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Featured Application: This work addresses issues related to unknown disturbances and actuator
saturation during quadrotor UAV flight.

Abstract: This paper introduces a nonlinear dynamic inversion control algorithm designed to address
unknown disturbances and actuator saturation issues in unmanned aerial vehicle (UAV) attitude
control. The algorithm is based on a combination of finite-time disturbance observer and anti-
saturation auxiliary system, which ensures the rapid convergence of attitude tracking error. Firstly,
based on the Newton–Euler equations, this paper establishes a model of the attitude system for
quadrotor UAVs, and this paper eliminates the small-angle flight assumption. Secondly, considering
the actuator saturation problem, an anti-saturation auxiliary control system is designed to shorten
the time when the control volume is in the saturation interval and achieve finite-time convergence
of the attitude error. And then, to improve the robustness of the controller, this paper proposes a
disturbance observer based on the finite-time stability theory, which achieves a continuous smooth
output of the observation results by introducing a hyperbolic tangent function in the observer, so that
the observation error can be converged to zero in a finite time. Finally, it is demonstrated by Simulink
simulation that the attitude error and the observation error converge quickly to zero.

Keywords: finite-time control; attitude control; finite-time disturbance observer; actuator saturation;
anti-saturation

1. Introduction

Nowadays, quadrotor UAVs have become an important tool and a technology carrier
in various fields. Because of its advantages such as good mobility and easy operation,
it is gradually becoming an indispensable technological tool in various fields of modern
society, bringing new possibilities and opportunities for the development and progress
of human beings [1–3]. However, the control problem of quadrotor UAV has been a
popular research direction in the control discipline because of its strong nonlinearity, strong
coupling, underactuation, and multiple inputs and multiple outputs.

The ultimate control goal of a quadrotor UAV is to achieve precise position control,
while good attitude control is a prerequisite for precise position control. In the past decades,
many studies have studied the attitude control problem. The control methods can be
divided into linear control methods and nonlinear control methods. The common linear
control methods are PID and LQR. As early as 2005, Altug et al. [4] used a PID algorithm
to implement attitude control on a small quadrotor aircraft and achieved good control
results. However, the PID algorithm also has some problems, such as parameter tuning
relying on the designer’s experience, sensitivity to noise, limitation to linear systems, and
lack of stability proof. To address these problems, Lin et al. [5] combined the PID and
the backstepping method to give a tuning range of PID parameters. For the problems
of slow tuning process and large overshoot, Xu et al. [6] proposed an adaptive control
method based on single neuron PID, which can enhance the robustness of the controller
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by adaptively adjusting parameters. Kazim et al. [7] use a particle swarm algorithm to
optimize the proportional and differential parameters in the position controller. They also
designed a robust adaptive integral backstepping-based attitude controller to achieve the
stable control of the UAV under external wind disturbances. Elias et al. [8] proposed an
LQR control method based on gain scheduling, and this control method can select different
feedback gain matrices according to the error of the system.

Although the above linear control methods can achieve good attitude control, they are
often designed based on a linearized model with small angle assumptions, and when the
attitude of the quadrotor UAV changes significantly, the linear control methods often fail to
obtain good control results. Therefore, many researchers began to turn their attention to
the study of nonlinear control methods [9–13]. Nonlinear dynamic inversion (NDI) [14]
is one of the commonly used control algorithms for aircrafts. It is a nonlinear control
method based on feedback linearization, which cancels out the nonlinear terms in the
original system through the form of state feedback to achieve the linearization of the
nonlinear system. Alonge et al. [15] used an approach based on feedback linearization and
that utilized extended state observers for the online estimation of unknown disturbances.
However, this method requires a high-accuracy system model. Studies [16–18] incorporate
an adaptive approach to improve the robustness of NDI. Qiao et al. [19] improved the
detrimental effect of the dynamic inversion nonlinear term on error elimination by adding
additional feedback to the state feedback link of the dynamic inversion.

Due to the existence of disturbance and modeling errors, methods based on distur-
bance estimation have received extensive attention from scholars. In the studies [20–23],
all of them use the extended state observer (ESO) to estimate the total disturbance in the
UAV’s attitude system to achieve active disturbance rejection control (ADRC). Based on
a dual closed-loop active disturbance suppression generalized predictive control, Cheng
et al. [24] proposed a robust controller for quadrature trajectory tracking control. However,
in all of the above methods, the observation error converges to zero in an asymptotically
convergent manner, which only guarantees the convergence of the observation error at
infinite time. With the further development of stabilization control theory, the theory of
“finite time control” has gradually emerged. Ríos et al. [25] designed a finite-time sliding
mode observer to estimate the disturbance. Inspired by the multivariate super-twisting
algorithm, Jiang et al. [26] designed a finite-time disturbance observer (FDO) to estimate
the system disturbance, which improves the robustness of the controller. Zhu et al. [27]
also took actuator faults as disturbance into account and proposed an FDO to achieve an
accurate estimation of disturbance and actuator faults. In the above studies, the output
of the observer is prone to a chattering phenomenon due to the presence of sign function
terms in the observer. To address this problem, studies [28–31] investigated an FDO based
on the homogeneous theory. Lan et al. [31] designed a continuous FDO based on the
homogeneous theory and the saturation function method to estimate the disturbance, but
when the sampling time becomes longer, this FDO could not achieve a stable output of the
observed signals.

