
Citation: Hoenigsberger, F.; Saranti,

A.; Jalali, A.; Stampfer, K.; Holzinger,

A. Explainable Artificial Intelligence

to Support Work Safety in Forestry:

Insights from Two Large Datasets,

Open Challenges, and Future Work.

Appl. Sci. 2024, 14, 3911. https://

doi.org/10.3390/app14093911

Academic Editor: Chilukuri K.

Mohan

Received: 29 February 2024

Revised: 26 April 2024

Accepted: 1 May 2024

Published: 3 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Explainable Artificial Intelligence to Support Work Safety in
Forestry: Insights from Two Large Datasets, Open Challenges,
and Future Work
Ferdinand Hoenigsberger 1,† , Anna Saranti 1,† , Anahid Jalali 1,2 , Karl Stampfer 1

and Andreas Holzinger 1,*

1 Human-Centered AI Lab, Institute of Forest Engineering, Department of Forest and Soil Sciences,
University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
ferdinand.hoenigsberger@boku.ac.at (F.H.); anna.saranti@boku.ac.at (A.S.); anahid.jalali@boku.ac.at (A.J.);
karl.stampfer@boku.ac.at (K.S.)

2 Austrian Institute of Technology, 1210 Vienna, Austria
* Correspondence: andreas.holzinger@boku.ac.at
† These authors contributed equally to this work.

Abstract: Forestry work, which is considered one of the most demanding and dangerous profes-
sions in the world, is claiming more and more lives. In a country as small as Austria, more than
50 forestry workers are killed in accidents every year, and the number is increasing rapidly. This
serves as a catalyst for us to implement more stringent measures for workplace safety in order to
achieve the sustainability objective of SDG 3, which focuses on health and well-being. This study con-
tributes to the analysis of occupational accidents and focuses on two large real-world datasets from
both the Austrian Federal Forests (ÖBf) and the Austrian Workers’ Compensation Board (AUVA).
Decision trees, random forests, and fully connected neural networks are used for the analysis. By
exploring different interpretation methods, this study sheds light on the decision-making processes
ranging from basic association to causal inference and emphasizes the importance of causal inference
in providing actionable insights for accident prevention. This paper contributes to the topic of ex-
plainable AI, specifically in its application to occupational safety in forestry. As a result, it introduces
novel aspects to decision support systems in this application domain.

Keywords: explainable AI; occupational accidents; forestry; work safety

1. Introduction

Forest operations, encompassing various activities related to harvesting, logging, and
managing woodland areas, particularly motor-manual felling, represent a domain fraught
with inherent risks and challenges, causing a lot of yearly deaths [1–3].

This field has become increasingly perilous, especially under the duress of escalating
extreme weather conditions, which compound the inherent dangers of working in such
unpredictable environments. Moreover, the intensifying pressure to meet logging demands
further exacerbates these risks, leading to a worrying trend in the frequency and severity of
forest accidents. These developments necessitate innovative approaches to enhance safety
and operational efficiency. In this context, artificial intelligence (AI) emerges as a promising
avenue for helping to mitigate the risks associated with forest operations. Particularly,
explainable AI (XAI) offers a huge transformative potential in this sector. By its nature, XAI
provides transparent and understandable AI decisions and predictions, which is crucial in
high-stakes environments like forestry operations.

This paper effectively illustrates the effectiveness of integrating various analytical
methods to examine and make sense of a detailed and multifaceted dataset, aiming to
improve occupational safety within the forestry industry with a focus on explainable AI
(XAI). It interlaces classical descriptive statistics, advanced machine learning algorithms,
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and probabilistic models to deliver an exhaustive analysis that reveals the complex pat-
terns of occupational accidents. The research methodically progresses from establishing a
foundation using descriptive statistics to applying machine learning for more profound
insights and utilizing probabilistic models to navigate through data constraints, with each
technique significantly contributing to the comprehensive understanding and forecasting
of accidents. This thorough examination not only pinpoints the primary risk factors but
also proposes practical steps for reducing these hazards, thereby aiding in the enhancement
of safer workplace conditions in the forestry sector. Moreover, the manuscript emphasizes
the importance of cross-disciplinary approaches in exploiting data for occupational safety
and underscores the crucial role of informed, data-driven decision-making in promoting a
more secure and well-informed environment for forestry work.

The research presented in this paper extends the preliminary findings of a conference
paper [4] and explores new insights based on Actionable Explainable AI [5], thereby
exploring novel dimensions and unearthing deeper insights into forest operation safety.

However, it is important to acknowledge that despite the advancements presented in
this paper, numerous open research areas remain unaddressed. The complexity of forest
operations and the multifaceted nature of the risks involved mean that this paper can only
scratch the surface of potential AI applications in this domain. Future research is required
to fully realize the potential of AI, particularly XAI, in enhancing safety and operational
efficiency in forest operations. This paper aims to provide a foundation for such future
explorations, offering insights and directions that could shape subsequent research efforts
in this vital field.

