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Abstract: Localizing a moving source by Time Difference of Arrival (TDOA) and Frequency Difference
of Arrival (FDOA) commonly requires at least N + 1 sensors in N-dimensional space to obtain more
than N pairs of TDOAs and FDOAs, thereby establishing more than 2N equations to solve for
2N unknowns. However, if there are insufficient sensors, the localization problem will become
underdetermined, leading to non-unique solutions or inaccuracies in the minimum norm solution.
This paper proposes a localization method using TDOAs and FDOAs while incorporating the motion
model. The motion between the source and sensors increases the equivalent length of the baseline,
thereby improving observability even when using the minimum number of sensors. The problem is
formulated as a Maximum Likelihood Estimation (MLE) and solved through Gauss–Newton (GN)
iteration. Since GN requires an initialization close to the true value, the MLE is transformed into
a semidefinite programming problem using Semidefinite Relaxation (SDR) technology, while SDR
results in a suboptimal estimate, it is sufficient as an initialization to guarantee the convergence of
GN iteration. The proposed method is analytically shown to reach the Cramér–Rao Lower Bound
(CRLB) accuracy under mild noise conditions. Simulation results confirm that it achieves CRLB-
level performance when the number of sensors is lower than N + 1, thereby corroborating the
theoretical analysis.

Keywords: moving target localization; Time Difference of Arrival (TDOA); Frequency Difference of
Arrival (FDOA); minimum sensors

1. Introduction

Source localization has been fundamental across various applications, including radar,
sonar, and navigation [1–3], and has further expanded its utility into diverse commercial do-
mains such as indoor sensing, robotics, and sensor networks [4,5]. This trend underscores
the growing significance of precise positioning in modern society. Localization traditionally
involves two stages. The first stage acquires parameters through signals transmitted from a
source to several spatially distributed sensors. Subsequently, the second stage formulates
a nonlinear optimization problem to determine the source position. Typical parameters
for stationary source localization include Time Difference of Arrival (TDOA) [6–9], Time
of Arrival (TOA) [10–12], Angle of Arrival (AOA) [13,14], and Received Signal Strength
(RSS) [15,16]. Among them, TDOA stands out as one of the most popular choices. Dis-
tinguished from TOA-based technologies, TDOA localization avoids the requirement of
synchronization between the source and sensors, and its performance commonly exceeds
that of AOA and RSS-based localization methods.

When relative motion exists between the source and sensors, the Frequency Difference
of Arrival (FDOA) can additionally be obtained. Combining FDOA with TDOA enhances
the estimation accuracy of both the position and velocity of the source. However, moving
source localization using TDOA and FDOA measurements presents challenges due to the
highly nonlinear and nonconvex nature of the Maximum Likelihood Estimation (MLE)
problem. The conventional approach to handling the nonlinear MLE problem typically

Appl. Sci. 2024, 14, 3909. https://doi.org/10.3390/app14093909 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093909
https://doi.org/10.3390/app14093909
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4180-2232
https://doi.org/10.3390/app14093909
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093909?type=check_update&version=2


Appl. Sci. 2024, 14, 3909 2 of 21

involves linearizing it through Taylor-series expansion [17]. This results in an iterative
algorithm that can reach the optimal estimate. However, this method requires an accurate
initial guess to ensure convergence; otherwise, the iteration may be trapped by local minima.
This limitation prompted researchers to seek better solutions, one of which is the closed-
form solution (CFS). Two-Step Weighted Least Squares (2SWLS) [18] is perhaps the most
popular CFS for solving TDOA-FDOA localization [19,20]. This approach first linearizes the
measurement equations by introducing two redundant parameters after squaring, forming
a pseudo-linear Weighted Least Squares (WLS) problem that can straightforwardly find the
solution. The second stage leverages constraints between the redundant parameters and the
source position and velocity to enhance the location accuracy. Studies such as [21–23] took
account of the sensor uncertainties of sensor position and velocity errors, developing new
CFSs to reduce estimation errors. Since sensor uncertainties are a type of common mode
error that is identical for different sources, an asymptotically efficient algebraic solution for
multiple disjoint sources was proposed to better calibrate the error [24]. Ref. [25] formulated
the problem as a quadratic optimization with two quadratic equality constraints and solved
it using iterative Constrained Weighted Least Squares (CWLS), significantly improving
upon previous methods. Although the aforementioned CFSs achieve the Cramér–Rao
Lower Bound (CRLB) of Mean-Square Error (MSE) and avoid possible divergence problems,
they are not noise resilient if the noise is relatively large. Therefore, Multidimensional
Scaling (MDS) analysis was incorporated to improve robustness against noise [26]. Another
approach to enhancing noise robustness is resorting to direct position determination [27],
but this comes with demanding computational complexity.

Compromising between performance and complexity, convex optimization [28–30] is a
competitive technology superior to the aforementioned approaches. It typically formulates
TDOA-FDOA localization as a semidefinite programming (SDP) problem by utilizing
Semidefinite Relaxation (SDR) to relax the nonconvex problem to a nearly equivalent
convex one. The SDP solution can mitigate the divergence issue that may occur in MLE
implemented by iteration. While SDR sometimes relaxes the problem with insufficient
tightness, resulting in a suboptimal estimate, it is sufficiently close to the true value and can
serve as an appropriate initialization to guarantee the convergence of iterative MLE [31,32].
The other strategy to improve the accuracy of SDP is error correction [33], which is capable
of achieving the CRB level of performance. The aforementioned studies focus on developing
feasible and optimal solutions for estimating the source position, but they did not take
into account the influence of sensor placement [34]. The optimal localization performance
is primarily determined by the Geometric Dilution of Precision (GDOP). Optimizing the
sensor placement can improve the GDOP so a better performance is achievable.

In general, the minimum number of sensors required for unambiguously localiz-
ing a moving source in an N-dimensional space using TDOA and FDOA is more than
N + 1, as the TDOA and FDOA equations are nonlinear with respect to the source posi-
tion and velocity. Some studies [19,26] introduce additional instrumental parameters for
pseudo-linearization, thus necessitating more sensors to ensure the proposed closed-form
algorithms are solvable. Other researchers have explored localization with the minimum
number of sensors. For instance, N + 1 sensors are required for TDOA localization [35],
while elliptic localization in Multiple-Input Multiple-Output (MIMO) systems requires
at least one transmitter and three receivers or two transmitters and two receivers [36,37].
These methods leverage measurements from sensors or receivers extracted from one frame
of snapshots to establish the equations; thus, they are limited by the actual number of sen-
sors or receivers. Typically, to guarantee that the optimization problem is overdetermined
and the solution for source location is unique, it is necessary to incorporate more than
N + 1 sensors into the localization system in most scenarios [38,39].

