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Abstract: Methanogenesis plays a crucial role in the digestive process of ruminant animals. During
this process, methanogenic archaea produce methane as a byproduct of their metabolism. However,
the production of methane by ruminants is also a significant contributor to greenhouse gas emissions.
Methane is a potent greenhouse gas that has a 28-fold greater global warming potential than carbon
dioxide. Around 15% of all anthropogenic greenhouse gas emissions are generated by livestock.
Therefore, reducing methane emissions from ruminant livestock is an important goal for reducing
the environmental impact of agriculture. There is a variety of strategies that can be used to reduce
methane emissions, including dietary modifications, genetic selection, microbiome manipulation,
and feed additives, such as plant secondary metabolites, methane inhibitors, lipids, essential oils, and
algae. The main and important objective of this paper is to critically discuss the current strategies
proposed to reduce methane emissions from livestock. Though many strategies, such as chemical
intervention, have remarkably reduced methane emissions from ruminants, their usage remains
unappealing because of health and safety concerns as well as consumer decisions. Hence, genetic
animal selection and biological feed additives, such as probiotics and secondary plant metabolites,
have emerged as promising techniques for mitigating enteric methane emissions. These strategies are
highly promising, but more intensive research is needed to validate these approaches and assess their
effectiveness in reducing methane production by ruminants.
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1. Introduction

In recent years, there has been a growing interest in the greenhouse effect, which is
linked to rising global temperatures. Carbon dioxide (CO2), methane (CH4), and nitrous
oxide (N2O) are the three most significant greenhouse gases (GHGs). They absorb solar
heat and warm the atmosphere by absorbing energy and slowing the rate at which it
escapes to space. This increase has serious consequences for humans, animals, and the
environment [1,2].

Methane is the second most significant GHG after CO2 and absorbs more energy than
CO2 [3]. Furthermore, CH4 has a 28-fold greater global warming potential (GWP) than CO2
over a 100-year period. It also accounts for some indirect effects, as a precursor to ozone,
another GHG compound [4]. Rising atmospheric CH4 concentrations are linked to rising
human populations, feed production, and anthropogenic sources account for two-thirds of
the CH4 production [3,4].

The enteric fermentation process, paddy rice production, and animal waste are sig-
nificant sources of CH4, contributing about 40% of agriculture’s CH4 emissions [4–6].
Domesticated animals, such as cattle, sheep, and goats, naturally produce CH4 during their
physiological digestive processes. Cattle and dairy cows were the biggest contributors to
CH4 emissions in 2020, accounting for 72% of total sector emissions [7,8]. Buffalos and small
ruminants demonstrated only 8.7% and 6.7% of CH4 emissions, respectively [9]. Methane
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has a shorter lifetime in the atmosphere with a half-life of 8.6 years compared to CO2 [10].
This characteristic makes it a desirable target for mitigating global warming in the short
term, as reducing its emissions can lead to immediate benefits. Therefore, researchers and
breeders all over the world have been focusing on both increasing animal production and
decreasing CH4 emissions from animals, particularly ruminants. In developed countries, it
is recommended to cull nonproductive and low-producing animals to reduce CH4 output.
This is impractical and difficult in developing countries due to their economic, cultural,
and religious backgrounds [5]. Moreover, producers of ruminants must find cost-effective
and efficient ways to lower CH4 emissions while still meeting consumer demand for food
and health as well as environmental demands.

According to a recent report by the United Nations Environment Programme (UNEP),
global methane emissions increased by 9% from 2000 to 2017 [11]. This trend is expected to
continue, especially in countries with developing economies. However, the reduction in
emission intensity resulting from production efficiency improvements is small (less than
1% per year) and may not be enough to counterbalance the increasing emissions due to the
growing demand for animal protein [12]. Therefore, a global effort is necessary to reduce
ruminant emissions.

During anaerobic fermentation, CH4 is produced in the rumen and hindgut. Many
anaerobic and facultative anaerobic bacteria live in the rumen, forming a large and diverse
microbial population. The most dominant bacteria in the rumen are Prevotella, Butyrivibrio,
and Ruminococcus, as well as unclassified Lachnospiraceae, Ruminococcaceae, Clostridiales, and
Bacteroidales [13,14]. However, the bacterial community structure can be affected by changes
in the host’s diet. When animals are fed high-forage diets, the rumen bacterial composition
is primarily Gram-negative; in animals fed high-grain diets, more Gram-positive bacteria,
such as Lactobacillus, are present [15]. The rumen is also colonised by a diverse population
of anaerobic fungi, protozoa, and flagellates, which degrade many polymeric components
of the feed into small molecules, such as amino acids and simple sugars [16]. Bacteria and
protozoa make up 80% of the microbial mass inside the rumen, which produces a CH4 [2].
Aside from CH4, NH3, CO2, and H2 are produced during fermentation and removed
from the rumen by eructation, resulting in a loss of 2–12% of the host’s metabolic energy
intake [17].

Methanogens are a group of microorganisms that live in a variety of habitats; they have
a wide range of morphology and physiological parameters and produce CH4 as a metabolic
byproduct. They belong to the domain Archaea, with minor amounts originating from
cyanobacteria and marine microorganisms [18], and are classified into three clades found
in the digestive tracts of ruminants based on the substrate used: CH4 derivatives (methy-
lotrophic); H2/CO2 (hydrogenotrophic); and acetate (acetoclastic) [19]. Many methanogens
are also highly adaptable and can generate CH4 from a variety of substrates.