2. Background and Related Work

The meticulous documentation and subsequent analysis of work accidents are crucial
for gaining insights into the factors contributing to occupational hazards and legal compli-
ance. Reports of incidents in hazardous work environments can be analyzed to identify
common hazards, which will help prevent future accidents. While some studies do this,
most focus on causes involving physical risks. Hinze et al. (2021) [6] proposed an alterna-
tive approach and shed light on the causes of accidents in forestry from the perspective of
employee failure and fatigue. It is interesting to note that 70% of incidents are attributed,
at least in part, to worker negligence. Secondly, 78% of the causes attributable to worker
error show signs of fatigue. This suggests that a significant number of forestry accidents
are due to worker fatigue.

A wide array of studies have been dedicated to examining different aspects of accident
records. Tsioras et al. (2014) [7], for example, analyzed timber harvesting accidents in
Austria. This line of research extends to other countries, with notable studies in Poland [8],
Slovakia [9,10], Italy [11], and Brazil [12]. Additionally, cross-national comparative research
has been conducted [13]. Notably, a considerable segment of this research is centered on
understanding accidents involving chainsaw use or motor-manual tree felling [14–16].

The adoption of machine learning (ML) in accident prediction is chiefly attributed
to two key factors: its explanatory capacity, which aids in identifying primary causes of
accidents [17], and its predictive ability, enhancing accident prevention efforts [18]. This
methodology is increasingly used in various high-risk professions to analyze occupational
accidents. For instance, ML has been applied to study serious accidents in the chemical
industry [19] and the steel industry [20]. In the field of electrical engineering, Oyedele et al.
(2021) [21] explored the use of deep learning and boosted tree algorithms to evaluate their
effectiveness in safety risk management. Further examples of ML’s application in accident
prediction can be found in studies such as [22–25].

In the following sections, we introduce two datasets, followed by a series of experi-
ments to uncover the explanatory variables influencing forest accidents. We conclude by
outlining future research directions.
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3. Dataset 1: Austrian Federal Forests
3.1. Description

Data from the 2021 statistics of accidents during forestry work in Austria, as reported
by ÖBf (2021), indicated that out of 1189 recorded accidents, 21 tragically resulted in
fatalities, in only one year! This evidence firmly positions forestry work among the most
hazardous professions across all production sectors.

The first dataset we analyzed as part of this study contained the records of occu-
pational accidents reported by the Austrian Federal Forests from the years 2005 to 2021.
The dataset incorporated information on fatal and non-fatal incidents. In non-fatal cases,
individuals may be unable to work for a specified period or on sick leave, measured in
hours or days. The columns deemed most descriptive, based on domain knowledge and
insights from previous models [7,19] primarily included the time of day (in minutes),
the age of the individual, and the day of the week (with one corresponding to Monday)
when the accident occurred. Additionally, the dataset distinguished between workers and
employees, as severe accidents are more likely among workers. Details on the accident’s
cause, the sector of employment, and the injured body part were also provided, each en-
coded appropriately. While potential causal relationships existed between these variables,
this research focused solely on exploring their linear and non-linear correlations.

The dataset underwent exploration and analysis utilizing Python libraries, primarily
pandas [26,27]. Preprocessing tasks were predominantly carried out with scikit-learn [28],
while visualization was performed using matplotlib [29] and Bokeh [30].

3.2. Preprocessing

Between 1 October 2005 and 21 December 2021, a total of 2481 registered accidents
were recorded. Among these, only nine resulted in fatalities, which was not sufficient
to provide significant insights into the factors influencing these occurrences. However,
classifying between non-fatal and fatal accidents remains crucial and could benefit from
additional data. A dedicated preprocessing phase involved eliminating unfilled entries and
rows with invalid content. In the final analysis, a set of 7 input features was used: “age
at accident”, “worker or employee”, “day of the week”, “time in the day”, “injured body
part”, “accident cause”, and “working sector”. After removing invalid entries (such as
empty strings or out-of-range values like working sector 51, where valid values range from
1 to 35), 1965 rows containing valid data remained.

Before examining predictive modeling, histograms were constructed to visually depict
the distributions of the input features. It is important to note that the domain cardinality
of each input feature significantly influences its relevance. Features, whether continuous
or categorical with numerous categories, tend to provide more descriptive information
compared to those with fewer categories [31,32]. To address this, certain input features like
“injured body part”, “working sector”, and “accident cause” underwent value grouping.
For example, accidents impacting the head and neck area were grouped together.