In addition, the saturation constraint of the actuator is also a non-negligible problem.
In practical systems, the output signal of the actuator frequently experiences amplitude
saturation, leading to a situation where the controller struggles to promptly regulate
the system state. Concerning the saturation issue, anti-saturation control methods are
increasingly categorized into two main groups: active anti-saturation methods [32–35] and
passive anti-saturation methods [36–39]. Farid et al. [36] proposed a nonlinear controller
based on nested saturation for the rotational speed saturation problem of the quadrotor
UAV. Based on this, Li et al. [37] considered a more complex quadrotor UAV model, and
the anti-saturation auxiliary system prevents the saturation phenomenon by adaptively
adjusting the system error. Different from the study [33], Liu et al. [38] introduced the
output of the anti-saturation auxiliary system into the control volume, which also achieved
effective control. Sun et al. [39] designed an anti-saturation auxiliary system with non-
singularity for the saturation problem in spacecraft attitude control, which achieved the fast
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convergence of the auxiliary system state. However, there are fewer studies on finite-time
anti-saturation control.

Inspired by the above work, a finite-time disturbance observer and an anti-saturation
auxiliary control method (FDOACM) are proposed in this paper with the following main
contributions:

• The assumptions based on small-angle flight are eliminated, so that the rate of change
of the Euler angle and the angular velocity of the airframe satisfy the nonlinear
relationship in an actual flight, and the total disturbance of the system and the actuator
saturation are taken into account. The established model better reflects real flight
conditions.

• For the saturation problem of the actuator, an anti-saturation auxiliary control system
is designed. In the presence of saturation, this anti-saturation auxiliary control sys-
tem promptly guides the controller’s output moment out of the saturation range by
correcting attitude feedback errors. This ensures finite-time convergence of attitude
errors in anti-saturation scenarios.

• Targeting the overall disturbance experienced during flight, a disturbance observer
rooted in finite-time stability theory is crafted to precisely estimate disturbances. IN
contrast with the existing literature-based observers [31,40], the observer proposed
in this study not only achieves finite-time convergence of observation errors but also
guarantees the continuity of observer output results.

The structure of this paper unfolds as follows: In Section 2, we begin by presenting key
lemmas and definitions utilized throughout this work, followed by the establishment of a
model depicting a quadrotor UAV attitude system under external disturbances and actuator
constraints. Section 3 delineates the algorithm’s design process proposed herein and
provides proof regarding the controller’s stability. Section 4 offers simulation results based
on the algorithm proposed in this paper. Finally, Section 5 encapsulates the conclusions
drawn from this study.

2. Preliminaries and Problem Formulation

Lemma 1. For ∀gi ∈ R, i = 1, 2, . . . , n, two positive real numbers 0 < v1 ≤ 1 and v2 > 1, the
inequalities that hold are as follows [41]:(

n

∑
i=1

|gi|
)v1

≤
n

∑
i=1

|gi|
v1

≤ n1−v1

(
n

∑
i=1

|gi|
)v1

(1)

n

∑
i=1

|gi|
v2

≤
(

n

∑
i=1

|gi|
)v2

≤ nv2−1
n

∑
i=1

|gi|
v2

(2)

Lemma 2. For ∀(a, b) ∈ R2, one can obtain the following [42]:

ab ≤ ξ p̃

p̃
|a| p̃ + 1

q̃ξ q̃ |b|
q̃ (3)

where ξ > 0, q̃ > 1, p̃ > 1, and ( p̃ − 1)(q̃ − 1) = 1.

Lemma 3. For real variables ϕ and γ and any of the positive constants ζ1, ζ2, and ζ3, the satisfied
inequality is as follows [43]:

|ϕ|ζ1 |γ|ζ2 ≤ ζ1

ζ1 + ζ2
ζ3|ϕ|ζ1+ζ2 +

ζ2

ζ1 + ζ2
ζ3

− ζ1
ζ2 |γ|ζ1+ζ2 (4)
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Lemma 4. Consider a nonlinear system
.
ζ = f (ζ) with ζ ∈ Rn×1. On one hand, if there exists a

Lyapunov function V(ζ) satisfying the following [44]:

.
V + h1Vv3 + h2Vv4 ≤ ∆v (5)

for some h1 ∈ R+, h2 ∈ R+, 0 < v3 < 1, v4 ≥ 1, and ∆v ∈ R+, then, the system is finite-time
stable.

Lemma 5. Consider a nonlinear system
.
ζ = f (ζ) with ζ ∈ Rn×1. If there exists a Lyapunov

function V(ζ) satisfying the following [45]:

.
V ≤ −γVP (6)

where γ > 0, 0 < p < 1, then, the system will converge to zero in a finite time T ≤ 1
γ(1−p)V1−p.

Assumption 1. Assuming that the rate of change of the total disturbance to which the system is
subjected is bounded,

∣∣∣ .
dj

∣∣∣ ≤ ϑj where j = p, q, r.

Remark 1. Although the wind disturbances acting on the quadrotor UAV are readily variable, the
energy of the disturbances is also finite; at the same time, although we are unable to measure each of
the basic physical parameters of the UAV with any great degree of accuracy, the resulting modeling
uncertainty is nearly constant, and the total disturbances to the system can therefore be regarded as
signals with a bounded rate of change. In summary, Assumption 1 is reasonable.

Definition 1. Define |a|m/nsign(b) =
[
|a1|m/nsign(b1) |a2|m/nsign(b2) . . . |a3|m/nsign(b3)

]
,

and the vector a ∈ Rn×1 and b ∈ Rn×1.