In an anaerobic environment, all of the major methanogens in the rumen use H2/CO2,
with CO2 acting as the primary H2 sink [20,21]. However, nitrate (NO3

−) and sulphate
(SO4

2−) can also act as H2 sinks in addition to CO2 [22]. Despite the low concentration of
NO3

−/SO4
2− in the rumen, making it more thermodynamically favourable, the rate of

electron flow towards the SO4
2−/NO3

− reduction pathway diverts most of the H2 towards
the CH4 formation [23]. The most effective way to remove H2 from the rumen and keep
the fermentation process going is methanogenesis. Rumen methanogens are, therefore, a
crucial target for CH4 mitigation techniques.

To reduce CH4 emissions in ruminants, various farming practices, dietary modifi-
cations, feed additives, chemical methanogenesis modulators, probiotics, immunisation
against the rumen microbiome, selective breeding, and genetic approaches are currently
being used. The direct and indirect inhibition of methanogens by feed additives plays a
significant role in these strategies [24–26].

There were almost 9000 papers on rumen methanogenesis published in the literature
between 1960 and 2018 [12]. Our goal is to critically analyse the current knowledge
and prospects for CH4 mitigation, not to cite the results of individual papers reviewed
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many times. We are particularly interested in approaches, open questions, and issues that
affect researchers, farmers, and the ruminant livestock industries. It is also important to
evaluate CH4 mitigation strategies in terms of total GHG and to consider the rationality
and possibility of various strategies according to ever-increasing total CH4 emissions. A
more basic understanding of the potential strategies, their flaws, and their application
would enable us to exploit their potential to decrease CH4 emissions without negative
effects on animal and human health, as well as livestock production efficiency.

2. Methanogenesis

Methanogenic archaea are anaerobic microorganisms that produce CH4 for ATP syn-
thesis. There are approximately 155 species that have been identified in nature, divided
into 29 genera, 14 families, 6 orders, and 4 classes [27]. Most exist freely in rumen liquid
or biofilms adhering to feed particles [28,29], while a small portion is symbionts with
protozoa [30]. Methanobrevibacter (Mbb) is the most common rumen methanogen, account-
ing for 63.2% of all isolates, followed by Methanosphaera (9.8%) and Methanomicrobium
(7.7%) [31–34], while the rest belong to the minority genera, such as Methanimicrococcus,
Methanosarcina and Methanobacterium [35].

According to previous research, hydrogenotrophic methanogens dominate in terms
of CH4 emissions and community composition [14,36]. Because of their limited substrate
range, rumen archaea appear to be much less diverse than rumen bacteria. Henderson
et al. [14] discovered that Mbb gottschalkii and Mbb ruminantium account for 74% of the
rumen methanogen community in samples from a variety of animals, locations, diets, and
environmental conditions. To date, only 13 species of ruminal methanogens have been iso-
lated into pure cultures: Mbb formicicum; Mbb bryantii; Mbb ruminantium; Mbb millerae; Mbb
olleyae; Mbb boviskoreani; Methanomicrobium mobile; Methanoculleus olentangyi; Methanosarcina
barkeri; Methanobacterium beijingense; Methanoculleus marisnigri; Methanoculleus bourgensis;
and Methanosarcina mazei [32,34,37–39].

Fermentation processes generate the H2 molecule, which serves as the primary sub-
strate for ruminal methanogenesis. Methanobrevibacter and Methanomicrobium grow in
anaerobic conditions at optimal temperatures of 39 to 40 ◦C, using H2 to reduce CO2
to CH4 via the Wolfe cycle of methanogenesis, according to the stoichiometric equations:
4H2 + CO2 → CH4 + 2H2O and HCO3− + 4H2 → H+ CH4 + 3H2O [40,41]. Thus, they
maintain a low H2 partial pressure and limit the hydrogenotrophic acetogenesis [41–43].
This pathway is most important and is responsible for about 82% of all CH4 production
in the rumen [44]. These methanogens can also use formate as an electron donor [45].
During formatotrophic methanogenesis, four formate molecules are oxidised by formate
dehydrogenase to form CO2 according to the stoichiometric equation 4HCOOH→ 3CO2 +
CH4 + 2H2O [43].

Methanogens, such as Methanosarcinales and Methanobacteriales, oxidise methyl groups,
such as methylamines and methanol, into CO2 to obtain electrons used to reduce methyl
groups to CH4. This is described by the stoichiometric reaction shown below. 4CH3OH→
3CH4 + CO2 + 2H2O; CH3NH2 + H2→ CH4 + NH3; CH3OH + H2→ CH4 + H2O [32,44,46].
Furthermore, Methanosarcina and Methanosaeta use acetate as the substrate during acetoclas-
tic methanogenesis, [47,48]. Acetate splits to form carboxyl compounds which are oxidised
to CO2. The stoichiometric equation states that methyl groups enter the hydrogenotrophic
pathway to form CH4: CH3COOH→ CO2 + CH4. Nonetheless, methyl groups and acetate
play a minor role in rumen methanogenesis because methanogens that rely on these con-
versions grow very slowly in vitro. As a result of their short retention times, normal rumen
conditions would prevent them from thriving [30].

Methane is not the only byproduct of the rumen fermentation of H2. Hydrogen was
used by non-methanogenic rumen inhabitants to synthesize acetate and propionate. These
bacteria also consume CO2, SO4

2−, NO3
−, and fumarate and compete with methanogens for

H2 [41,47,48]. However, they are less important in removing H2 from the rumen ecosystem.
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Acetobacterium, a genus of anaerobic bacteria found in the rumen fluid, can convert
two CO2 molecules to acetate (4H2 + 2CO2 → CH3COOH + 2H2O) using the reductive
acetyl-CoA pathway (Wood-Ljungdahl pathway) [49].