Prior to employing the features in predictive models, we conducted assessments
to evaluate both linear and non-linear correlations between all pairs of features. Linear
correlations were quantified using the Pearson coefficient [33], while non-linear correlations
were measured using mutual information (MI) [34]. Among these, the highest linear
correlation was observed between the working sector and the cause of the accident (0.26),
followed by the correlation between the working sector and worker or employee (−0.26),
and then between the cause and body part (−0.13). Correspondingly, the MI values for these
pairs were 0.25, 0.19, and 0.06, respectively. It is noteworthy that all other pairs exhibited
MI values below 0.1 [4]. These findings are consistent with both domain knowledge and
previous research. Interestingly, no significant correlations were detected among any pairs,
thereby eliminating the necessity to streamline the model by removing redundant input
features or applying dimensionality reduction techniques before training [33,35,36].
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3.3. Predictive Models
3.3.1. Regression Task

Decision Tree
In the context of non-fatal accidents, the primary predictive objective is to anticipate

the duration of recovery for the injured individual, which varies between workers and
employees. This distinction arises from the distinct nature of the recovery process for each
group, influenced by the nature of their respective tasks. As depicted in Figure 1, the dis-
tributions of recovery duration for workers and employees exhibit noticeable differences,
aligning with expectations due to the higher incidence of severe accidents in manual labor
settings. The used approach involved developing a unified model capable of discerning
both shared patterns and unique characteristics between these two groups. However, it is
important to remain cognizant of the potential need to construct separate, more distinct
models tailored to each group’s specific attributes in future iterations.

Figure 1. Working hours lost for workers (blue-collar workers) and employees (white-collar workers),
reprinted with permission from [4], Springer 2022.

This problem constitutes a regression task [37], and employing a decision tree (DT) [33]
is a straightforward and inherently interpretable approach for such a task. Given that the
numeric or continuous features did not require scaling, attention shifted to non-ordinal
input features such as injured body parts, cause of the accident, and the working sector.
Some features already possessed integer mappings, but in most instances, these mappings
lacked an ordinal relationship, so it was necessary to prevent the predictive model from
assuming such a relationship in its decision-making or generalization. Moreover, as men-
tioned in the preceding Section 3.2, a grouping of conceptually similar values was applied
to these features, consolidating them into single categories. To encode these categories,
one-hot encoding was employed [36], where each category is represented by a vector with
only one entry orthogonal to the other. However, this approach introduces challenges; the
resulting feature values matrix tends to be sparse and large due to the presence of a column
for each category.

The analysis of the decision tree (see Figure 2) revealed that younger employees and
workers were anticipated to require a relatively short recovery period, depending upon
the time of the accident. Additionally, distinctions emerged between accidents occurring
during the start of the week and those happening later in the week.
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Figure 2. The acquired rules of the decision tree, which was trained using 4 features; reprinted with
permission from [4], Springer 2022.

The dataset underwent shuffling and division into two sets: 80% designated as the
training set and 20% for the test set. A grid search was conducted on the training set to
determine the optimal parameters for the decision tree. These parameters were:

• Maximum depth: five
• Maximum number of features to consider: “auto” (suggesting that the best split was

determined by considering all available input features)
• Minimum number of samples required for a split: two

After evaluation on the test set utilizing four features—specifically, the individual’s
age at the time of the accident, the day of the week, the time of day, and the classification
as a worker or an employee—the decision tree showed a Mean Squared Error (MSE) of
151,222.99 and a Relative Root Mean Squared Error (RRMSE) of 1.15 [4]. The significance
of these input features is consistent with previous research findings [7,19], as illustrated
in Figure 3.

Figure 3. The importance of features in the decision tree trained with 4 features; reprinted with
permission from [4], Springer 2022.



Appl. Sci. 2024, 14, 3911 6 of 20

Training with all seven input features indeed affected the performance metrics, re-
sulting in an MSE of 164,610.79 and an RRMSE of 1.83. Additionally, the learned rules of
the decision tree became more detailed, leading to a change in the order of importance
of features.

Random Forest
The random forest was trained following a similar approach to the decision tree

regarding preprocessing, dataset splitting, and grid search for the best parameters. With
200 estimators, the model achieved acceptable prediction performance. For the four features,
the MSE was found to be 121,154.73, with an RRMSE of 1.84. Similarly, for all seven features,
the MSE decreased to 114,203.96, with a corresponding RRMSE of 1.71 [4]. The feature
importance values derived from random forests are typically more robust than those from
individual decision trees [33]. However, unlike decision trees, random forests do not
provide explicit rules for interpretation. Despite this lack of interpretability, random forests
generally outperform individual decision trees regarding predictive performance.