When the number of sensors is limited, one possible method to localize a moving
source is known as Target Motion Analysis (TMA). TMA is a technique used in various
fields, notably in military and maritime operations, to determine the movement charac-
teristics of a target based on observations from one or more sensors. The primary goal
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of TMA is to estimate the position, velocity, and possibly other relevant parameters of a
target, such as its course and acceleration. TMA incorporates a kinetic model, allowing
it to handle moving source localization with fewer sensors. The early development of
TMA evolved from bearing-only (BO) measurements [40]. The team led by K. Doğançay
made significant contributions to BO-TMA closed-form solutions, addressing issues such
as two-dimensional single-station TMA [41], bias reduction in target motion parameter
estimation [42], and the effect of receiver station location errors [43]. These research find-
ings were further extended to three-dimensional targets [44]. TMA is not only designed
for bearing-only measurements but is also applicable to TDOA [45] and FDOA [46]. In
a scenario where the number of sensors is smaller than the dimension of space, leverag-
ing TMA can help handle constant velocity moving source localization using TDOA and
FDOA measurements.

This paper focuses on the TDOA-FDOA localization problem when the number of
sensors is less than N + 1 for an N-dimensional scenario. By incorporating the kinetic model
of the source, which is an effective method involving TMA, it becomes feasible to solve for
2N unknowns, such as position and velocity. The sensors observe multiple times while the
source is moving, obtaining multiple sets of TDOAs and FDOAs. This paper first formulates
the moving source localization as a MLE problem, which is nonlinear and nonconvex. The
MLE is then implemented by Gauss–Newton (GN) iteration. To find an initialization to
start the GN iteration, the original MLE is then relaxed to a convex optimization problem
through SDR technology, resulting in an SDP problem with penalties. The solution can be
found straightforwardly using mature tools such as the CVX Toolbox [47]. Although the
SDP solution is suboptimal, it is sufficient to guarantee that the GN iteration converges
to an optimal point if the noise is relatively mild. Mean-square analysis shows that the
performance of the proposed estimator achieves the Cramér–Rao Lower Bound (CRLB),
and the bias is close to zero in the small noise region. Simulations validate the analytical
results and additionally demonstrate the performance behavior while the observation time,
source range, and source velocity vary.

The paper begins with the measurement model of TDOA and FDOA in Section 2.
Section 3 introduces the formulation of the MLE problem for TDOA-FDOA localization
and proposes a solution by GN iteration, where the initial solution for both velocity and
position is subsequently found by SDP. Section 4 provides the CRLB and analyzes the
performance of the proposed MLE. Section 5 presents the simulation results, and Section 6
concludes the paper.

Notations: The following notations are used throughout the paper. Bold uppercase and
bold lowercase letters denote matrices and vectors, respectively. Im is an m × m identity
matrix, and 1m is an m× 1 vector whose elements are all ones. Om×n is an m× n zero matrix,
and 0 is an all-zero vector with appropriate size. ∗T is the transposition of a matrix or vector.
E(·) denotes expectation, and ∥ · ∥ is the l2-norm. A(:, i) denotes the i-th column of A, and
A(i, j) denotes the (i, j)-th element of A. a(i) denotes the i-th element of a. A ⪰ B means
that A − B is positive semidefinite. tr{A} represents the trace of A. ⊗ is the Kronecker
product between two matrices. The symbols with a superscript o represent the true value
corresponding to the noisy one. The vectors in this paper are column vectors.

The main acronyms used in this paper are summarized in Table 1. Table 2 summarizes
the related works and categorizes them.

Table 1. Acronym list.

Acronym Description

TDOA Time Difference of Arrival
TOA Time of Arrival
AOA Angle of Arrival
RSS Received Signal Strength

FDOA Frequency Difference of Arrival
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Table 1. Cont.

Acronym Description

MLE Maximum Likelihood Estimation
CFS Closed-form solution

2SWLS Two-Step Weighted Least Squares
WLS Weighted Least Squares

CWLS Constrained Weighted Least Squares
CRLB Cramér–Rao Lower Bound
MSE Mean-Square Error
MDS Multidimensional Scaling
SDP Semidefinite programming
SDR Semidefinite Relaxation

MIMO Multiple-Input Multiple-Output
TMA Target Motion Analysis
BO Bearing-only
GN Gauss–Newton
QN Quasi-Newton
LM Levenberg–Marquardt
LMI Linear Matrix Inequality
SOC Second-order cone
FIM Fisher Information Matrix

RMSE Root mean-squared error
UAV Unmanned aerial vehicle

GDOP Geometric Dilution of Precision

Table 2. Categories of the related works.

Category Method Paper

TDOA and FDOA CFS [18–26]

TDOA and FDOA Iterative solution [27]

TDOA and FDOA SDP solution [28–30]

BO-TMA Particle filter [40]

BO-TMA CFS [41–44]
TMA for TDOA only Iterative solution [45]

TMA for FDOA only CFS and SDP [46]

TMA for TDOA and FDOA SDP and GN Proposed

2. Localization Scenario

Consider a scenario as shown in Figure 1 where M moving sensors are distributed
in an N-dimensional space (N = 3 or N = 2). The known initial positions and velocities
of these sensors are denoted as si,1 ∈ RN and ṡi ∈ RN , respectively. These sensors are
deployed to determine the position and velocity of a moving source. Assuming synchro-
nization in time and frequency among the sensors, they can produce TDOA and FDOA
measurements between receiving sensors and a reference sensor. Without loss of generality,
the reference sensor is chosen as s1. The unknown initial position and velocity of the source
are denoted as uo ∈ RN and u̇o ∈ RN , respectively, which will be estimated using TDOA
and FDOA measurements. The velocities of the source and sensors are constant. During
the motion of the sensors, the source is observed a total of K times, with a time interval of
τ between the adjacent observation frame. Assuming the observation time is short, the
sensors and source are considered as quasi-static during one observation frame. At the k-th
observation frame, the positions of the sensors are denoted as

si,k = si,1 + ṡi(k − 1)τ, k = 1, 2, · · · , K, (1)
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and the position of the source is

uo
k = uo + u̇o(k − 1)τ. (2)

Collecting the initial position and velocity of the source together, the unknown vector is
βo = [uoT , u̇oT ]T .