During propionogenesis, H2 in the rumen is redirected to propionate synthesis via the
fumarate-succinate pathway or the conversion of pyruvate to lactate and acrylyl-CoA ester
and the subsequent reduction to propionate (pyruvate + 4H→ propionate (C3) + H2O) [50].
There is an inverse relationship between the amount of propionate in the rumen and the
production of CH4 in the rumen; when the concentration of propionate increases, the
production of CH4 in the rumen decreases, and vice versa (Figure 1) [21,44,51,52].
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NO3
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reduction to NH3 [53]. However, under physiological conditions, denitrification, in which
NO3

− is reduced to nitrite (NO2
−), then to nitric oxide (NO), further to N2O, and finally, to

N2, does not play a significant role in the rumen. In the case of the other two mechanisms,
dissimilatory NO3

− reduction to ammonia is the dominant rumen pathway of NO3
−

metabolism described with the following stoichiometric reactions:

NO3
− + H2

+ + 2H+ → NO2
− + 2H2O and NO2

− + 3H2 + 2H+ → NH4
+ + 2H2O.

The conversion of NO3
− to NH3 is thermodynamically more favourable to methano-

genesis; however, if sufficient NO3
− concentration is available, these processes could be the

primary route of H2 elimination in the rumen environment [54–56]. Unlike dissimilatory
NO3

−reduction, NH3, a product of enzymatic respiratory ammonification, remains in the
organism to allow microbial protein synthesis [57]. Notably, high NH3 concentrations
inhibit assimilatory NO3

− reduction; thus, this mechanism is unimportant in the rumen,
and microorganisms instead use this pathway for biosynthesis and storage [43].

In some anaerobic environments, hydrogen sulphide can act as an electron donor
for the reaction that converts NO3

− to NH3 (by reducing NO3
− and oxidising sulphides),

which increases the H2 utilisation [8,21,44]. The rumen fermentation process also uses
SO4

2− as an alternative electron acceptor. Sulphate has a high reduction potential and
serves as an H2 absorber because it has a higher affinity for H2 than CO2 [8].

Bacteria that reduce NO3
− can also reduce SO4

2− through dissimilatory or assim-
ilatory pathways. Both types of bacteria co-exist in the rumen, where they contribute
to the reduction of sulphur to hydrogen sulphite (HSO3−) and hydrogen sulphide (H2S)
rather than CH4 [58]. Furthermore, both pathways operate concurrently and are not com-
petitive [44]. Sulphate-reducing bacteria reduce SO4

2− to H2S anaerobically and oxidise
organic matter to H2 using sulphate ions as electron acceptors. This reaction is described
by the stoichiometric equation (SO4

2− + 4H2 + H+ → HS− + 4H2O) [8]. However, the
rumen SO4

2− reduction process is severely hampered by the low concentration of various



Agriculture 2023, 13, 602 5 of 26

sulphur-containing compounds, which limits the rate of H2 incorporation in their reduc-
tion, unless they are supplemented to the diet [44]. Notably, a dissimilatory pathway is
used for energy generation, whereas synthesised sulphur compounds are incorporated
into biological molecules necessary for bacteria’s survival during assimilatory reduction.
Furthermore, a dissimilatory reduction is the primary route of SO4

2− metabolism in the
rumen [59]. Some sulphate-reducing bacteria are adaptable organisms that can both reduce
SO4

2− and oxidise H2S to SO4
2−, preventing the accumulation of toxic molecules [47,48].

3. Mitigation Strategies

Reduced ruminant enteric CH4 emissions are an important goal for limiting the global
temperature rise over the next 30 years. Scientists and breeders are working to identify
various strategies that affect methanogenesis in the rumen. As new scientific techniques
have been developed, research into methanogenesis has expanded exponentially, and our
understanding of the rumen microbiota has grown in depth.

Furthermore, beginning in the early 2000s, we saw a shift in research focus from energy
metabolism to the environmental impact of ruminant CH4 and developing strategies for
reducing enteric CH4 emissions. Since then, several approaches and technologies have
proven to be effective in reducing enteric CH4 emissions. Some, however, are prohibitively
expensive, not only for developing countries, and pose environmental and human or animal
health risks. As a result, it is critical to understand how and whether new techniques and
solutions reduce ruminant CH4 emissions.

Several approaches have been developed to reduce ruminant digestion-related CH4
emissions. Some of them are farm management, feeding strategies, using feed additives and
chemical compounds to modify biochemical processes in the rumen, direct manipulation
of the rumen microflora, animal immunisation, and breeding strategies, including genetic
approaches [3,60]. The most commonly used feed additives that modify rumen biochemical
processes towards decreased methanogenesis are saponins, tannins, flavonoids, probiotics,
organic acids, fats, and fibre [61–63].

3.1. Mitigation through Feed Additives
3.1.1. Saponins

Saponins are surface-active glycosides composed of aglycone-sapogenin and glycon-
saccharide. Plants, lower marine animals, and some bacteria are the primary producers [60,64].
The major sources of saponins in ruminant diets are Yucca schidigera, Quillaja saponaria,
Camellia sinensis, and Medicago sativa [65].