The attitude model of the quadrotor UAV includes an attitude kinematics model and
an attitude dynamics model, which is modeled based on the Newton–Euler method with
the following results:

.
x1 = A(x1)x2 (7)

.
x2 = B(x2) + Gu1 + d (8)

A(x1) =


1 sin ϕ tan θ cos ϕ tan θ

0 cos ϕ − sin ϕ

0 sin ϕ/ cos θ cos ϕ/ cos θ

, G =


Jx 0 0

0 Jy 0

0 0 Jz


B(x2) =

[
Jy−Jz

Jx
qr Jz−Jx

Jy
pr Jx−Jy

Jz
pq
]T

where x1 = [ϕ θ φ]
T and x2 =

[
p q r

]T denote the Euler angle and the angular
velocity of the body, respectively. Unlike studies [10,12,25,37,38,40], in this paper, there
is no equivalence between the rate of change of the Euler angle and the angular velocity
of the body. G is the moment of inertia matrix. d ∈ R3 denotes the total disturbance of
the system. u1 = [sat(up) sat(uq) sat(ur)]

T , sat(·) denotes the limiting function in the
following form:

sat(uj) =

{
uj uj < uj,max

uj,max uj ≥ uj,max
(9)

3. Controller Design
3.1. Anti-Saturation Controller Design Based on Finite-Time Stabilization

Define the error of the system as follows:

e1 = x1 − x1d − λ1 (10)
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e2 = x2 − x2d − λ2 (11)

where e1 =
[
e1,ϕ e1,θ e1,φ

]T corresponds to the angle error of the attitude,

e2 =
[
e2,p e2,q e2,r

]T corresponds to the velocity error of the angle, and x1d ∈ R3 and
x2d ∈ R3 denote the desired attitude angle and the desired angular velocity of the air-
frame. λ1 = [λ1,ϕ, λ1,θ , λ1,φ]

T and λ2 = [λ2,p, λ2,q, λ2,r]
T are the states of the anti-saturation

auxiliary system.
The anti-saturation auxiliary system in this paper is designed as follows:

.
λ1 = −K1λ1 − K2|λ1|m/nsign(e1) + b1λ2 (12)

.
λ2 = −K3λ2 − K4|λ2|m/nsign(e2) + G∆u (13)

where ∆u = u1 − u, u is the output of the controller. m and n are both positive odd
numbers, b1 ∈ R3×3, K1 ∈ R3×3, K2 ∈ R3×3, K3 ∈ R3×3, and K4 ∈ R3×3 are both diagonal
matrices, and the entries in the matrices are all positive constants.

From Equations (12) and (13), it can be seen that the two auxiliary states of the anti-
saturation auxiliary system can converge asymptotically to zero when ∆u = 0. Therefore,
the anti-saturation system remains inactive in the absence of saturation events; and the
two states of the anti-saturation auxiliary system will no longer be zero when ∆u ̸= 0. The
errors of the system are defined as Equations (10) and (11). In contrast to the common
definitions of the errors, the errors of Equations (10) and (11) include the auxiliary system
states. Therefore, when saturation occurs, the error will be adaptively adjusted to produce
a slightly smaller error, based on which the controller produces a slightly smaller amount
of control such that the control command exits the saturated region or is maintained in a
shallow saturated region. This is the design idea and control method of the anti-saturation
auxiliary system in this paper, and the overall stability of the system will be proved by
Lyapunov stability.

Let x2d = A−1(x1)(
.
x1d +

.
λ1 + r1) and substitute this into Equation (8), and combined

with Equation (10), we obtain the following:

.
e1 = r1 (14)

r1 = −C1e1 − C2|e1|m/nsign(e1) + K1λ1 + K2|λ1|m/nsign(e1)− b1λ2, C1 ∈ R3×3 and
C2 ∈ R3×3 are both diagonal matrices, and the entries in the matrices are all positive
constants.

Differentiation of (11) yields the following:

.
e2 =

.
x2 −

.
x2d − λ2

= B(x2) + Gu1 + d − .
x2d + K3λ2 + K4|λ2|m/nsign(e2)− G∆u

=B(x2) + Gu + d − .
x2d + K3λ2 + K4|λ2|m/nsign(e2)

(15)

The designed control law is as follows:

u = G−1(−B(x2)− d +
.
x2d − C3e2 − C4|e2|m/nsign(e2)) (16)

C3 ∈ R3×3 and C4 ∈ R3×3 are both diagonal matrices, and the entries in the matrices
are all positive constants.

Then, (15) can be rewritten as follows:

.
e2 = −C3e2 − C4|e2|m/nsign(e2) + K3λ2 + K4|λ2|m/nsign(e2) (17)

Therefore, the structure of the finite-time anti-saturation control method (FACM) for
the quadrotor UAV attitude system is shown in Figure 1.
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Theorem 1. For nonlinear attitude models in the presence of input saturation (7) and (8), under
the control law of (16) and the anti-saturation auxiliary system (12) and (13), the quadrotor UAV
attitude system angle tracking error will converge to zero in a finite time.

Proof of Theorem 1. Because of the similarity of the three-axis attitude system models for
quadrotor UAVs, the roll channel is used here as an example to demonstrate that e1,ϕ will
converge to zero in a finite time.

The Lyapunov function is chosen with the following form:

V1 =
1
2

e2
1,ϕ +

1
2

e2
2,p (18)

Differentiating Equation (18) and combining Equations (14) and (17) gives Equation (19):

.
V1 = e1,ϕ

.
e1,ϕ + e2,p

.
e2,p

= −c1,1e2
1,ϕ − c2,1e(

m+n
n )

1,ϕ + k1,1e1,ϕλ1,ϕ + k2,1
∣∣λ1,ϕ

∣∣(m
n )∣∣e1,ϕ

∣∣− b1e1,ϕλ2,p − c3,1e2
2,p − c4,1e(

m+n
n )

2

+k3,1e2,pλ2,p + k4,1
∣∣λ2,p

∣∣(m
n )∣∣e2,p

∣∣
= −c1,1e2

1,ϕ − c3,1e2
2,p − c2,12(

m+n
2n )( 1

2 e2
1,ϕ)

(m+n
2n ) − c4,12(

m+n
2n )( 1

2 e2
2,p)

(m+n
2n )

+k1,1e1,ϕλ1,ϕ + k2,1
∣∣λ1,ϕ

∣∣(m
n )∣∣e1,ϕ

∣∣− b1e1,ϕλ2,p + k3,1e2,pλ2,p + k4,1
∣∣λ2,p

∣∣(m
n )∣∣e2,p

∣∣
(19)