The TDOAs between the i-th and 1st sensors are interchangeable with range differences
by multiplying with the signal propagation speed,

ro
i,k = do

i,k − do
1,k, i = 2, · · · , M. (3)

where
do

i,k = ∥uo
k − si,k∥, i = 1, · · · , M, (4)

is the true distance from the source to the i-th sensor during the k-th observation frame.
The rate of the time derivative of the true range difference in (3) is

ṙo
i,k = ḋo

i,k − ḋo
1,k, i = 2, · · · , M, (5)

where ḋo
i,k is the rate of the range between the source and the i-th sensor in the k-th

observation frame

ḋo
i,k =

(u̇ − ṡi)
T(uo

k − si,k)

∥uo
k − si,k∥

, i = 1, · · · , M, (6)

The FDOA between the i-th sensor and the reference is the range difference rate divided by
the signal propagation speed c,

f o
i,k = ṙo

i,k/c. (7)

When the noise exists, the measured TDOA and FDOA are

ri,k = ro
i,k + ni,k, (8)

ṙi,k = ṙo
i,k + ei,k, (9)

where ni,k is the measurement noise of range difference and ek is the measurement noise of
range difference rate. The collections of TDOA and FDOA measurements form

r = ro + n = [ro
2,1, ro

3,1, · · · , ro
M,1, · · · , ro

M,K]
T + n , (10)

ṙ = ṙo + e = [ṙo
2,1, ṙo

3,1, · · · , ṙo
M,1, , · · · , ṙo

M,K]
T + e , (11)

where

n = [n2,1, n3,1, · · · , nM,1, · · · , nM,K]
T , (12)

e = [e2,1, e3,1, · · · , eM,1, · · · , eM,K]
T , (13)

are the noise vectors obeying a zero-mean Gaussian distribution. Putting the two sets
of measurements together yields the total measurements vector α = [rT , ṙT ]T . The cor-
responding measurement error vector ∆α = [nT , eT ]T is also zero-mean and has the
covariance matrix

E[∆α∆αT ] = Qα. (14)
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Figure 1. Localization scenario using TDOA and FDOA.

3. Localization Method

MLE is widely utilized for parameter estimation in statistical modeling due to its
desirable properties like consistency, efficiency, and asymptotic normality. It offers accurate,
optimal, and unbiased estimation for source localization, effectively leveraging observation
data while retaining flexibility to different types of source localization problems. Supported
by theoretical foundations and mathematical derivations, MLE plays a crucial role in
the development and application of source localization technologies. Maximizing the
likelihood function of uo and u̇o is equivalent to minimizing the objective function under
Gaussian noise conditions [48],

J(β) = (α − ᾱ(β))TQ−1
α (α − ᾱ(β))

=
K

∑
k1,k2=1

M

∑
i1,i2=2

ωa(i1,k1),b(i2,k2)

(
ri1,k1 − r̄i1,k1

)(
ri2,k2 − r̄i2,k2

)
+

K

∑
k1,k2=1

M

∑
i1,i2=2

ωc(i1,k1),d(i2,k2)

(
ṙi1,k1 − ¯̇ri1,k1

)(
ṙi2,k2 − ¯̇ri2,k2

)
, (15)

where a(i1, k1) = (k1 − 1)(M − 1) + i1 − 1, b(i2, k2) = (k2 − 1)(M − 1) + i2 − 1,
c(i1, k1) = K(M − 1) + a(i1, k1), d(i2, k2) = K(M − 1) + b(i2, k2) and ωı,ȷ is the (ı, ȷ)-th
element of Q−1

α . ᾱ(β), as well as r̄i1,k1 and ¯̇ri1,k1 , are the reconstructed measurements from
β according to (3) and (5).

The MLE problem above is nonconvex and nonlinear, which means it is nontrivial
to find the optimal solution. Besides the exhaustive method, an effective strategy to
handle the MLE is iterative solution. It should be noted that iteration methods, such
as GN, Newton–Raphson, Quasi-Newton (QN) and Levenberg–Marquardt (LM), involve
asymptotic MLE. Their solutions can approach the CRLB when the noise is mild but diverge
or are trapped by local minima if there is a relatively large amount of noise. The GN
method offers advantages over others as it balances the convergence and computational
costs by computing Jacobian matrices instead of Hessians, suitable for large-scale and
high-dimensional parameter spaces, making it particularly effective for highly nonlinear
problems while being less computationally demanding and more scalable, although it may
be slightly sensitive to initial conditions.

Therefore, the proposed MLE consists of two parts. One part is an iterative equation,
which was developed for minimizing (15) by means of the GN implementation [48]. Con-
sidering the initialization sensitivity of GN iteration, the other part provides an suboptimal
solution for βo by SDR and SDP. This solution utilized to initialize the iterative process is
sufficient for guaranteeing the convergence.
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3.1. Gauss–Newton Iteration

Taking the Taylor-series expansion of α(β) at β(0) and retaining the first-order terms
give a quadratic approximation of J(β)

J(β) ≈
[

α − ᾱ(β(0))− ∂α

∂β

∣∣∣∣
β=β(0)

(β − β(0))

]T

Q−1
α

[
α − ᾱ(β(0))− ∂α

∂β

∣∣∣∣
β=β(0)

(β − β(0))

]
. (16)

Differentiating it with respect to β and setting the result to zero yield the GN iterative
equation for asymptotically minimizing J(β), after replacing the superscript,

β(g+1) = β(g) +
(

G(g)TWG(g)
)−1

G(g)TW
(

α − α(g)
)

, g = 0, 1, · · · , L. (17)

where g is the iteration count and L is the number of iterations. β(0) is the initial solution
guess whose choice will be elaborated later, which should not be confused with βo that
represents the true value. In (17), W = Q−1

α and α(g) are the re-generated measurement
vectors with β(g) replacing βo in αo. G(g) is the Jacobian matrix given by

G(g) =
∂α

∂βT

∣∣∣∣
β=β(g)

=

 ∂r
∂u(g)T

∂r
∂u̇(g)T

∂ṙ
∂u(g)T

∂ṙ
∂u̇(g)T

 =

[
R(g) B(g)

Ṙ(g) Ḃ(g)

]
. (18)

The ((k − 1)(M − 1) + (i − 1))-th row of R(g) is

R(g)((k − 1)(M − 1) + (i − 1), :) =

(
u(g)

k − si,k

)T

d(g)
i,k

−

(
u(g)

k − s1,k

)T

d(g)
1,k

,

k = 1, · · · , K, i = 2, · · · , M,

(19)

where d(g)
i,k and d(g)

1,k are from (4) with the true value uo replaced by u(g), and similarly the

((k − 1)(M − 1) + (i − 1))-th row of Ṙ(g) is

Ṙ(g)((k − 1)(M − 1) + (i − 1), :)