Saponin structure diversity associated with chemical groups, such as hydroxyl, hydrox-
ymethyl, carboxyl, and acyl in sapogen, causes changes in the bioactivity [64]. Saponins
have a significant impact on the rumen ecosystem because they inhibit the population of
ciliate protozoa. Ciliate protozoa contribute to proteolysis, particularly ruminal protein
recycling and protein passage to the duodenum [66,67]. Furthermore, saponins have the
potential to reduce CH4 emissions indirectly through defaunation. The mechanism of
defaunation by saponins is thought to involve disruption of the cell membranes of protozoa
in the rumen. Saponins have a characteristic structure consisting of a hydrophilic sugar
moiety and a hydrophobic steroid or triterpenoid aglycone. This structure allows saponins
to form complexes with sterols in cell membranes, leading to membrane destabilisation
and lysis of the cell [62,68].

Saponin may also have an indirect effect on CH4 output by slowing methanogene-
sis, increasing the expression of methanogenesis-related genes, and decreasing the abun-
dance of methanogens. Saponins can affect specific bacteria and fungi in the rumen,
altering biochemical processes in the rumen either positively or negatively [62,64]. At this
time, there is no clear evidence that saponins directly affect methanogens, but it cannot
be ruled out. Nonetheless, some research suggests that saponins may reduce the activ-
ity of methanogenesis-related genes or the rate of CH4 production per methanogen cell
(Figure 2) [62].
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Despite the fact that many in vitro studies have used relatively high dose rates, high
concentrations of saponins (>5% of dry matter (DM)) and steroidal saponins from certain
plants can be toxic to animals. The ability of saponins to suppress CH4 production varies
greatly depending on the chemical structure, source, dose, and diet [5]. Furthermore, the
type and origin of saponins alter rumen fermentation differently. Methane production
was strongly inhibited by Yucca schidigera but not by Quillaja saponaria extract [69].
Saponins isolated from different sources show various results, and most of the results come
from in vitro studies [70]. The impact of saponins on the abundance of methanogens and
methanogenesis varies considerably across studies, and data are inconsistent [46]. Methane
emissions were found to have decreased anywhere between 6 and 50%, depending on
the plant source, saponin dose, saponin extraction method, saponin preparation, etc., and
combinations of these parameters [46,70].

The antiprotozoal effect of saponins is temporary because they are deemed inactive by
rumen microorganisms when they are deglycosylated to sapogenin [59]. This might restrict
their use as ruminant feed and as a tool to reduce methane emissions. It was recently
proposed that saponins’ antiprotozoal effect could be improved by changing their chemical
structure, thereby protecting them from microbial degradation [64].

It is important to note that the level of saponin toxicity in plants can vary depending
on several factors, such as the species of the plant, its growing conditions, and the stage of
growth. It was well documented that in several plant species, saponin synthesis is induced
in response to biotic and abiotic stresses. Such as herbivory and pathogen attacks, humidity,
nutrient starvation, light, and temperature [71]. To minimize the risk of saponin toxicity in
cattle, it is important to monitor the plants that are present in their grazing areas and to
provide a balanced and nutritious diet that meets their dietary needs. So, to minimize the
potential negative effects of saponins in animal feed, it is important to carefully select feed
ingredients and properly process them to reduce the concentration of saponins [72]. This
may include using heat treatment, chemical treatment, or other methods to break down or
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remove the saponins. For example, fermented soybeans or processed soybean meal have
lower saponin levels than raw soybeans [72]. In cases where exposure to high levels of
saponins is unavoidable, it is recommended to monitor the animals closely for any signs of
toxicity and to provide prompt veterinary care if necessary.

3.1.2. Tannins

Tannins are another class of organic chemicals that affect the rumen environment. They
are secondary polyphenolic plant metabolites. They have been linked to plants’ resistance
to infection, insects, and herbivores [73]. Tannins are classified into two types: hydrolysed
tannins (polyesters of gallic acid and various individual sugars) and condensed tannins
(polymers of flavonoids) [74,75].

When hydrolysed tannins are exposed to the diluted acids in the feed, they degrade
into simpler phenolic and non-phenolic compounds. The condensed fraction influences
feed digestibility, modifies rumen fermentation, and reduces CH4 emissions [73]. Moreover,
condensed tannins have a higher antimethanogenic potential, but hydrolysable tannins are
more toxic to animals after absorption [76,77].

In general, tannins have been shown to reduce CH4 production in the digestive
systems of ruminants by indirect inhibition of hydrogen-producing microflora (and thus,
presumably reduced forage digestibility) and direct inhibition of methanogens [61,75].
Supplementation of the tannin-rich plants reduced CH4 emissions per day and per unit of
feed and energy intake by up to 24%, but this appears to be primarily to reduced organic
matter and fibre digestion [78]. In their valuable review, Jayanegara et al. [79] demonstrated
that increasing tannin levels reduced CH4 generation expressed relative to digestible
organic matter. Patra and Saxena [62] reported a CH4 reduction in ruminal fermentation by
50% in response to tannin or plant extracts containing these polyphenolic compounds at an
average tannin dose of 10–20 g/kg DM. Moreover, Aboagye and Beauchemin [80] suggest
that CH4 emission in response to tannin feeding varies greatly depending on the tannin
source, type, molecular weight, and the methanogen community present in the rumen.

Tannins inhibit methanogenesis in a bactericidal and bacteriostatic manner by acting
on fibrinolytic bacteria and are dependent on their chemical structure as well as the bacteria
species [74,81]. In general, the anti-methanogenic activities of tannins involve the binding
of tannins to proteins through the interaction of phenolic hydroxyl groups with amino
acid residues by hydrogen bonds and hydrophobic interactions; however, low molecular
weight tannins could be more effective [76,81,82]. Tannin–protein binding can have a
range of effects on protein structure and function, including denaturation, aggregation, and
modification of the enzymatic activity [83,84].