Fully Connected Neural Network
A fully connected neural network [37] was implemented to address the regression

problem. Utilizing four layers with 50 neurons each, the neural network achieved an MSE
of 93,215.32 and an RRMSE of 35.39 with the four basic features. When all seven features
were used, the MSE increased to 155,141.41, with a corresponding RRMSE of 37.97 [4].
The optimizer employed was “RMSprop,” and the activation function utilized was the
Rectified Linear Unit (ReLU). Figure 4 depicts the prediction results for the four features.

Figure 4. The outcomes of the neural network model on the test set, utilizing 4 input features;
reprinted with permission from [4]. Springer 2022.

One method for computing the importance of features is through the SHAP (Shapley
values) explainable AI method [38–40]. Figure 5 illustrates the feature importance values
obtained using SHAP values for four features (and refer to Table 1).
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Figure 5. The importance of features in the neural network trained with 4 features; reprinted with
permission from [4]. Springer 2022.

Table 1. Comparing the performance of different models with 4 (a) and 7 (b) features; reprinted with
permission from [4], Springer 2022.

Decision Tree Random Forest Neural Network

MSE (a) 151,222.99 121,154.73 93,215.32
RRMSE (a) 1.15 1.84 35.39
MSE (b) 164,610.79 114,203.96 155,141.41
RRMSE (b) 1.83 1.71 37.97

3.3.2. Classification

Dealing with the challenge of classifying fatal and non-fatal cases was complex due to
a significant class imbalance, where only nine fatal cases were present among 1965 data
samples. This imbalance often leads to classifiers achieving a high accuracy but yielding
very low, almost negligible mutual information (MI), as discussed in [34]. Therefore,
for classification purposes, metrics such as the confusion matrix and mutual information
(MI) [33] were utilized. To address the imbalance issue, oversampling was performed on the
minority class. Leveraging the Synthetic Minority Oversampling Technique (SMOTE) [41]
with the assistance of the imbalanced-learn Python package [42] facilitated the creation
of a balanced dataset. Employing four as the number of neighbors to generate synthetic
samples yielded the most promising performance outcomes.

Decision Tree
Following a method similar to that outlined in the regression section (refer to

Section 3.3.1), the decision tree parameters were determined through a grid search. For the
balanced dataset after oversampling, using four features, we observed a mutual information
(MI) of 0.60, achieving an accuracy rate of 0.98. The confusion matrix showed the following
values: true negatives: 463, true positives: 470, false positives: 17, and false negatives:
2 [4]. Notably, the feature “worker or employee” emerged as the most significant in terms
of importance despite being binary. This suggested its substantial discriminatory power,
even compared to other categorical or continuous features. It is worth mentioning that
among the raw data, five out of nine fatal accidents occurred among employees. Textual
representations of the decision tree’s rules, similar to those derived for the regression task
in Section 3.3.1, can be presented.

Transitioning to the dataset featuring seven input features, the mutual information
(MI) increased to 0.67, accompanied by an accuracy rate of 0.99. Figure 6 visually depicts
the feature importance values.

Random Forest
For the random forest model with 100 estimators and four input features, the mutual

information (MI) was 0.63, with an accuracy of 0.98. With seven input features, the MI
increased to 0.69, and the accuracy reached 1.0 [4]. Moreover, the confusion matrix showed
no false positives or negatives, indicating a “perfect” classification outcome. However,
it is essential to approach these results with caution as they may suggest overfitting,
necessitating further examination.
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Figure 6. The feature importances in the trained decision tree; on the x axis the feature importance,
on the y axis the features; reprinted with permission from [4], Springer 2022.

Fully Connected Neural Network
In the classification task (refer also to Table 2), the neural network architecture matched

the one utilized for the regression, with a notable alteration: the use of a sigmoid non-
linearity in the output layer. When considering the dataset with four features, the mutual
information (MI) was measured at 0.64, alongside an accuracy rate of 0.98. Upon expanding
to seven features, the MI improved to 0.67, while the accuracy further improved to 0.99 [4].

Table 2. Comparison of the classification models with 4 (a) and 7 (b) features [4].

Decision Tree Random Forest Neural Network

Accuracy (a) 0.98 0.98 0.98
Mutual information (a) 0.60 0.63 0.64
Accuracy (b) 0.99 1.0 0.99
Mutual information (b) 0.67 0.69 0.67

3.4. Summary and Next Step

The study on dataset 1 investigated occupational accidents within the Austrian Fed-
eral Forest, which oversees approximately 10% of the Austrian state area [43]. Decision
trees, random forests, and fully connected neural networks were utilized to predict the
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length of absence resulting from accidents and to categorize incidents as fatal or non-fatal.
The decision tree analysis revealed that younger employees and workers typically expe-
rienced shorter recovery periods, contingent upon the time of the accident. Furthermore,
distinctions were evident between accidents occurring during the initial days of the week
and those occurring later in the week.