=
u̇(g)T − ṡT

i

d(g)
i,k

−
ḋ(g)

i,k

d(g)2
i,k

(
u(g)

k − si,k

)T
−

u̇(g)T − ṡT
1

d(g)
1,k

+
ḋ(g)

1,k

d(g)2
1,k

(
u(g)

k − s1,k

)T
,

(20)

The ((k − 1)(M − 1) + (i − 1))-th row of B(g) is

B(g)((k − 1)(M − 1) + (i − 1), :) = τ(k − 1)R(g)((k − 1)(M − 1) + (i − 1), :)

= τ(k − 1)


(

u(g)
k − si,k

)T

d(g)
i,k

−

(
u(g)

k − s1,k

)T

d(g)
1,k

, (21)

and the ((k − 1)(M − 1) + (i − 1))-th row of Ḃ(g) is

Ḃ(g)((k − 1)(M − 1) + (i − 1), :)

=
(τ(k − 1)(u̇(g) − ṡi) + (u(g)

k − si,k))
T

d(g)
i,k

−
τ(k − 1)(u(g)

k − si,k)
T ṙ(g)

i,k

d(g)2
i,k

−
(τ(k − 1)(u̇(g) − ṡ1) + (u(g)

k − s1,k))
T

d(g)
1,k

−
τ(k − 1)(u(g)

k − s1,k)
T ṙ(g)

1,k

d(g)2
1,k

. (22)
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Ensuring that the initial solution β(0) is sufficiently close to the true value is crucial
for initializing the iteration process. Failure to achieve this closeness may result in either
divergence or convergence to a local minimum for (17). Our attention is now directed
towards obtaining this essential initial solution.

3.2. Initial Solution

To guarantee convergence of the GN iteration, this paper introduces an SDR method
that transforms the nonconvex ML problem into a convex one, thereby forming an SDP
problem. Let us start by considering the ML cost function (15) and reformulating it as a
constrained optimization problem,

min
u,u̇,d,ḋ

(r − Ad)TQ−1(r − Ad) + (ṙ − Aḋ)TQ̇−1(ṙ − Aḋ)

s.t. di,k =
∥∥uk − si,k

∥∥,

ḋi,k =
(u̇ − ṡi)

T(uk − si,k)∥∥uk − si,k
∥∥ , i = 1, · · · , M, k = 1, · · · , K,

(23)

where
d = [d1,1, d2,1, · · · , dM,1, · · · , dM,K]

T , (24)

ḋ = [ḋ1,1, ḋ2,1, · · · , ḋM,1, · · · , ḋo
M,K]

T , (25)

and A = IK
⊗

B, B = [−1M−1, IM−1], Q = E[nnT ] , Q̇ = E[eeT ]. Denote h = [dT , ḋT ]T ,
A1 = A[IMK, OMK×MK] and A2 = A[OMK×MK, IMK]. The problem given in (23) can be
rewritten as

min
u,u̇,h

(r − A1h)TQ−1(r − A1h) + (ṙ − A2H)TQ̇−1(ṙ − A2h) (26a)

s.t. h((k − 1)M + i) =
∥∥uk − si,k

∥∥, (26b)

h((k − 1 + K)M + i) =
(u̇ − ṡi)

T(uk − si,k)∥∥uk − si,k
∥∥ , (26c)

i = 1, · · · , M, k = 1, · · · , K.

The objective function (26a) for minimization is nonconvex. The convex equivalent form is

tr[(AT
1 Q−1A1 + AT

2 Q̇−1A2)H]− 2HT(AT
1 Q−1r + AT

2 Q̇−1ṙ) (27)

where H = hhT and tr(·) represents the trace of a matrix. Two constant terms (26b) and
(26c) are discarded without affecting the results in (27).

Acknowledging that the constraints (26b) and (26c) are nonconvex, they must be
relaxed into convex constraints while maintaining a tight connection with the original ones.
Let X = [u, τu̇] and Y = XTX. The constraint (26b) takes on an equivalent form as follows:

H((k − 1)M + i, (k − 1)M + i) = h((k − 1)M + i)2 = qTYq − 2qTXTsi,k + sT
i,ksi,k, (28)

for i = 1, · · · , M, k = 1, · · · , K, where q = [1, k − 1]T thus uk = Xq. Applying the Cauchy–
Schwartz inequality to (26b) obtains

H(l1, l2) ≥ |qT
1 Yq2 − qT

1 XTsi2,k2 − qT
2 XTsi1,k1 + sT

i1,k1
si2,k2 |, (29)

where q1 = [1, k1 − 1]T , q2 = [1, k2 − 1]T . The variables i1, i2, k1, and k2 satisfy
1 ≤ l1 < l2 ≤ MK where l1 = (k1 − 1)M + i1, l2 = (k2 − 1)M + i2.

Considering the difficulty in formulating constraint (26c) in a convex form due to its
fraction, multiplying it by (26b) yields

h((k − 1)M + i)h((k − 1 + K)M + i) = u̇Tu − u̇Tsi − sT
i u + ṡT

i si. (30)
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Thus, the nonconvex constraint above can be expressed as

H((k − 1)M + i, (k − 1 + K)M + i)

= Y(2, 1)/τ + (k − 1)Y(2, 2)/τ − X(:, 2)Tsi,k/τ − qTX(:, 1)T ṡi + sT
i,kṡi. (31)

Additionally, applying the Cauchy–Schwartz inequality to (26c) obtains an additional constraint,

|h((k − 1 + K)M + i)| ≤ ∥u̇ − ṡi∥. (32)

Squaring both sides of (32) results in

H((k − 1 + K)M + i, (k − 1 + K)M + i) ≤ Y(2, 2)/τ2 − 2X(:, 2)T ṡi/τ + ṡT
i ṡi. (33)

At this stage, two nonconvex constraints remain: H = hhT and Y = XTX. The SDR
method can be employed [49] to relax these constraints into convex inequalities H ⪰ hhT

and Y ⪰ XTX, which can be expressed as Linear Matrix Inequalities (LMIs):[
1 hT

h H

]
⪰ 0, (34)[

IN X
XT Y

]
⪰ 0, (35)

where the rank-1 constraints are ignored.
Since the rank of (AT

1 Q−1A1 +AT
2 Q̇−1A2) is equal to 2K(M − 1), the convex optimiza-

tion formulation (27)–(29), (31), and (32) may exhibit ambiguities. To address this, two
additional penalties η1 tr(H(1 : MK, 1 : MK)) and η2 tr(H(MK + 1 : 2MK, MK + 1 : 2MK))
need to be introduced to tighten the constraints, where η1 and η2 are penalty factors.
Additionally, second-order cone (SOC) constraints [50]∥∥X(:, 1)q − si,k