Furthermore, they are toxic to ciliate protozoa, which are known to produce a signifi-
cant amount of CH4 through interactions with archaea [8,61,74]. Malik et al. [85] showed in
sheep that diets supplemented with condensed tannin in concentrations of 7.1–10.8 g/kg
DM decreased the number of protozoa by up to 23%. A similar reduction in protozoa
number (21%) was reported by Salami et al. [86], including 4% of both condensed and
hydrolysed tannins in lamb’s diet.

Some tannins decrease fungi but simultaneously increase methanogens [87]. Further-
more, another major limitation of tannins is that CH4 responses highly depend on their
concentrations in many forages and feed supplements (≤20 g/kg of dry matter intake,
(DMI)). Additionally, dietary tannins can reduce protein digestibility [88]. This is especially
important for grazing animals in nitrogen-deficient pastures [89]. The decrease in CH4
caused by tannins could be due to a concurrent reduction in DMI and nutrient digestibility.

It should be noted that rumen microbiota can develop resistance to the adverse effects
of tannins through detoxification of tannins, synthesis of tannin-complexing polymers,
and formation of glycocalyx [90]. This may hinder the long-term use of tannins to reduce
methane emissions.
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3.1.3. Flavonoids

Flavonoids are a class of compounds that, similar to tannins, are secondary plant
metabolites with a wide range of biological activity, such as antimicrobial activity [46,91].
Probably, flavonoids reduce the population of protozoa and methanogens and inhibit
methanogenesis in the rumen by absorbing H2 after the cleavage of their carbon ring
structures [34,91]. Flavonoids have been proposed for use in ruminant feed to increase
productivity by elevating propionate production relative to the acetate [92]. The flavonoids
naringin and quercetin were found to reduce CH4 production, ciliate protozoa, and hy-
drogenotrophic methanogens in vitro [91,93]. Seradj et al. [94] discovered that a commer-
cial citrus extract of flavonoids (Bioflavex®) or its pure flavonoid components (Neoerioc-
itrine, Naringine, Isonaringine, Hesperidine, Neohesperidine, Poncirine) in the dose of at
200 µg/g DM decrease CH4 production from 4 to 11% and hydrogenotrophic methanogen
(Methanosarcina spp.) population while increasing propionate concentration and lactate-
consuming Megasphaera elsdenii population. Megasphaera elsdenii metabolizes lactate
and relieves rumen acidosis induced by a high-grain diet [95]. In an in vitro study, Sinz
et al. [96] discovered that the flavonoid luteolin-7-glucoside, in a dose-dependent manner
(0.5, 5.0, and 50.0 mg/g DM), reduced CH4 (4–11%) and NH3 (12%) concentrations in
rumen fluid without lowering fermentation efficiency.

There are currently several flavonoid feed additives on the market that reduce CH4
production. However, these products primarily contain plant crude extracts, and deter-
mining the response of rumen microbes to the flavonoids is difficult. Moreover, significant
differences in the extraction yields between different high-cost conventional extractions
can be observed. There are also differences between the number of compounds obtained
and their bioactivity within the same method [97]. Nowadays, non-conventional low-cost
extraction techniques using microwaves, ultrasounds, high pressure, supercritical fluids, or
digestive enzymes are involved in the effort to extract the flavonoids in a more efficient
and/or selective way. Moreover, these techniques decrease the extraction time, increase the
compounds’ selectivity and allow the use of solvents that are less harmful to the environ-
ment and animal health [97]. Therefore, some of these techniques are green methods, most
acceptable to consumers and farmers. In conclusion, flavonoids have a significant potential
to mitigate CH4 emissions, according to available data, but more research on in vivo trials
is needed.

3.1.4. Lipids

Lipids used as feed additives may be a viable strategy for lowering CH4 emissions
(Figure 3) [34]. They reduce the concentration of rumen archaea and Ciliate protozoa
through several mechanisms, including toxicity against methanogens and protozoa [98].
However, for some fats, lowering CH4 levels may come at the expense of diet digestibil-
ity [42]. Lowering the pH of the rumen content to 5–6 can increase the effectiveness of lipid
supplements in reducing methanogenesis [99]. Fatty acids have the potential to damage
archaeal cell membranes. The integrity of the archaeal plasma membrane is critical for
maintaining chemiosmotic balance, which is required for cell vitality and metabolism.
Changes in the structure of the cell membrane cause potassium leakage, electron transport,
ion gradients, protein translocations, phosphorylation, and enzyme reactions, which lead
to methanogen degradation and CH4 inhibition [5].
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Lipid supplementation could be an effective CH4 mitigation strategy (an average
14% reduction in long-term CH4 emissions when lipid sources were added to supply 34 g
fat/kg of DM [102,103]. However, its efficacy is determined by the form, source, amount of
supplemental fat, degree of saturation, fatty acid carbon chain lengths, and nutrient and
fatty acid composition of the basal diet [104,105]. Dietary lipids have a greater inhibitory
effect on CH4 emissions with concentrate-based diets than with forage-based diets, so the
application of this supplementation in grazing systems is limited [104,106].