It follows from Lemma 2:

k1,1e1,ϕλ1,ϕ ≤
k2

1,1

2
e2

1,ϕ +
1
2

λ2
1,ϕ (20)

−b1e1,ϕλ2,p ≤
b2

1
2

e2
1,ϕ +

1
2

λ2
2,p (21)

k3,1e2,pλ2,p ≤
k2

3,1

2
e2

2,p +
1
2

λ2
2,p (22)

It follows from Lemma 3:

k2,1
∣∣λ1,ϕ

∣∣(m
n )∣∣e1,ϕ

∣∣ ≤ k2,1
m

m + n
d31
∣∣λ1,ϕ

∣∣(m+n
n )

+ k2,1
n

m + n
d(−

m
n )

31

∣∣e1,ϕ
∣∣(m+n

n ) (23)

k4,1
∣∣λ2,p

∣∣(m
n )∣∣e2,p

∣∣ ≤ k4,1
m

m + n
d32
∣∣λ2,p

∣∣(m+n
n )

+ k4,1
n

m + n
d(−

m
n )

32

∣∣e2,p
∣∣(m+n

n ) (24)

Substituting Equations (20) and (24) into Equation (19) gives Equation (25):
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.
V1 ≤ −c1,1e2

1,ϕ − c3,1e2
2,p − c2,12(

m+n
2n )( 1

2 e2
1,ϕ)

(m+n
2n ) − c4,12(

m+n
2n )( 1

2 e2
2,p)

(m+n
2n )

+
k2

1,1
2 e2

1,ϕ + 1
2 λ2

1,ϕ

+k2,1
m

m+n d31
∣∣λ1,ϕ

∣∣(m+n
n )

+ k2,1
n

m+n d(−
m
n )

31

∣∣e1,ϕ
∣∣(m+n

n )
+

b2
1
2 e2

1,ϕ + 1
2 λ2

2,p

+
k2

3,1
2 e2

2,p +
1
2 λ2

2,p + k4,1
m

m+n d32
∣∣λ2,p

∣∣(m+n
n )

+ k4,1
n

m+n d(−
m
n )

32

∣∣e2,p
∣∣(m+n

n )

(25)

Collation yields Equation (26):

.
V1 ≤ (−c1,1 +

k2
1,1
2 +

b2
1
2 )e

2
1,ϕ + (−c3,1 +

k2
3,1
2 )e2

2,p +
1
2 λ2

1,ϕ + λ2
2,p

+[−c2,12(
m+n

2n )( 1
2 e2

1,ϕ)
(m+n

2n ) − c4,12(
m+n

2n )( 1
2 e2

2,p)
(m+n

2n )
]

+k2,1
n

m+n d(−
m
n )

31

∣∣e1,ϕ
∣∣(m+n

n )
+ k4,1

n
m+n d(−

m
n )

32

∣∣e2,p
∣∣(m+n

n )

+k2,1
m

m+n d31
∣∣λ1,ϕ

∣∣(m+n
n )

+ k4,1
m

m+n d32
∣∣λ2,p

∣∣(m+n
n )

(26)

It follows from (1) of Lemma 1 that

.
V1 ≤ −h1V1 − h2V(m+n

2n )
1 + Ξ (27)

where h1 =
{

2c1,1 − k2
1,1 − b2

1, 2c3,1 − k2
3,1

}
, h2 =

{
c2,12

m+n
2n − k2,1

n
m+n d−

m
n

31 2
m+n

2n , c4,12
m+n

2n −

k4,1
n

m+n d−
m
n

31 2
m+n

2n

}
, Ξ = 1

2 λ2
1,ϕ + λ2

2,p + k2,1
m

m+n d31
∣∣λ1,ϕ

∣∣m+n
n + k4,1

m
m+n d32

∣∣λ2,p
∣∣m+n

n > 0.
Choose the appropriate parameters such that h1 > 0 and h2 > 0. According to the finite-
time stability theory of Lemma 4, the error of the system will converge to the zero domain
in a finite time under the action of the anti-saturation auxiliary system. □

3.2. Disturbance Observer Design Based on Finite-Time Stabilization

The observation error is defined as follows:

z1 = x2 − x̂2 (28)

z2 = d − d̂ (29)

where z1 ∈ R3 and z2 ∈ R3 denote the observation error of the angular velocity of the air-
frame and the observation error of the total system disturbance, respectively.
z1 =

{
z1,j
∣∣j = p, q, r

}
, z2 =

{
z2,j
∣∣j = p, q, r

}
, x̂2 =

[
p̂ q̂ r̂

]T , and d̂ =
[
d̂p d̂q d̂r

]T

are estimates of the angular velocity of the system and the total system disturbance.
For Equation (8), inspired by the studies [31,40], the finite-time disturbance observer

designed in this paper is as follows:

.
x̂2 = B(x2) + Gu1 + d̂ + A1|z1|

1
2 tanh(kz1) (30)

.
d̂ = A2tanh(kz1) (31)

tanh(·) is the hyperbolic tangent function, and it effectively reduces the chattering
phenomenon of the observation output. A1, A2, and k are the matrices of scale fac-

tors. A1 = diag(a1,p, a1,q, a1,r), A2 = diag(a2,p, a2,q, a2,r), k = diag(kp, kq, kr), |z1|
1
2 =

diag(
∣∣z1,p

∣∣ 1
2 ,
∣∣z1,q

∣∣ 1
2 , |z1,r|

1
2 ), ai,j > 0, k j > 0, and i = 1, 2. Compared with the FDOs in the

studies [31,40], the FDO in this paper has fewer adjustable parameters and effectively im-
proves the chattering phenomenon of the output results of the existing FDOs by designing
a continuous-type observer.