The findings underscored the significance of age, particularly concerning the pre-
diction of recovery duration for injured individuals. These results align with prior stud-
ies [9,44], emphasizing the importance of paying attention to the health and safety of elderly
workers and employees, particularly in light of demographic shifts. Furthermore, our anal-
ysis confirmed the anticipated disparity between workers and employees, indicating that
manual labor was associated with a higher frequency of severe accidents. Moreover, time
emerged as a crucial factor in our models, with peaks in occupational accidents observed
between 10 and 12 a.m., and a smaller peak occurring between 2 and 4 p.m. This finding
echoes previous research attributing variations in accident probabilities throughout the day
to factors such as fatigue and dehydration [7,12].

In the subsequent phase of this study, expanding the database holds the potential
to enhance and extend the methodology. This expansion could involve the inclusion of
additional factors such as company size, level of training, or professional backgrounds
of individuals involved. Additionally, conducting comparative analyses between this
dataset and data from other institutions across Europe could unveil hidden patterns or
correlations. A long-term objective of this research is to develop a causal model [45–47].
It is evident that categorical variables exhibited relationships with each other; a notable
example was the “body part” feature, where certain values encompassed accidents affecting
multiple body parts, while others focused on single parts (particularly before grouping).
Investigating the existence, structure, and parameters of relationships among variables
such as the working sector, cause of the accident, and affected body parts will be the focus
of future investigations, necessitating higher data quality requirements.

4. Dataset 2 Austrian Workers’ Compensation Board (AUVA)
4.1. Descriptive Statistics for the Austrian Forestry Accident Statistics (AUVA)

Before diving into the creation of ML models, some first data explorations were
performed after a data preprocessing stage. Since not all accidents deal with forest workers,
it is important to separate them and see where they differ in their characteristics, particularly
in the severity of the diagnosis. The five more common items involved in accidents
among forest workers involve mostly branches and tree trunks, slippery floors, and stony,
rocky areas.

The dataset comprises 14,611 observations, each providing unique individual infor-
mation regarding accidents, including the date and time of the incident, age, and sick
leave duration. “AgeId” in this dataset represents an encoded feature, where observations
between ages x0 to x9 are encoded as AgeID x5, where x belongs to the set [1, 2, 3, 4, 5, 6, 7].
For instance, observations between 20 and 29 are encoded as age 25, indicating that they
are in their twenties. Similar encoding principles apply to other age groups. With this
encoding, the dataset presents an average age of 45, with the 25th and 75th quartiles at 35
and 55 years old, respectively, and a median age of 45. The average sick leave duration is
14 days, with 75% of the data showing 11 days or fewer and a maximum leave of 539 days.

Some highlights from the dataset can be extracted by inspecting each factor individu-
ally. Looking at which day of the week most of the accidents occurred, it was visible that
Tuesday (2569) had the maximum number and Sunday the least (210).

The time when most accidents happened was analyzed in previous studies [7,12] and
the results are depicted in Figure 7. Most accidents occurred between 10:00 and 11:00,
with another local maximum around 15:00–16:00.

The relationship between the month of the accident and their number was also quite
reasonable; January saw the most accidents, with 1618, and June, the least, with 875,
as depicted in Figure 8.
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Figure 7. Histogram of the times when accidents occurred.

Figure 8. Histogram of the months when accidents occurred.

Figure 9 depicts the distribution of sick leave days among various age groups. The sam-
ples were categorized as follows: (1) under twenty, (2) individuals in their twenties,
(3) individuals in their thirties, (4) individuals in their forties, (5) individuals in their
fifties, (6) individuals in their sixties, and (7) individuals in their seventies. A notable
observation is that the longest sick leave duration values were associated with the fifties
age group.

Upon further investigation into the relationship between age ID and sick leave du-
ration, it became apparent that most accidents were observed among individuals in their
fifties. This analysis is visualized in Figure 10. However, instances of severe injuries re-
quiring a three-month recovery period (90 days of sick leave) were comparable among
individuals aged twenty to the end of their fifties. Similarly, shorter sick leaves (less
than three days) exhibited similar patterns across these age groups. Notably, age IDs 53,
45, and 55 each featured four sick leave cases lasting longer than a year, while age ID
25 recorded only three such cases.
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Figure 9. Visualization of the distribution of sick leave days across age groups.

Figure 10. Visualization of the frequency of work accidents categorized by sick leave days across
different age groups.

To further examine the correlation among these features, we assumed linearity between
each two features and measured the correlations using the Pearson method. This revealed
no significant interaction between the features, except for a slight positive correlation be-
tween the recorded accident month and sick leave days (in German: “Krankenstandstage”)
and a slight negative correlation between the duration of sick leave and age ID. We further
calculated the Spearman correlation coefficients with the assumption of monotonic relation-
ships. Similar to the Pearson correlations, we did not observe any significant relationship
between the features (see Figure 11). It is important to note that observations with no sick
leave days were excluded from this correlation analysis.
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Figure 11. Illustration of the Spearman correlation results for the selected features.