Feeding a high lipid concentration (>6% DM) can reduce feed and fibre digestibility,
potentially increasing organic matter and nutrient excretion as well as CH4 emissions
from manure [107]. Furthermore, lipid supplementation has been shown to reduce fibre
digestibility and DMI, inhibit rumen fermentation, reduce milk fat synthesis, and alter the
fatty acid composition of products [108]. Oils supplementation tended to decrease feed
intake (from 4% to 7%) and decrease fibre digestibility (from 8% to 11%). Similar to oils,
oilseeds did not affect milk yield but decreased weight gain in growing animals (from 13%
to 20%) [109]. Therefore, including oils and oilseeds in the diet may be recommended more
for lactating animals than for growing animals.

The benefit of lipid supplements is that they are readily available and straightforward
to implement in intensive or confined feeding systems. Moreover, their supplementation is
not known to pose a risk to animal or human safety; it is widely available and simple to
implement in intensive or confined feeding systems. Moreover, maximum oil inclusion in
ruminant diets is determined by the animal’s physiological stage, the composition of the
basal diet’s lipids and other nutrients, and the fatty acid profile of the supplemental oil [110].
Feeding refined oils is more expensive than feeding processed oilseeds, but the overall
cost-effectiveness of feeding oils to reduce CH4 varies by region and country because the
prices of oil, meat, and milk vary greatly [109].

The impact of oil production on GHG emissions should be considered in the case of
the widespread use of oils as feed additives. When compared to other concentrate feeds,
oilseed production is associated with nearly doubling upstream GHG emissions per kg
dry matter (1.27 vs. 0.70 CO2 equivalents kg−1 of DM). It is, therefore, critical to consider
whether total GHG will increase when concentrates are replaced by oil and fat or whether
the reduction in intestinal CH4 emissions will offset GHG emissions from the oil industry.
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3.1.5. Plant Essential Oils

Plant essential oils (EO) are volatile and aromatic oily liquids extracted from plant
materials such as flowers, seeds, buds, leaves, herbs, wood, fruits, twigs, and roots. Nu-
merous in vitro studies have supported using essential oils derived from plants such as
garlic, eucalyptus, clove, rosemary, thyme, paprika, juniper, and ginger. EOs are popular
among consumers due to their high volatility, ephemerality, and biodegradability [111].
Some essential oils have been approved as generally safe by Food Drug Administration
(FDA) [112]. Some essential oils are capable of affecting the rumen fermentations and
decreasing CH4 production in vitro. The results were promising because some of the stud-
ies showed impressive results on CH4 emissions, with up to 90% reductions [5,113,114].
Belanche et al. [115] did not show the effect of oregano oil on enteric CH4 emissions when
fed (50 mg/kg DM) to dairy cows. Benchaar et al. [116] showed that ruminal microor-
ganisms might adapt to EOs when they are used for a long time, which could diminish
their positive effects. Saro et al. [117] found that anti-methanogenic garlic essential oil and
linseed oil treatments had no long-term effects on CH4 production in neonatal lambs. More-
over, in vivo studies in ruminants are likely to negatively affect feed intake and ruminal
fermentation [118,119]. Furthermore, a large part of the positive effects mentioned during
in vitro studies has not yielded the same positive results when applied to in vivo studies
and using high doses in ruminants (i.e., >300 mg/L of culture rumen fluid), as would be
expected [119].

In general, essential oils appear to work by altering the microbial population in the
rumen, the primary site of CH4 production in ruminants and reducing the abundance of
methanogens, the microorganisms responsible for producing CH4 [120]. However, the
precise mechanism by which essential oils achieve this is not well understood, and more
research is needed to determine their optimal use for mitigating CH4 emissions from
livestock. It is suggested that the activity is not due to one specific mode of action but
involves several targets in the bacterial cell.

It is worth noting that some essential oils increase feed consumption due to the aroma
they add to the ration, while others, such as garlic oil, have a negative impact on palatability.
Moreover, although feeding garlic or its metabolites may influence the flavour of meat
and milk from ruminants, consumers may not accept it. Encapsulation of EOs in wall
materials can enhance the long-term stability and antimicrobial ability of EOs in meat
products, thereby eliminating or reducing the organoleptic defects of EOs in practical
applications [101,121]. Unfortunately, this increases the application costs. Furthermore,
with the increasing use of EOs, it is necessary to develop regulations that include the
maximum permissible limits, toxicity, and capacity against specific methanogens without
affecting other groups of microorganisms in the rumen.

3.1.6. Algae

Recently, algae have become one of the subjects of research aimed at reducing CH4
emissions from ruminants. Particular attention is given to three main taxa of macroalgae,
commonly known as seaweed, which represent a large domain of aquatic plants separated
into Chlorophyta (green), Phaeophyceae (brown), and Rhodophyta (red). In general,
seaweeds contain polysaccharides, proteins, peptides, lipids, phlorotannins, saponins, and
alkaloids that are known to reduce CH4 production by suppressing archaea and protozoa.
However, the mode of action responsible for the mitigation effect centres around the content
of volatile halogenated compounds (bromoform CHBr3) [122].