By combining Equations (8), (28) and (29), we obtain the following:

.
z1 = −A1|z1|

1
2 tanh(kz1) + z2 (32)
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.
z2 = −A2tan h(kz1) +

.
d (33)

Equations (32) and (33) are the dynamic equations for the observer error.
Therefore, the structure of the finite-time disturbance observer and anti-saturation

control method for the quadrotor UAV attitude system is shown in Figure 2.
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Theorem 2. If the total disturbance suffered by the quadrotor UAV satisfies Assumption 1, and
at the same time, the matrix Π is made to satisfy the condition of the positive definite symmetric
matrix by reasonable parameter settings, the designed FDO (30) and (31) will effectively estimate
the total disturbance, and the output error of the FDO will converge to zero in a finite time.

Π =

[
a1,prP11 − 2a1,pa2,pr − 2a1,pϑp − 1

2 (P11 + a2
1,pr + 4a2,pr+4ϑp)

− 1
2 (P11 + a2

1,pr + 4a2,pr+4ϑp) a1,p

]
(34)

Proof of Theorem 2. Similarly, without loss of generality, the roll channel is used here as an
example to demonstrate that z1,ϕ will converge to zero in a finite time.

Set the vector Ψ =
[
sign(z1,p)

∣∣z1,p
∣∣ 1

2 z2,p

]T
and define the Lyapunov function as:

VFDO = ΨTPΨ = P11
∣∣z1,p

∣∣− 2a1,pz2,psign(z1,p)
∣∣z1,p

∣∣ 1
2 + 2z2

2,p (35)

P =
[

a2
1,p + a2

2,p −a1,p; −a1,p 2
]
. It is clear that the matrix P is a positive definite

real symmetric matrix, and hence, Equation (35) satisfies the conditions of the Lyapunov
function.

Derivation of Equation (35):

.
VFDO = P11

z1,p∣∣z1,p
∣∣ .
z1,p − 2a1,p

.
z2,psign(z1,p)

∣∣z1,p
∣∣ 1

2 − a1,pz2,p
∣∣z1,p

∣∣− 1
2 .
z1,p + 4z2,p

.
z2,p (36)

Substituting Equation (32) into Equation (35):

.
VFDO = P11

z1,p

|z1,p| (−a1,p
∣∣z1,p

∣∣ 1
2 tanh(kpz1,p) + z2,p) + 4z2,p(−a2,ptanh(kpz1,p) +

.
dp)

−2a1,psign(z1,p)
∣∣z1,p

∣∣ 1
2 (−a2,ptanh(kpz1,p) +

.
dp)− a1,pz2,p

∣∣z1,p
∣∣− 1

2 (−a1,p
∣∣z1,p

∣∣ 1
2

tanh(kpz1,p) + z2,p)

(37)

Since tanh(kx) = rsign(x), where r ∈ (0, 1), rewriting Equation (37) gives the following:
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.
VFDO = P11

z1,p

|z1,p| (−a1,pr
∣∣z1,p

∣∣ 1
2 sign(z1,p) + z2,p)− 2a1,psign(z1,p)

∣∣z1,p
∣∣ 1

2 (−a2,prsign(z1,p) +
.
dp)

−a1,pz2,p
∣∣z1,p

∣∣− 1
2 (−a1,pr

∣∣z1,p
∣∣ 1

2 sign(z1,p) + z2,p) + 4z2,p(−a2,prsign(z1,p) +
.
dp)

= −a1,prP11
∣∣z1,p

∣∣ 1
2 + P11

z1,p

|z1,p|z2,p + 2a1,pa2,pr
∣∣z1,p

∣∣ 1
2 − 2a1,psign(z1,p)

.
dp + a2

1,prz2,psign(z1,p)

−a1,pz2
2,p
∣∣z1,p

∣∣− 1
2 − 4a2,prz2,psign(z1,p) + 4z2,p

.
dp

(38)

Since |sign(x)| ≤ 1, sign(x) ≤ 1, −sign(x) ≤ 1:

.
VFDO ≤ −a1,prP11

∣∣z1,p
∣∣ 1

2 + P11
z1,p

|z1,p|z2,p + 2a1,pa2,pr
∣∣z1,p

∣∣ 1
2 + 2a1,p

∣∣z1,p
∣∣ 1

2
.
dp + a2

1,prz2,p

−a1,pz2
2,p
∣∣z1,p

∣∣− 1
2 + 4a2,prz2,p + 4z2,p

.
dp

(39)

By Assumption 1,
∣∣∣ .
dp

∣∣∣ ≤ ϑp, z1,p ≤
∣∣z1,p

∣∣ and z2,p ≤
∣∣z2,p

∣∣, we obtain the following:

.
VFDO ≤ −a1,prP11

∣∣z1,p
∣∣ 1

2 + P11
∣∣z2,p

∣∣+ 2a1,pa2,pr
∣∣z1,p

∣∣ 1
2 + 2a1,p

∣∣z1,p
∣∣ 1

2 ϑp + a2
1,pr
∣∣z2,p

∣∣
−a1,pz2

2,p
∣∣z1,p

∣∣− 1
2 + 4a2,pr

∣∣z2,p
∣∣+ 4

∣∣z2,p
∣∣ϑp

= − 1

|z1,p|
1
2
[a1,prP11

∣∣z1,p
∣∣− P11

∣∣z2,p
∣∣∣∣z1,p

∣∣ 1
2 − 2a1,pa2,pr

∣∣z1,p
∣∣− 2a1,p

∣∣z1,p
∣∣ϑp

−a2
1,pr
∣∣z2,p

∣∣∣∣z1,p
∣∣ 1

2 + a1,pz2
2,p − 4a2,pr

∣∣z2,p
∣∣∣∣z1,p

∣∣ 1
2 − 4

∣∣z2,p
∣∣∣∣z1,p

∣∣ 1
2 ϑp]