We further calculated the mutual information (MI) between all the discrete features
and the continuous target variable sick leave days. Figure 12 depicts the feature and
estimated MI values for sick leave days vs. each input variable. MI is a non-negative value
that quantifies the dependency between two random variables. It equals zero only when
the variables are independent, while higher values indicate a stronger dependency between
them. We observed that the sick leave days were highly dependent on the weekdays.

Figure 12. Illustration of the estimated mutual information for the selected features.

4.2. Machine Learning (ML) Models

Machine Learning (ML) models such as decision trees (DTs), random forests (RFs),
and neural networks (NNs) can be used to make predictions about the fatality of the
accident (classification) and the number of days a patient spends being hospitalized. Those
predictions are based on the learning of a non-linear relationship between the factors that
are gathered to describe the phenomenon and the variable that is being predicted. If the
prediction reaches a sufficiently large performance value, then the internal decision-making
process of such models can provide some insights into the data that the models were trained
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upon and can uncover associations between multiple influencing factors that act at the
same time and not evaluate the effect of each of the factors alone (as seen in Section 4.1).

The prediction of the number of sick leave days can be turned into a classification task
when a threshold >0 days denotes an accident resulting in downtime, and anything equal
to 0 hospitalization days is not considered so effective. Human domain knowledge was
incorporated to choose the first six factors that were believed to be decisive for predicting the
severity of accidents: time of accident, month, age, weekday, type of injury, and reason for
injury. Although ML algorithms perform amazingly well today, human domain knowledge
can sometimes be very important for certain tasks, and the involvement of a human expert
can bring advantages [48]. Month and time had to be cyclically encoded with the use of
sine and cosine functions since conditions in December were considered to be similar to
the ones in January; similarly, 00:00 midnight should be encoded as 01:00. Furthermore,
the type of injury and reason for injury contained textual information, which in this first
stage was encoded with the simple word2vec algorithm [49]. The resulting continuous
three-dimensional embeddings had prevalence over the other input features regarding
decision-making importance because of the inductive bias, which is an inherent property
of several ML solutions, including decision trees (DTs) [50]. The data were augmented with
a Variational Autoencoder (VAE) [51] before they were used for training. The resulting
augmented dataset was imbalanced (52,007 for 0 and 12,286 for >0 sick leave days), correctly
reflecting the class imbalance in the original dataset; therefore, the Adaptive Synthetic
Sampling approach (ADASYN) [52] was used for minority class sampling.

The performance of a decision tree (DT) trained on the aforementioned factors and
hyperparameter search is depicted in Figure 13. The number of true negatives (TN) was
10,722, that of true positives (TP) was 10,301, that of false positives (FP) was 801, and that
of false negatives (FN) was 945 [33]. The classification had an overall balanced accuracy
score of 0.923, and the mutual information (MI) was 0.422 [34].

Figure 13. Confusion matrix of the decision tree.

The rules by which the DT decided whether a particular accident case should be
predicted as having 0 or >0 hospitalization days are depicted in the Figure 14. For better
readability, only the two first levels of the DT are presented. It is observable that the type of
injury was selected as the most relevant feature for the classification, which is questionable
with respect to expert domain knowledge. This phenomenon can be explained through the
aforementioned inductive bias [50], and together with the fact that the decision tree contains
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the necessary encoding of the input features in its rules, the DT is overall a suboptimal
solution for modeling forest accidents.

Figure 14. Decision tree rules (first 2 levels).

4.3. Probabilistic Graphical Models (PGMs)

Probabilistic Graphical Models (PGMs) represent human beliefs about causal de-
pendencies and their strength between a set of random variables (RVs) that describe a
phenomenon [46]. A PGM’s modeled causal dependencies are depicted as edges in a
Directed Acyclic Graph (DAG) where the nodes are visible or hidden RVs; together with
the numerical description of each RV, the PGM represents the joint distribution over all RVs.
This model does not learn associations between the input factors and the predicted variable
(although it makes predictions) but goes beyond that and learns causal dependencies both
from the human domain expertise and the available data. Furthermore, it can be used for
answering probabilistic queries in cases where evidential information is present and as a
generative model as well.

Figure 15 depicts a PGM trained on the AUVA dataset containing only two of the
twenty-six possible features. The age RV has six possible outcomes: “under 20”,
“20s–30s”, “30s–40s”, “40s–50s”, “50s–60s”, “over 60”. The season RV is deduced from
monthly information, and the inactivity due to sick leave has two possible outcomes: “mi-
nor” (meaning ≤3 sick leave days because of the accident) and “severe” (>3 sick leave
days). The graphical structure of the PGM expresses the prior beliefs of the human domain
experts about the causal relationships and dependencies between the RVs. It was assumed
that season and age were independent of each other and that the inactivity of the forest
worker due to hospitalization was directly caused by those two.