Dictyota (brown) and Asparagopsis (red) had the greatest potential for decreasing CH4
production among many widely studied species. The best-studied species exhibiting CH4
emission properties are Asparagopsis taxiformis and A. armata. In vivo studies reported
dose (from 3.0 to 51.0 mg/kg of DMI) and diet-dependent (high-concentrate vs. high-forage)
decreases from 9 to 98% of CH4 production by algae preparation [123–126]. Additionally,
in some small-scale studies on cattle supplemented with algae, researchers have found a
significant or numerical decrease in the feed-to-body mass gain ratio, an increase in milk
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yield, and feed efficiency in addition to the reduction of emission [125,127,128]. Under
excess supplementation of A. taxiformis, CHBr3 is detected within milk, making it critical to
monitor supplementation levels in lactating animals. Similarly, milk from cows fed seaweed
had higher iodine concentrations. Lean et al. [128] assessed an iodine consumption 15-fold
higher than the maximum tolerable for children under three years who consumed 1 L/day
of milk. Therefore, any concerns of decreased productivity need to be addressed. Algae
as a CH4 mitigation additive have received a lot of positive research. However, long-term
oral exposure of animals to high concentrations of CHBr3 can cause liver and intestinal
tumours. The Environmental Protection Agency (EPA) classified CHBr3 in Group B2 as a
probable human carcinogen and toxic substance for the environment (i.e., ozone depletion).
Chronic oral exposure of animals to high concentrations of CHBr3 can result in liver and
intestinal tumours. EPA recommends that drinking water levels for bromoform should not
be more than 0.7 parts per million (ppm) for CHBr3 [129].

Similar to the production of oils for animal feed, the CO2 emissions from growing,
harvesting, drying, and transporting algae must be considered when evaluating the efficacy
of algae in reducing GHG emissions because they could offset beneficial reductions of
CH4 from ruminants. Furthermore, extensive algae aquaculture in ocean farming systems
can be harmful to marine life and disrupt biodiversity (i.e., eutrophication) until we pro-
vide fully isolated algae cultures. The land-based seaweed production system is still in
progress. Unfortunately, land-based cultures pose risks related to increased salinity and
CO2 emissions from sources of energy needed to sustain the farm. Of course, it depends
on the farms’ location, the salt source for farming (rock or seawater), power energy, and
so on [130]. As part of an extensive algae aquaculture, the potential adverse effects of A.
taxiformis supplementation on the health of animals, manufacturers, and consumers, as
well as the natural environment, should be investigated further.

3.2. Mitigation through Microbiome Manipulation

The primary premise behind microbiome manipulation is that the growing microbial
community of a newborn ruminant is more changeable, making it more likely to have long-
term impacts than the established microbiome of an adult animal [131]. Furthermore, this
method may be beneficial for grazing ruminants when supplementing feed components at
the appropriate amount is more problematic.

3.2.1. Probiotics

Probiotics are microbiological feed additives based on selected bacterial or yeast cul-
tures. They affect rumen fermentation and improve animal health by modulating the
gastrointestinal microflora [75]. The colonisation of the rumen ecosystem with probiotics
supports rumen fermentation and increases feed efficiency, which may reduce CH4 emis-
sions [46]. A well-established relationship exists between increased propionate production
and reduced CH4 emissions [8,20] (Figure 2). Microbial additives direct the fermentation
pathway towards hydrogen-based propionate production. Thus, the concentration of a key
precursor in CH4 production decreases.

The utilisation of H2 for NO3
− and NO2

− reduction to NH3 in the rumen is more
thermodynamically favourable than the formation of CH4 with CO2 as an electron accep-
tor [53]. Probiotic bacteria are characterised by their capability to reduce NO3

−, NO2
−, and

SO4
2−, thus competing with CH4 for H2. The yield of sulphate-reducing bacteria is highly

dependent on the amount of SO4
2− delivered in the diet [12,46]. Moreover, probiotics may

also stimulate acetogenic bacteria that compete for H2 with methanogens [46,132].
Recent research and applications have focused on three major types of probiotic

bacteria. Propionibacteria are Gram-positive bacteria that live in the rumen. These in-
clude Propionibacterium acidipropionici, P. freudenreichii, P. propionicus, P. jensenii, P. japonicas,
P. japonicas, and P. thoenii [133–135]. These in vitro studies demonstrate that some strains of
propionibacteria have the potential to lower CH4 production by 20% from mixed ruminal
cultures and that this reduction is not always associated with an increase in propionate pro-
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duction. Second, there are homoacetogens, a broad collection of bacterial species that can
produce acetate. Third include Acetitomaculum ruminis, Eubacterium limosum, Blautia schinkii,
and Blautia producta, which are alternative H2 sinks employed in in vitro experiments to
eliminate H2 from the rumen [136]. The last group is methane-oxidising bacteria, which can
grow on CH4 as a sole carbon and energy source. These bacteria use a methane monooxy-
genase to convert CH4 to methanol. Methanol is subsequently oxidised to formaldehyde
by methanol dehydrogenase and absorbed into the serine or ribulose-5-monophosphate
route for biomass synthesis. This group of bacteria is promising; however, they have not
been used in studies to reduce CH4 production in cattle [137].

Other potential H2 consumers present in the rumen are nitrate/nitrite-reducing bac-
teria and sulphate-reducing bacteria (see section above); however, in normal conditions,
their activity is low [22]. NO3

−and NO2
− reducing bacteria were given to rumen in vitro

cultures with NO3
− to decrease CH4 synthesis while enhancing NO3

− reduction to am-
monium and preventing NO2

− buildup. This method, however, merely resulted in a
quantifiable decrease in plasma NO2

− concentrations in sheep [138,139].