(40)

By defining Ξ =
[
sign(z1,p)

∣∣z1,p
∣∣ 1

2
∣∣z2,p

∣∣]T
, then Equation (40) can be rewritten as

follows:

.
VFDO ≤ − 1

|z1,p|
1
2

ΞT

[
a1,prP11 − 2a1,pa2,pr − 2a1,pϑp − 1

2 (P11 + a2
1,pr + 4a2,pr+4ϑp)

− 1
2 (P11 + a2

1,pr + 4a2,pr+4ϑp) a1,p

]
Ξ

= − 1

|z1,p|
1
2

ΞTΠΞ

(41)

Because ΞTΞ = ΨTΨ, we obtain the following:

.
VFDO ≤ − 1∣∣z1,p

∣∣ 1
2

ΞTΠΞ ≤ −λmin(Π)∣∣z1,p
∣∣ 1

2
ΨTΨ ≤ − λmin(Π)VFDO

λmax(P)
∣∣z1,p

∣∣ 1
2

(42)

Because
∥∥ΨTΨ

∥∥ ≥
∣∣z1,p

∣∣ 1
2 , V

1
2

FDO√
λmin(P)

≥
∥∥ΨTΨ

∥∥, we obtain the folowing:

1∣∣z1,p
∣∣ 1

2
≥
√

λmin(P)

V
1
2

FDO

(43)

Substituting Equation (43) into Equation (42) yields the following:

.
VFDO ≤ −λmin(Π)

√
λmin(P)

λmax(P)
V

1
2

FDO (44)

From Lemma 5, the observation error of the roll channel will converge to zero at time
Tp, and Tp satisfies the following relation:

Tp ≤ 2λmax(P)
λmin(Π)

√
λmin(P)

V
1
2

FDO (45)
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Thus, the observer is effective in estimating the external disturbance, and the proof
ends. □

In order to demonstrate the continuity of the observer in this paper, the observer in
this paper is compared with the observer in the study [31]. To ensure the uniformity of
the comparison conditions, two observers are used to observe the system of Example 1
in the study [31]. The observer designed based on the method of this paper is shown in
Equation (46). The observer in the study [31] is shown in Equation (47). The comparison
results are shown in Figure 3.

.
x̂ = −x + d̂ + a1|x − x̂|

1
2 tanh(k(x − x̂))

.
d̂ = a2|x − x̂|

1
2 tanh(k(x − x̂))

(46)



.
x̂1 = −x1 + x̂2 + Lc1(x1 − x̂1)

r2 ,
.
x̂2 = x̂3 + L2c2(x1 − x̂1)

r3 ,
.
x̂3 = x̂4 + L3c3(x1 − x̂1)

r4 ,
.
x̂4 = −SatB(x̂3) + L4c4(x1 − x̂1)

r5

(47)Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 22 
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From the results, it can be seen that, at the beginning, the outputs of both observers
are overshooting because the initial value of the observer output is zero by default, and
the observer designed in this paper has a faster response speed. At the peaks and troughs,
the observed curves of the study [31] show chattering, while the observer designed in this
paper does not show the chattering phenomenon.

Remark 2. In the comparison process, a1 = 5, a2 = 20, and k = 200, the parameters of
Equation (47) are set as in the study [31].

4. Simulation and Analysis

The algorithm proposed in this chapter is simulated using Simulink, and two scenarios
are considered for simulation verification.

Scenario 1: In order to fully verify the control effect of the anti-saturation auxiliary
controller, the proposed finite-time anti-saturation control method (FACM) and nonlinear
dynamic inversion (NDI) are applied. It is assumed that the disturbance is known during
the simulation process, and the UAV needs to perform a large angle maneuver in a short
period at this time, which causes the control output of the flight system controller to reach
the saturation state.
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The desired attitude is as follows:

rolld = 0.32 sin(1.3t + 0.5π) + 0.3, pitchd = 0.32 sin(1.3t) + 0.5, yawd = 0

The initial angle of the drone is Θ0 = [0; 0; 0.3]T rad. The moment saturation in-
tervals for the roll and pitch channels are [−0.03, 0.03]N · m. The moment saturation
interval of the yaw channel is [−0.005, 0.005]N · m. The moment of inertia matrix is
G = diag(0.004021, 0.004021, 0.006564)kg · m2. The controller parameters are shown below:

C1 =

3.75 0 0
0 3.75 0
0 0 3.75

, C3 =

15 0 0
0 15 0
0 0 15

, C2 = C4 = I3×3

K1 =

5 0 0
0 5 0
0 0 5

, K2 = I3×3, K3 =

2 0 0
0 2 0
0 0 2

, K4 =

0.1 0 0
0 0.1 0
0 0 0.1

, b1 =

0.05 0 0
0 0.05 0
0 0 0.05


m = 99, n = 103, λ1,0 = [0 0 0]T , λ2,0 = [0 0 0]T

The simulation results are shown in Figures 4–6. Figure 4 shows the moments applied
to the quadrotor UAV. It is obvious from the figure that, under both control algorithms, the
controller output saturation occurs. At the initial moment, compared to the algorithm with-
out an anti-saturation auxiliary controller, the FACM algorithm is in the saturated state for
less time, although the saturation of the output moment also occurs. Therefore, the FACM
algorithm proposed in this paper minimizes the duration of control moment saturation.