The training was done with Maximum Likelihood Estimation (MLE) [46], meaning that
the parameters of the local distributions in Figure 15 were influenced only by the available
data and not from prior knowledge of the human domain expert (a soft and uniform prior).
After training was accomplished, the model could be used to provide readable explanations
directly from the CPTs. For example, the highlighted row in Figure 15 is the answer to an
informative statement:

If the worker is young (under 20) and the season is winter, then the probability of a
severe accident, and thereby more than 3 sick leave days, is 35.8%. The evaluation of long
hospitalization times for older people (over 60) can be computed through a marginalization
over the season variable; it was 37.9%.
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Figure 15. Naive Bayes model with two parent RVs (age and season) and one predicted RV (inactivity
due to hospitalization days). Each row of each Conditional Probability Table (CPT) – also called
Conditional Probability Distribution (CPD) – contains the probabilities (posterior) for each of the
outcomes conditioned on one of the combinations of the values of the parent RVs. RVs that have no
parents do not need conditioning.

5. Discussion

This work elucidated the efficacy of integrating diverse analytical approaches to
harness the potential of a comprehensive dataset enriched with an array of recorded
factors, aiming to bolster occupational safety within the forestry sector. It delineated a
methodological triad comprising classical descriptive statistics, traditional machine learning
techniques, and advanced probabilistic models, each contributing uniquely to the analysis
and interpretation of the data.

In the initial phase of the descriptive statistical examination, patterns emerged that
aligned with findings from previous research [7,12], highlighting two peaks in the frequency
of work-related accidents within the daily work schedule: notably between 10:00 and 11:00
and between 15:00 and 16:00. Additionally, the analysis revealed that forestry workers
predominantly encountered accidents involving interactions with branches, tree trunks,
encounters with slippery soil surfaces, and navigating through areas laden with stones
and rocks and gravel. A discernible seasonal trend in the incidence of accidents was also
observed, with a higher occurrence rate during the winter months spanning November to
March, albeit with a notable dip in December, attributed to the holiday season’s reduction
in work activities.

Within the scope of this study, probabilistic modeling techniques were utilized to
validate or refute expert opinions on the causality of accidents. The applied explanatory
model, for instance, revealed that the likelihood of a young forestry worker (under 20 years
of age) experiencing a severe occupational accident (entailing more than 3 days of sick
leave) during the winter season was estimated to be 35.8%.

Machine learning methodologies were applied to enhance the interpretability of the
dataset. Specifically, a decision tree model was employed, integrating six variables from
the dataset—including the time of the accident, month, age of the worker, day of the week,
nature of the injury, and cause of the injury—to ascertain the likelihood of an accident
leading to downtime. This model attained a commendable balanced accuracy score of
0.923, accompanied by a mutual information (MI) score of 0.422.

This paper effectively illustrates that multiple methodologies can be deployed to distill
insights from a dataset, offering valuable perspectives on practical queries. The choice
of the approach is contingent upon the nature of the question at hand, with different
techniques potentially offering the most significant insights.
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6. Conclusions and Future Work

In conclusion, this manuscript effectively demonstrated the power of combining di-
verse analytical methodologies to analyze and interpret a rich and complex dataset for
enhancing occupational safety in the forestry sector. By weaving together classical descrip-
tive statistics, machine learning techniques, and probabilistic models, the study provided
a comprehensive analysis that unveiled the intricate dynamics of work-related accidents.
From laying the groundwork with descriptive statistics to harnessing machine learning
for deeper insights and employing probabilistic models to overcome data limitations, each
approach played a crucial role in understanding and predicting accident occurrences. This
holistic analysis not only identified key risk factors but also offered actionable recommen-
dations for mitigating these risks, thereby contributing to the advancement of safer work
environments in forestry. The paper underscored the significance of interdisciplinary strate-
gies in leveraging data for occupational safety, highlighting the essential role of data-driven
decision-making in fostering a safer and more informed forestry work setting.

With modern AI models, it is possible to shed light on possible causal relationships of
forest accidents, which can lead to faster prevention and avoidance. The gradual takeover
of these tasks by AI agents, and later possibly by robots, could also help; however, of course,
accidents with and by robots cannot be ruled out. In any case, and this is very important,
all the information collected from human accidents can be encoded in the prior, which can
then be used to predict robot accidents in the forest. Hopefully, this work will contribute to
an enhanced comprehension of the underlying causes of accidents in the perilous realm of
forestry work, thereby aiding in the prevention of fatalities in the future.