∥∥ ≤ h((k − 1)M + i), i = 1, · · · , M, (36)

are incorporated to enhance the location accuracy. The discussions above lead to the
proposed SDP problem as follows,

min
h,H,X,Y

tr[(AT
1 Q−1A1 + AT

2 Q̇−1A2)H]− 2HT(AT
1 Q−1r + AT

2 Q̇−1ṙ)

+ η1 tr(H(1 : MK, 1 : MK)) + η2 tr(H(MK + 1 : 2MK, MK + 1 : 2MK)),

s.t. H((k − 1)M + i, (k − 1)M + i) = h((k − 1)M + i)2 = qTYq − 2qTXTsi,k + sT
i,ksi,k,

H(l1, l2) ≥ |qT
1 Yq2 − qT

1 XTsi2,k2 − qT
2 XTsi1,k1 + sT

i1,k1
si2,k2 |,

H((k − 1)M + i, (k − 1 + K)M + i)

= Y(2, 1)/τ + (k − 1)Y(2, 2)/τ − X(:, 2)Tsi,k/τ − qTX(:, 1)T ṡi + sT
i,kṡi.

H((k − 1 + K)M + i, (k − 1 + K)M + i) ≤ Y(2, 2)/τ2 − 2X(:, 2)T ṡi/τ + ṡT
i ṡi.[

1 hT

h H

]
⪰ 0,[

IN X
XT Y

]
⪰ 0,∥∥X(:, 1)q − si,k

∥∥ ≤ h((k − 1)M + i), i = 1, · · · , M.

(37)

This problem can be solved using the CVX Toolbox [47]. Therefore, the initial solution
for the GN iteration described above is β(0) = [X(:, 1)T , X(:, 2)T/τ]T .

Suitable values of η1 and η2 are crucial for achieving good estimation performance.
However, obtaining the optimal values analytically is challenging, as they depend on
various factors such as the distance, relative velocity between the sensor and the source



Appl. Sci. 2024, 14, 3909 10 of 21

nodes, and the noise level [51]. In each scenario, the first set of measurements is utilized to
select suitable parameters. Specifically, C1 values of η1 are denoted as η1,c1 , c1 = 1, 2, . . . , C1,
and C2 values of η2 are denoted as η2,c2 , c2 = 1, 2, . . . , C2. For each pair of penalty factors,
the (37) is computed in parallel. The (η1,c1 , η2,c2) giving the estimation Xc1,c2 that minimizes
J(β) in (15) were selected for following simulations.

4. Analysis

In this section, the CRLB for position and velocity estimation will be provided, and
the performance of the proposed MLE will be investigated. The covariance analysis will be
limited to the first order, disregarding second- and higher-order noise terms in the estimate,
which is valid only within a small error region [8,18]. The bias evaluation will consider up
to second-order noise terms [6,52].

4.1. CRLB

The CRLB is given by [48]

CRLB(βo) = FIM−1(βo), (38)

where FIM−1(βo) is the Fisher Information Matrix (FIM),

FIM−1(βo) =
∂αoT

∂βo Q−1
α

∂αo

∂βoT , (39)

and

∂αo

∂βoT =

 ∂r
∂uoT

∂r
∂u̇oT

∂ṙ
∂uoT

∂ṙ
∂u̇oT

, (40)

where the derivatives are similar to (18)–(22) by replacing β(g) with βo.

4.2. Bias and Covariance

The performance of the proposed solution is ultimately determined by the GN iteration.
Therefore, attention will be directed towards the solution provided in Section 3.1. The bias
and covariance of a column vector estimation derived from minimizing a cost function are
summarized in [53]. This approach will be followed to evaluate the performance of the
proposed MLE.

The estimate of β implies

0 =
∂J(β)

∂β

∣∣∣∣
β=β̂

, (41)

where β̂ is the estimated value. Taking the Taylor-series expansion of the right side around
the true value βo yields

0 ≈ ∂J(β)

∂β

∣∣∣∣
β=βo

+
∂2 J(β)

∂β∂βT

∣∣∣∣
β=βo

(β̂ − βo). (42)

The gradient vector and Hessian matrix evaluated at the true value are

▽J (β) =
∂J(β)

∂β

∣∣∣∣
β=βo

= 2
(

∂αo

∂βoT

)T
Q−1

α (α − αo), (43)

H(β) =
∂2 J(β)

∂β∂βT

∣∣∣∣
β=βo

= 2
(

∂2αo

∂βo∂βoT

)T

Q−1
α (α − αo)− 2

(
∂αo

∂βoT

)T
Q−1

α
∂αo

∂βoT . (44)
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Using (43) and (44) to (42) yields

β̂ − βo ≈ −▽J (β)H(β)−1 (45)

Taking the expectation on both sides, we arrive at the bias

E[β̂ − βo] ≈ −E[▽J (β)]{E[H(β)]}−1 = 0. (46)

And the covariance matrix is

E[(β̂ − βo)(β̂ − βo)T ]

≈ {E[H(β)]}−1 E[▽J (β)▽J (β)T ]{E[H(β)]}−1. (47)

Putting (43) and (44) to the right side of (47) verifies that

E[(β̂ − βo)(β̂ − βo)T ] ≈ CRLB(βo) (48)

holds when the small noise conditions

ni,k/ri,k ≈ 0, ei,k/ri,k ≈ 0, (49)

or ni,k ≈ 0, ei,k ≈ 0, (50)

are satisfied.

4.3. Complexity

This section analyzes the complexity of the proposed methods. The worst-case com-
plexity of solving an SDP, as mentioned in [54], can be expressed as:

√
µ

(
m

Nsoc

∑
i=1

(nsoc
i )2 + m2

Nsd

∑
i=1

(
nsd

i

)2
+ m

Nsd

∑
i=1

(
nsd

i

)3
+ m3

)
× ln(1/ϵ) (51)

where m is the number of variables, Nsoc(resp. Nsd) is the number of second-order cone
(resp. semidefinite cone) constraints, and nsoc

i (resp. nsd
i ) is the dimension of the i th

second-order cone (resp. semidefinite cone),

µ =
Nsd

∑
i=1

nsd
i + 2Nsoc (52)

is the so-called barrier parameter that measures the geometric complexities of the cones
involved, and ϵ > 0 is the solution precision. The proposed SDP algorithm (37) has
(2MK)2/2 + (MK) + 2N + 3 variables, 4.5KM + K2M2/2 semidefinite cone constraints of
size 1 (2MK linear equality constraints in (28) and (31); M2K2/2 + KM/2 linear inequality
constraints in (29) and (33)); and one semidefinite cone constraint of size 2MK + 1 in (34),
one semidefinite cone constraint of size N + 2 in (35), and MK second-order cone constraints
of size N in (36). Since MK is significantly larger than N in practice, the worst-case
complexity is in the order of O((

√
4.5K2M2 + N2)(M6K6)(ln(1/ϵ))).