Figure 5 shows the attitude tracking results of the quadrotor UAV. In general, the
attitude tracking error tends to become zero around 2.5 s with or without the anti-saturation
auxiliary system in the case of known disturbance, so both control methods achieve good
attitude tracking results. At the beginning of the simulation, the errors of both control
methods are larger before 2.5 s because the initial attitude angle is not consistent with the
desired attitude. In the 0~2.5 s interval, when there is no anti-saturation auxiliary system,
both the roll channel and the pitch channel can keep up with the desired attitude faster,
while the FACM algorithm designed in this paper lags slightly; in the yaw channel, when
there is no anti-saturation auxiliary system, it has a larger overshooting amount although it
has a shorter rise time; and the FACM algorithm achieves an asymptotic convergence of
the yaw angle, and the regulation of the yaw angle is slightly slower, but it is also in the
range of 2.5 s. The FACM algorithm achieves an asymptotic convergence of the yaw angle,
and the adjustment time is a little slower, but it also makes the tracking error converge to
zero in about 2.5 s. The reason for this phenomenon is that, at the beginning, due to the
existence of a large error, the control moment reaches the saturation state, as can be seen
from Figure 4, and for the algorithm without the anti-saturation auxiliary controller, the
control volume is in the saturation state for a longer time, and the time of the maximum
torque effect is also longer, so that it can track the desired attitude faster, but at this point,
there is also a consequent overshooting, and the overshooting volume of the roll channel
and yaw channel is especially obvious; on the contrary, in the FACM algorithm, due to the
introduction of the anti-saturation auxiliary system based on the control algorithm, when
the saturation phenomenon occurs, the auxiliary states of the anti-saturation system are
changed, which reduce the angular tracking error, and thus shorten the time of the control
moment in the saturated state, and the time of the maximum torque action is even shorter,
so the FACM algorithm cannot track the desired attitude very quickly in the initial stage.
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Figure 5. Attitude tracking results in comparison. (a,b) denote the attitude tracking results and
tracking errors of the roll channel. (c,d) denote the attitude tracking results and tracking errors of the
pitch channel. (e,f) denote the attitude tracking results and tracking errors of the yaw channel.

Figure 6 shows the variation in the states of the anti-saturation auxiliary system. It
can be seen from the figure that the states a and b change abruptly from zero at the very
beginning due to the saturation phenomenon at the initial stage. After that, with the
progressive reduction in the angular tracking error, the control moments also decrease,
and the system is no longer saturated, so the input of the anti-saturation auxiliary system
becomes zero, and the states of the anti-saturation auxiliary system also converge to zero in
a finite time.
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Scenario 2: In order to be closely related to the real environment, in Scenario 2, it
is assumed that the external disturbance is unknown, and it is controlled by using the
proposed finite-time disturbance observer and anti-saturation control method (FDOACM);
at the same time, to verify the effectiveness of the proposed algorithm, the FACM algo-
rithm and the composite continuous fast nonsingular terminal sliding mode (CCFNTSM)
algorithm [46] are also applied to the attitude system model of the quadrotor UAV.

The total disturbance settings to which the system is subjected are shown in Table 1.

Table 1. Total disturbance to the system.

Disturbance (rad/s2) 0 ≤ t ≤ 2 2 < t ≤ 6 t > 6

dp −3 −8 −6 − 2 sin(0.1πt)
dq 5 6 2 + 10 sin(0.2πt)
dr −3 −6 −6 − 2.4 sin(0.25πt)

The desired attitude is consistent with Scenario 1. The initial angle is Θ0 = [0; 0; 0.3]T rad.
The moment saturation intervals for the roll, pitch, and yaw channels are all [−0.5, 0.5] N·m.
The observer parameters are as follows:

A1 =

100 0 0
0 100 0
0 0 100

, A2 =

300 0 0
0 300 0
0 0 300

, k =

100 0 0
0 100 0
0 0 100


The simulation results are shown in Figures 7–9. Figure 7 shows the UAV attitude

tracking results under different control algorithms and unknown disturbance. Since the
FACM algorithm has no disturbance observer module, the control effects of this algorithm
are the worst among the three; the CCFNTSM algorithm achieves the accurate tracking of
the desired attitude in three axes; in the pitch channel and the yaw channel, for the attitude
tracking error, although converging to zero in about 1 s, overshooting phenomenon occurs
in the process of convergence; in the roll channel, the error convergence effect is better,
and the error convergence is achieved in about 1 s with no overshooting phenomenon.
Under the control of the FDOACM algorithm, the accurate tracking of the attitude is also
achieved; in the roll channel, the control effects of the FDOACM and the CCFNTSM are the
same, and the convergence time of the pitch tracking error is nearly the same; in the pitch
channel, the convergence time of the FDOACM control algorithm is slightly longer than
that of the CCFNTSM algorithm; in the yaw channel, the FDOACM algorithm has a much
lower amount of overshooting.



Appl. Sci. 2024, 14, 3639 15 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 22 
 

than that of the CCFNTSM algorithm; in the yaw channel, the FDOACM algorithm has a 
much lower amount of overshooting. 

Figure 8 shows the change in the states of the anti-saturation auxiliary system. From 
the figure, it can be seen that the pitch channel triggered the anti-saturation auxiliary 
controller, so the compensation state of the pitch channel changed. In contrast, the roll 
channel and the yaw channel show no change in the compensation state quantity because 
there is no saturation phenomenon. 

 

Figure 7. Comparison of attitude tracking results in the disturbance situation with study [46] and
FACM. (a,b) denote the attitude tracking results and tracking errors of the roll channel. (c,d) denote
the attitude tracking results and tracking errors of the pitch channel. (e,f) denote the attitude tracking
results and tracking errors of the yaw channel.



Appl. Sci. 2024, 14, 3639 16 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 22 
 

Figure 7. Comparison of attitude tracking results in the disturbance situation with study [46] and 
FACM. (a,b) denote the attitude tracking results and tracking errors of the roll channel. (c,d) denote 
the attitude tracking results and tracking errors of the pitch channel. (e,f) denote the attitude 
tracking results and tracking errors of the yaw channel. 