A key area of future work includes the exploration of causal machine learning. Causal
machine learning enables AI models to generate precise predictions by considering causal
relationships rather than solely relying on correlations [53]. Causal approaches enhance
the robustness, explainability, and fairness of models [54]. This must go hand in hand
with the development of a comprehensive knowledge graph, which holds significant
potential for advancing our understanding of the causal relationships underlying forest
accidents. The incorporation of the human-in-the-loop approach [55] promises to enhance
the relevance and applicability of AI solutions in this context. In future research, we
aim to integrate counterfactual explanations [56] for analyzing forestry accidents. Such
counterfactual explanations, describing alternative scenarios that could have prevented
an accident, offer a powerful tool for understanding the complex dynamics of forestry
work environments. By providing insights into “what-if” scenarios, such as how altering
certain conditions might have averted an accident, this approach can enhance predictive
models and lead to more effective preventative strategies of high practical use in accident
prevention. Ultimately, these explanations will not only deepen the current understanding
of accident causation but also assist in developing targeted interventions for improving
safety measures.

Another relevant future work is on time- and energy-efficient modeling with Prior-
Data Fitted Networks (PFNs). New ML architectures like Transformers [57,58] have proven
their success not only in language but also in tabular data processing tasks [59]. Being
able to solve all aforementioned classification and regression tasks just in milliseconds
after a one-time (pre-)training procedure provides enormous benefits as far as energy
consumption and near-real-time processing are concerned. Furthermore, the (pre-)training
procedure can incorporate human expert domain knowledge in the form of a Bayesian
Neural Network (BNN) [60,61] and/or a Structural Causal Model (SCM) [62,63], thereby
being an excellent practical example of the human-in-the-loop principle [64] due to the fact
that humans are able to bring in conceptual understanding and contextual knowledge [65].
Nevertheless, the explainability aspect has to be addressed and fulfill the expectations of
forest operation experts to the same–if not a greater degree–as the PGMs mentioned in
Section 4.3.
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A very important future work would be the integration of knowledge graphs. Ba-
sically, knowledge graphs (KGs) [66] can encapsulate vast quantities of structured and
unstructured data related to forestry operations, including geographical, environmental,
and operational parameters. Researchers can enrich the analytical process by integrating
these graphs with existing AI models such as TabPFN. This integration would allow one to
leverage relational information and contextual knowledge, enhancing the accuracy and
relevance of predictive models. Combined with AI, knowledge graphs could identify pre-
viously unnoticed patterns and relationships in the data, leading to a more comprehensive
understanding of the factors contributing to accidents. The work of Shi et al. (2024) [67]
recently used ontologies for analyzing accidents in the construction industry where they
used a domain word discovery algorithm to build a construction safety ontology and
combined this ontology with a Text Convolutional Neural Network (TextCNN). Ontologies
and knowledge graphs, while both crucial in the organization and representation of knowl-
edge, have distinct differences and applications. An ontology is a formal and structured
representation of concepts and their relationships within a domain, primarily focused on
establishing a common understanding that can be shared among people and computational
entities. Knowledge graphs, conversely, are expansive networks of interconnected entities
and their attributes, often encompassing a variety of data sources, including both structured
and unstructured data. They are less rigid in structure compared to ontologies and excel
in scalability, flexibility, and integration with AI and machine learning technologies. This
makes knowledge graphs particularly effective for handling large, complex datasets and for
applications that require sophisticated data analytics and real-time information processing,
surpassing the capabilities of traditional ontologies in practical, dynamic environments [66].

Another possible future work is the synergy of counterfactual explanations and knowl-
edge graphs. This combination could provide a multi-faceted view of accident scenarios,
encompassing both the specific details of individual cases and the broader operational con-
text. Employing knowledge graphs to inform and generate counterfactual scenarios could
result in more realistic and applicable safety recommendations. This integrated approach
would be particularly beneficial in tailoring safety protocols to the unique conditions of
specific forestry operations, thereby enhancing the overall effectiveness of occupational
safety strategies.
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Abbreviations

ADASYN Adaptive Synthetic Sampling approach
AI Artificial intelligence
AUVA Allgemeine Unfallversicherungsanstalt
BNN Bayesian Neural Network
CPD Conditional Probability Distribution
CPT Conditional Probability Table
DAG Directed Acyclic Graph
DT Decision Tree
FCNN Fully connected neural networks
FN False negative
FP False positive
KG Knowledge graph
LRP Layer-wise Relevance Propagation
ML Machine learning
ÖBf Österreichische Bundesforste AG
PFN Prior-Data Fitted Networks
PGM Probabilistic Graphical Model
RF Random forest
RV Random variable
SCM Structural Causal Model
TN True negative
TP True positive
TabPFN Tabular Prior-Data Fitted Network
VAE Variational Autoencoder
xAI Explainable AI
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