Regarding the computational complexity of the GN iteration, updating α(g) in (17) re-
quires K(2M + 4N + 5) additions, K(2N + 9) multiplications, and K square root operations.
Computing G(g) needs K(M − 1)(12N + 5) additions and K(M − 1)(15N + 13) multiplica-
tions, putting them into the (17) iteration and obtaining a new β(k+1) requires 16NK2M2 −
32NK2M + 16NK2 − 8NKM + 8NK + 16N2KM − 8KN2 − 4N2 − 8N2K + 2KM − 2K ad-
ditions and 16NK2M2 − 32NK2M + 16N2KM − 16N2K + 4NKM − 4NK multiplications.
The computational load of inverting G(g)TWG(g) is O(N3). As a result, the amount of
computation in each GN iteration is O(NK2M2).
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Following the similar analysis above, the computational loads of the QN and LM meth-
ods are also O(NK2M2) and are dominated by updating the Jacobian and the correction
amount. The QN needs to approximate Hessian by an additional iterative optimization,
e.g., BFGS [55], while the LM method introduces a term with a damping factor that will
be updated in each iteration. They both require more computational load. The processing
times tabulated in Table 5 validate the above analysis.

5. Simulation

Simulations were utilized to examine the performance of the proposed solution. The
proposed SDP initial solution and the optimal GN solution are denoted by “SDP” and
“GN” in the following figures. The TDOA and FDOA measurement noises are assumed
to be independent Gaussian random variables, so their covariance matrices are set to
Q = σ2(IM−1 + 1M−11T

M−1
)
/2 and Q̇ = 0.1Q, where σ2 is the measurement noise level in

m2. The observation interval τ is fixed at 1 s. The number of ensemble runs is T = 200.
The proposed SDP algorithm is implemented using the CVX toolbox with the solver
SeDuMi, where the precision is set to the best. The performance is evaluated by the root
mean-squared error (RMSE), defined asRMSE(û) =

√
1
T ∑T

t=1 ∥uo − û∥2,

RMSE( ˆ̇u) =
√

1
T ∑T

t=1 ∥u̇o − ˆ̇u∥2,
(53)

where û and ˆ̇u are the estimates at the t-th test. The values of η1 and η2 are selected from
{10−2, 10−3, · · · , 10−10} and {1, 10−1, . . . , 10−8} through the strategy elaborated at the end
of Section 3.2.

The proposed method is applicable for both 2D and 3D cases. If the sensors and source
are unmanned ground vehicles (UGVs) that move on a plane, the localization scenario is
2D, while for unmanned aerial vehicles (UAVs) or underwater moving sensors and source
deployed with different depths, the localization scenario is 3D. Thus, separate simulations
were conducted to evaluate the algorithm’s performance in both 2D and 3D scenarios.
Of the large number of papers investigated, only a few studied TMA using TDOA or
FDOA [45,46]. However, they are neither applicable to hybrid measurements nor the same
scenario or problem. Thus, the proposed SDP and GN methods are compared with the
CRB, the optimal theoretical lower bound for evaluating the performance, to validate the
effectiveness and feasibility.

100
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400 400

200

z 
(m

)

380

250

y (m)

300 360
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300

340
200 320

300100

Sensors
Source

Figure 2. Geometric demonstration of 3D scenario (The orange and black arrow represents the
moving direction of the source and the sensor, respectively).

5.1. 3D Scenario

Let us begin by testing the 3D case. As shown in Figure 2, the scenario comprises
3 sensors utilized to locate a moving source, where the noise varies from 10−1 m2 to 103 m2.
The initial positions and velocities of the sensors are listed in Table 3. The source is initially
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observed from u = [285, 325, 275]T m with a velocity of u̇ = [−20, 15, 40]T m/s. The
number of observing times is K = 16. The RMSEs of the SDP and GN methods and the
corresponding CRLB are shown in Figure 3. The GN method achieves a CRLB accuracy if
the noise is not larger than 102 m2. However, when the noise is at 103 m2, the GN method
encounters divergence problems since the estimation results from SDP are too far from the
true values. The RMSE of these estimations using the SDP method fails to attain the CRLB
since the effectiveness of the penalty terms is limited when only three sensors exist. This
limitation hinders the transformed problem from accurately approximating the original
problem and renders the SDP method suboptimal.
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Figure 3. RMSE performance as noise power increases: (a) Position estimate, (b) Velocity estimate.

Table 3. Positions and velocities of the sensors in the 3D scenario.

Sensor No. x(m) y (m) z (m) ẋ (m/s) ẏ (m/s) ż (m/s)

1 300 100 150 30 −20 20

2 400 150 100 −30 10 20

3 300 500 200 10 −20 10

Considering a practical unmanned aerial vehicle (UAV) object, the aim is to localize the
UAV by intercepting its communication and control signal at 2.4 GHz with 10 MHz band-
width. The observation time is 10−4 s, and the SNR is 0 dB. Following the CRLB of TDOA
estimation given by Equation (57) in [56], the theoretical noise power in TDOA is approxi-
mately 0.1 m2. Thus, the noise is reasonably fixed at σ2 = 10−1 m2 in following simulations.

In the second numerical experiment, the RMSE performance is assessed as the number
of observing times K increases over the range [2, 16]. The noise is fixed at σ2 = 10−1 m2,
and other parameters remain consistent with those in Figure 3. As depicted in Figure 4, the
performance of the proposed method improves with larger K. This enhancement stems from
the relative motion between the source and sensors, which increases the effective baseline
length and accumulates more information about the source’s position and velocity. Even
with only two observations of the source, the GN algorithm remains feasible, achieving an
RMSE at the CRLB level. This feasibility arises from the establishment of 8 equations to
solve for 6 unknowns.

Let us further examine the RMSE of the proposed SDP and GN methods as the source
range increases. The initial position of the source is oriented with azimuth and elevation
θ = 48.75 deg and ϕ = 32.46 deg relative to the coordinate origin. The source’s initial
position is calculated as

u = d · [cos θ cos ϕ, sin θ cos ϕ, sin ϕ]T , (54)
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where d represents the distance between the source’s initial position and the origin. Other
settings are the same as above. The results are shown in Figure 5. The performance trends of
the proposed algorithms align with the variations in the CRLB. As expected, the GN method
can closely match the CRLB regardless of whether the source is near or far. Although SDP
fails to reach the CRLB, it closely approximates the GN method in estimating the source’s
position. Moreover, it does not encounter the divergence problem, even when the source
range increases to 7000 m. While the SDP yields an RMSE approximately 5 dB higher than
the CRLB, it still ensures that the GN method converges to the optimal estimate.
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Figure 4. RMSE performance as number of observing times increases for 3D scenario: (a) Position
estimate, (b) Velocity estimate.
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Figure 5. RMSE performance as the source range increases in the 3D scenario: (a) Position estimate,
(b) Velocity estimate.