 
Figure 8. Anti-saturation auxiliary system compensation states change results with disturbance 
observer. (a) denotes the amount of compensation state λ1  . (b) denotes the amount of 

compensation state λ2 . 

From the figure, it can be seen that, in the initial stage of simulation, the control effects 
of the FDOACM algorithm in this paper are not as good as those of the CCFNTSM 
algorithm for the following reasons: due to the attitude angle error being larger in the 
initial moments, it triggers the anti-saturation controller in the FDOACM, which leads to 
the torque maintaining saturation for a shorter time; however, from the subsequent 
overall results, with the anti-saturation auxiliary state converging to zero, the controller 
designed in this paper is still able to outperform and give a better control performance. 
From Figures 7 and 8, it can be seen that the convergence times of the compensated states 
and the error are almost the same, and the values of the compensated states are in the 
same order of magnitude as the error, so it can be judged that the slower convergence time 
is due to the compensated states. 

Figure 9 represents the results of different observers for the disturbance. In the initial 
stage of the simulation, the observer of the study [46] shows an extremely sharp change, 
especially in Figure 9b, the observer result changes abruptly from the initial zero to about 
420 2rad/s  , and then gradually converges; when the subsequent disturbance shows a 
large sudden change, the output of the observer of the study [46] also changes abruptly, 
and the observation results approximate the actual disturbance in a linear relationship, 
and a certain degree of an overshooting phenomenon occurs. It can also be seen that, 
although the observation of the study [46] can quickly observe the external disturbance, 
there is still a small inconsistency in the observation results, which does not completely 
achieve the accurate estimation of the external disturbance. On the contrary, the 
observation results of the FDOCAM control algorithm, whether in the initial stage of the 
simulation, or the disturbance of a sudden change, the FDO designed in this paper does 
not appear to be a sudden change, and there is no overshooting phenomenon, and the 
observation error can be stabilized near the zero domain without chattering; although the 
algorithm’s disturbance observation error is exponentially convergent, the speed of 
convergence is not worse than that of the study [46], and in Figure 9a,c, the convergence 
speed of the FDOCAM is more rapid. 

Figure 8. Anti-saturation auxiliary system compensation states change results with disturbance
observer. (a) denotes the amount of compensation state λ1. (b) denotes the amount of compensation
state λ2.

Figure 8 shows the change in the states of the anti-saturation auxiliary system. From
the figure, it can be seen that the pitch channel triggered the anti-saturation auxiliary
controller, so the compensation state of the pitch channel changed. In contrast, the roll
channel and the yaw channel show no change in the compensation state quantity because
there is no saturation phenomenon.

From the figure, it can be seen that, in the initial stage of simulation, the control
effects of the FDOACM algorithm in this paper are not as good as those of the CCFNTSM
algorithm for the following reasons: due to the attitude angle error being larger in the
initial moments, it triggers the anti-saturation controller in the FDOACM, which leads
to the torque maintaining saturation for a shorter time; however, from the subsequent
overall results, with the anti-saturation auxiliary state converging to zero, the controller
designed in this paper is still able to outperform and give a better control performance.
From Figures 7 and 8, it can be seen that the convergence times of the compensated states
and the error are almost the same, and the values of the compensated states are in the same
order of magnitude as the error, so it can be judged that the slower convergence time is due
to the compensated states.

Figure 9 represents the results of different observers for the disturbance. In the initial
stage of the simulation, the observer of the study [46] shows an extremely sharp change,
especially in Figure 9b, the observer result changes abruptly from the initial zero to about
420 rad/s2, and then gradually converges; when the subsequent disturbance shows a
large sudden change, the output of the observer of the study [46] also changes abruptly,
and the observation results approximate the actual disturbance in a linear relationship,
and a certain degree of an overshooting phenomenon occurs. It can also be seen that,
although the observation of the study [46] can quickly observe the external disturbance,
there is still a small inconsistency in the observation results, which does not completely
achieve the accurate estimation of the external disturbance. On the contrary, the observation
results of the FDOCAM control algorithm, whether in the initial stage of the simulation,
or the disturbance of a sudden change, the FDO designed in this paper does not appear
to be a sudden change, and there is no overshooting phenomenon, and the observation
error can be stabilized near the zero domain without chattering; although the algorithm’s
disturbance observation error is exponentially convergent, the speed of convergence is
not worse than that of the study [46], and in Figure 9a,c, the convergence speed of the
FDOCAM is more rapid.
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5. Conclusions

In this paper, a nonlinear dynamic inversion control algorithm based on a finite-time
disturbance observer and an anti-saturation auxiliary system is designed for the actuator
saturation problem and the unknown disturbance in the attitude tracking process of a UAV.
Firstly, for the actuator saturation problem, a finite-time anti-saturation strategy is proposed,
and the anti-saturation control of the actuator is achieved by constructing a second-order
anti-saturation auxiliary controller and introducing an anti-saturation auxiliary state in
the system error term. Secondly, for the problem of unknown disturbance, an FDO is
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designed, and a hyperbolic tangent function is introduced into the disturbance observer,
which effectively improves the jitter phenomenon of the existing finite-time disturbance
observer. Finally, simulation tests show that the algorithm proposed in this paper can
achieve accurate attitude tracking control, which not only reduces the time that the actuator
is in the saturation state but also quickly estimates the unknown disturbance to which the
system is subjected.

Future research will be carried out for the case where the saturation boundary is
unknown and time-varying. Currently, we have only performed Software-in-the-Loop (SIL)
simulation, and we will follow up with Hardware-in-the-Loop (HIL) simulation work to
further validate the control effect of the algorithm. In addition, our current study focuses on
attitude control, on which we plan to design position controllers in the future with an aim
to autonomize navigation tasks for UAVs. Due to the importance of the field of intelligent
control, we will also introduce intelligent control into our research in our subsequent work.
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