusions

An algorithm to recover a low-rank and a sparse matrix in an undirected static graph
is proposed and validated. The consensus mechanism in static undirected graphs was
coupled with a principal component pursuit problem, where there is a global noisy and
corrupted matrix M and each agent knows a part of this matrix, with possible redundant
observations between agents. Reaching a consensus, they agree on the global original M.
To overcome the difficulties that are caused by redundant data, each agent updates only a
subset of its own entries. This consensus scheme converges exponentially fast, given the
properties of the connected graph described in the associated adjacency matrix A.

Each agent performs convex relaxation of the optimization problem, where an alternate
direction method is employed to find the low-rank and sparse matrices of M. This alternate
direction method speeds up the calculation since the sub-problems (when either L or S is
fixed) are significantly more manageable than the coupled problem. Under some weak
assumptions, these convexification and uncoupling processes recover the exact solution.

An application of distributed image recovery from a corrupted global matrix is shown,
along with a method to handle colored images. A low-rank matrix is employed to recover
the corrupted entries of the matrix found by the consensus.

A brief comparison of random, strongly connected networks of different sizes shows a
faster convergence with a higher number of agents. However, for very dense networks, the
performance declines. For a fixed number of agents, a lower edge density improves the
convergence speed.
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