Figure 6 illustrates the RMSE results as the source velocity increases. The noise power
is set to σ2 = 10−1 m2, with other parameters remaining consistent with those in Figure 3.
For clarity in displaying the performance as the velocity magnitude changes, the source
velocity is defined as

u̇ = vs. · [cos θ̃ cos ϕ̃, sin θ̃ cos ϕ̃, sin ϕ̃]T , (55)

where θ̃ = 143 deg and ϕ̃ = 58 deg represent the direction of the source velocity. The SDP
method consistently provides a reliable initial estimate as the source velocity increases,
thereby ensuring the optimal performance of the GN algorithm in approaching the CRLB.
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Figure 6. RMSE performance as the source velocity increases in the 3D scenario: (a) Position estimate,
(b) Velocity estimate.

5.2. 2D Scenario

The proposed SDP and GN methods are not limited to 3D scenarios; they are also
applicable to 2D cases. In a 2D scenario, the SDP and GN methods require at least 2 sensors,
with the initial positions and velocities listed in Table 4. The geometric scenario is depicted
in Figure 7.

Table 4. Positions and velocities of the sensors in the 2D scenario.

Sensor No. x (m) y (m) ẋ (m/s) ẏ (m/s)

1 400 150 −50 −30

2 150 −100 −20 20

220 240 260 280 300 320 340 360 380

x (m)

-200

-100

0

100

200

300

400

y 
(m

)

Sensors
Source

Figure 7. Geometric demonstration of 2D scenario (The orange and black arrow represents the
moving direction of the source and the sensor, respectively).

Similar to the simulations in the 3D scenario, this section evaluates the performance for
the 2D case as the noise power increases. The initial position and velocity of the source are
set to u = [300, 200]T m and u̇ = [20,−15]T m/s, respectively. As illustrated in Figure 8, the
GN algorithm can achieve CRLB performance when the noise power does not exceed 10 m2,
while it encounters divergence issues when the noise power reaches 103 m2. SDP provides
3 dB worse RMSE compared to the GN method, which is sufficient as an initialization.

The simulation also examines the RMSE of both the SDP and GN methods for the
2D scenario with respect to the number of observation times. As shown in Figure 9, the
GN algorithm achieves CRLB performance as the number of observation times increases.



Appl. Sci. 2024, 14, 3909 16 of 21

The noise power is set to σ2 = 10−1 m2. It requires at least three observations to establish
6 equations, which is overdetermined for solving 4 unknowns.
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Figure 8. RMSE performance as noise power increases for 2D scenario: (a) Position estimate,
(b) Velocity estimate.
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Figure 9. RMSE performance as the number of observing times increases for the 2D scenario:
(a) Position estimate, (b) Velocity estimate.

Figure 10 illustrates the RMSEs of the proposed solutions as the source range increases
in 2D. Here, the arrival angle with respect to the origin is set to θ = 80 deg. Thus, the
source’s initial position is denoted by

u = d · [cos θ, sin θ]T , (56)

where d is the distance between the source’s initial position and the origin. The noise power
is set to σ2 = 10−3 m2, and τ is set to 4 s. SDP is not as effective as in the 3D scenario.
However, fortunately, it provides an initialization for the GN algorithm, which can also
achieve the CRLB when the source is within 2100 m. It slightly deviates from the CRLB
when the source’s initial position is farther away.

Figure 11 depicts the results as the source velocity increases. The noise power is
specified as σ2 = 10−1 m2. The source velocity is expressed as

u̇ = d · [cos θ̃, sin θ̃], (57)

where θ̃ = −36.87 deg denotes the direction of the source’s motion. The GN algorithm
consistently achieves CRLB performance, while the SDP method provides a suboptimal
estimate. However, it is sufficiently close to the true value such that the GN method
can converge.



Appl. Sci. 2024, 14, 3909 17 of 21

0 500 1000 1500 2000 2500 3000

Range (m)

-10

0

10

20

30

40

10
lo

g1
0(

R
M

S
E

 o
f P

os
iti

on
) 

(d
B

m
)

SDP
GN
CRB

(a)

0 500 1000 1500 2000 2500 3000

Range (m)

-10

0

10

20

30

40

10
lo

g1
0(

R
M

S
E

 o
f P

os
iti

on
) 

(d
B

m
)

SDP
GN
CRB

(b)

Figure 10. RMSE performance as the source range increases for the 2D scenario: (a) Position estimate,
(b) Velocity estimate.
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Figure 11. RMSE performance as the source velocity increases for the 2D scenario: (a) Position
estimate, (b) Velocity estimate.

5.3. Geometric Dilution of Precision

The GDOP contour for the 2D scenario is presented to evaluate the theoretical perfor-
mance of the proposed method. The sensor configuration and the velocity of the source are
similar to those depicted in Figure 7. As illustrated in Figure 12, in the 2D scenario, the
localization accuracy remains high when the source is nearby but deteriorates significantly
as the source moves farther away.
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Figure 12. GDOP for 2D scenario (The orange and black arrow represents the moving direction of the
source and the sensor, respectively).
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5.4. Convergence and Complexity Comparisons

Section 1 has clarified that the GN method advances the QN and LM methods since it
balances the performance and efficiency. Considering that the Newton–Raphson method is
designed for a single unknown estimation problem only, the proposed GN method will be
compared with the QN and LM methods that are implemented by the MATLAB built-in
functions fminunc and lsqnonlin. The convergence curves and processing times are shown
in Figure 13 and Table 5.
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Figure 13. Convergence comparison: (a) Position estimate, (b) Velocity estimate.

Table 5. Processing times.

Method GN LM QN

Time (ms) 0.615 3.3 8.926

It is demonstrated in Figure 13 that the GN and LM methods converge to the CRB
after only two iterations on average. Additionally, these two methods exhibit similar
performance since their convergence curves coincide. However, the QN method requires
26 iterations to converge. Table 5 demonstrates that the processing times of the proposed
GN method are significantly lower than those of the LM and QN methods.

6. Conclusions

The paper investigates moving source localization utilizing TDOA and FDOA mea-
surements, particularly addressing scenarios where the number of sensors is limited to the
dimensionality of the problem. It begins by formulating the MLE problem and proposes a
two-stage approach for optimal solution. The first stage involves an SDP formulation via
SDR, yielding a suboptimal solution utilized as an initialization for the GN iteration in the
second stage. Simulations demonstrate that the SDP provides an initial estimate close to the
true value, enabling the GN method to achieve CRLB performance. The proposed MLE is
shown to be effective with a minimum of 3 sensors in 3D and 2 sensors in 2D, requiring at
least 2 and 3 observation times, respectively. The method opens possibilities for simultane-
ous estimation of position and velocity with few sensors, potentially benefiting applications
such as UAV surveillance, vehicle localization, and person tracking. The proposed method
of this paper includes an SDP stage that demands high complexity. One future research
subject is improving efficiency and developing closed-form solutions. The other limitation
is the study assumes the sensor positions and velocities are accurately known, and the
measurements do not contain outliers. How to handle sensor uncertainties and address
outliers in measurements is perhaps a valuable research field. Moreover, the deployment
and movement of sensors have a significant effect on source localization performance,
making it an interesting subject for future research.
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9. Rosić, M.; Sedak, M.; Simić, M.; Pejović, P. An Improved Chaos Driven Hybrid Differential Evolutionand Butterfly Optimization

Algorithm for Passive Target Localization Using TDOA Measurements. Appl. Sci. 2023, 13, 684. [CrossRef]
10. Kang, Y.; Wang, Q.; Wang, J.; Chen, R. A High-Accuracy TOA-Based Localization Method Without Time Synchronization in a

Three-Dimensional Space. IEEE Trans. Ind. Inform. 2019, 15, 173–182. [CrossRef]
11. Gan, Y.; Cong, X.; Sun, Y. Refinement of TOA Localization with Sensor Position Uncertainty in Closed-Form. Sensors 2020, 20, 390.

[CrossRef] [PubMed]
12. Sun, T.; Wang, W. Efficient Multistatic Radar Localization Algorithms for a Uniformly Accelerated Moving Object With Sensor

Parameter Errors. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 7559–7574. [CrossRef]
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44. Pang, F.; Doğançay, K.; Wang, H.; Shen, X. Bias Compensation Method for 3D AOA-TMA with Uncertainty in Sensor Positions.

IEEE Sens. J. 2024, ahead of print. [CrossRef]
45. Alexandri, T.; Walter, M.; Diamant, R. A time difference of arrival based target motion analysis for localization of underwater

vehicles. IEEE Trans. Veh. Technol. 2021, 71, 326–338. [CrossRef]
46. Ahmed, M.M.; Ho, K.C.; Wang, G. 3-D Target Localization and Motion Analysis Based on Doppler Shifted Frequencies. IEEE

Trans. Aerosp. Electron. Syst. 2022, 58, 815–833. [CrossRef]
47. Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming (Version 2.2); CVX Research, Inc.: Austin, TX, USA,

2020. Available online: http://cvxr.com/cvx (accessed on 1 January 2020).
48. Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1993.
49. Vandenberghe, L.; Boyd, S. Semidefinite programming. SIAM Rev. 1996, 38, 49–95. [CrossRef]
50. Yang, K.; Wang, G.; Luo, Z.Q. Efficient convex relaxation methods for robust target localization by a sensor network using time

differences of arrivals. IEEE Trans. Signal Process. 2009, 57, 2775–2784. [CrossRef]
51. Zou, Y.; Wan, Q. Asynchronous Time-of-Arrival-Based Source Localization with Sensor Position Uncertainties. IEEE Commun.

Lett. 2016, 20, 1860–1863. [CrossRef]
52. Ho, K.C. Bias Reduction for an Explicit Solution of Source Localization Using TDOA. IEEE Trans. Signal Process. 2012,

60, 2101–2114. [CrossRef]
53. So, H.C.; Chan, Y.T.; Ho, K.C.; Chen, Y. Simple Formulae for Bias and Mean Square Error Computation [DSP Tips and Tricks].

IEEE Signal Process. Mag. 2013, 30, 162–165. [CrossRef]
54. Wang, G.; Ho, K.C. Convex Relaxation Methods for Unified Near-Field and Far-Field TDOA-Based Localization. IEEE Trans.

Wirel. Commun. 2019, 18, 2346–2360. [CrossRef]

http://dx.doi.org/10.1109/TSP.2017.2703667
http://dx.doi.org/10.1016/j.dsp.2019.102600
http://dx.doi.org/10.1109/TVT.2012.2225074
http://dx.doi.org/10.1109/LCOMM.2016.2614936
http://dx.doi.org/10.1109/ACCESS.2017.2785182
http://dx.doi.org/10.1109/TSP.2016.2630030
http://dx.doi.org/10.1155/2017/3194845
http://dx.doi.org/10.1109/TSIPN.2023.3307899
http://dx.doi.org/10.1109/LCOMM.2018.2876525
http://dx.doi.org/10.1109/TAES.2020.2965668
http://dx.doi.org/10.1109/TSP.2020.2986163
http://dx.doi.org/10.1016/j.sigpro.2023.109049
http://dx.doi.org/10.1109/TVT.2023.3274838
http://dx.doi.org/10.1049/iet-rsn.2018.5144
http://dx.doi.org/10.1109/TSP.2005.861088
http://dx.doi.org/10.1109/TSP.2015.2399869
http://dx.doi.org/10.1109/TSP.2020.2998896
http://dx.doi.org/10.1109/JSEN.2023.3344101
http://dx.doi.org/10.1109/TVT.2021.3120201
http://dx.doi.org/10.1109/TAES.2021.3122737
http://cvxr.com/cvx
http://dx.doi.org/10.1137/1038003
http://dx.doi.org/10.1109/TSP.2009.2016891
http://dx.doi.org/10.1109/LCOMM.2016.2589930
http://dx.doi.org/10.1109/TSP.2012.2187283
http://dx.doi.org/10.1109/MSP.2013.2254600
http://dx.doi.org/10.1109/TWC.2019.2903037


Appl. Sci. 2024, 14, 3909 21 of 21

55. Nocedal, J.; Wright, S. Numerical Optimization; Springer: New York, NY, USA, 2006.
56. Carter, G.C. Coherence and time delay estimation. Proc. IEEE 1987, 75, 236–255. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/PROC.1987.13723

	Introduction
	Localization Scenario
	Localization Method
	Gauss–Newton Iteration
	Initial Solution

	Analysis
	CRLB
	Bias and Covariance
	Complexity

	Simulation
	3D Scenario
	2D Scenario
	Geometric Dilution of Precision
	Convergence and Complexity Comparisons

	Conclusions
	References