3.2.2. Defaunation of the Rumen

The elimination of protozoa from the rumen ecology is known as rumen defaunation.
The ciliate protozoan is thought to be a significant methanogen H2 producer. Furthermore,
they form intimate associations with methanogens located on the surface and within pro-
tozoa cell bodies in structures known as hydrogenosomes. Protozoa, therefore, supply a
substrate for methanogenesis while also protecting symbiotic archaea from oxygen toxicity.
It is estimated that protozoa-associated methanogens contribute roughly 37% of rumen
CH4 emissions [28,44]. Holotrich protozoa are thought to be more efficient H2 producers
than entodiniomorphids and, thus, have a greater impact on methanogenesis. Methano-
genesis in sheep exclusively faunated with Holotrich rumen was comparable to that in
fully faunated animals [28]. Kittelmann et al. [140] found no variations in CH4 emission
among sheep with distinct protozoa community types defined by Eadie [141]. They claimed
that the structure of the ciliate population had no bearing on methanogenesis. However,
Dai et al. [142] showed in a meta-analysis that isotrichids are more critical in methanogen-
esis than entodiniomorphids. The quantity of protozoa in the rumen corresponds with
methanogen CH4 synthesis. Nevertheless, the total protozoa concentration in the rumen
linearly correlates with the CH4 production by the methanogens [143,144].

The rumen is defaunated, which results in a 10–13% drop in CH4 production, an
increase in propionate concentration, and lower levels of acetate and butyrate in the rumen
content [47,67,145]. A meta-analysis of defaunation outcomes indicated no change in
ruminal methanogen abundance and a minor increase in the variety [76]. Defaunation
boosts bacterial population density, bacterial protein synthesis efficiency, and nitrogen flow
to the duodenum, especially when the feed is low in protein relative to its energy content.
Furthermore, defaunation reduces carbohydrate digestion of plant cell walls, significantly
improves protein supply and livestock productivity, and lowers CH4 production. However,
because of the need for rapid reinoculation due to animal cross-contamination maintaining
protozoa-free animals in industrial production systems is extremely difficult.

Cattle defaunation is more complicated than sheep defaunation, which is thought to
be due to differences in anatomical structures between the ovine and bovine rumens [146].
Thus, if simple but permanent methods of defaunating the animals can be discovered,
defaunation has the potential to be a mitigation technique. Furthermore, regardless of the
technical complexity of the removal methods, defaunation is not regarded as an appropriate
CH4 mitigation strategy. The removal of protozoa from ruminants’ rumen is associated
with decreased organic matter digestibility, particularly acid detergent fibre (ADF) and
neutral detergent fibre (NDF), and decreased food intake [67,147].
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3.2.3. Cellulolytic and Protozoan Activity Modification

The availability of H2, the core substrate for methanogenesis, depends mainly on
cellulolytic bacterial and protozoan activity. Microbiome analysis of ruminal bacteria in
sheep revealed three main ruminotypes: Q; S; and H. Q and S are associated with low CH4
emissions, but H is associated with high emissions. Q and S types, such as Quinella ovalis,
are characterised by a high abundance of propionate-producing and lactate- and succinate-
generating anaerobic prokaryotes, respectively. In contrast, sheep emitting more CH4 had
more Ruminococcus and Ruminococcae, known for producing large quantities of H2 [140].
Similarly, ruminotypes associated with high and low CH4 emissions were described in
dairy cows. Danielsson et al. [31] could distinguish two clusters, H and L, for high and
low-emitting bacteria in Holstein and Swedish Red dairy cows, respectively. Cluster L is
linked to low CH4 production (291 g CH4/day or 12.4 g CH4/kg DMI), while cluster H is
linked to high CH4 production (345 g CH4/day or 14.5 g CH4/kg DMI).

Buffalo are considered low CH4 emitters because they have a different digestive system
compared to other ruminants. Specifically, buffalo have a longer digestive tract and a
different microbial community in their rumen, which allows for the more efficient digestion
of their food and lower production of CH4 as a byproduct. Buffaloes have a naturally
large abundance of Fibrobacter succinogenes, Succiniclasticum ruminis, and Syntrophococcus
sucromutans rumens. [148]. These bacteria do not produce H2 during the cellulolytic plant
fibre fermentation and are capable of producing succinate and propionate, which are non-
methanogenic end products of the rumen fermentation [149–151]. F. succinogenes has also
been shown to reduce CH4 production compared to Ruminococcus albus and Ruminococcus
flavefaciens in the rumens of gnotobiotically reared lambs [14].

Moreover, buffaloes have significantly more Bacteroidota species, especially from the
genus of the phylum Prevotella [148,152]. Prevotella can degrade noncellulose plant fibres
and utilise lactate [153]. Therefore, the higher communities of Bacteroidota and Butyrivibrio
found in buffalo rumen compared to the cattle rumen, as well as the comparable levels of
Fibrobacter, suggest that buffalo are better adapted to coarse forage than cattle [154].

3.2.4. Vaccination

The development of vaccines for limiting methanogenesis is based on inducing the
animal’s immune system to produce antibodies in saliva, which upon entry into the rumen,
should suppress the growth of methanogens [155]. Another approach is to use chicken
egg antibody (IgY), a rapid, economical, and non-invasive resource for antibodies [156].
Moreover, it does not necessitate changes in agricultural systems; vaccination is a very
appealing strategy for reducing enteric CH4 emissions. It appears that this method would be
especially beneficial for pasture-based breeding. To be effective, a vaccination must generate
sufficiently high quantities of antibodies in the saliva, bind to the appropriate antigens
of methanogens in the rumen fluid, and particular antigens over the whole spectrum of
target methanogen species. When comparing studies to assess the possibilities of using
vaccines against methanogens’ cells, several issues arose, making it difficult to compare
results, such as the different adjuvants and vaccination protocols, different immunisation
methods, different immunoglobulins (IgG, IgA, and IgY), different approaches (in vivo
and in vitro), and samples (blood, saliva, and rumen) used to compare results [157]. There
are few reports applying vaccines to mitigate CH4 production from enteric fermentation
in ruminants [156,158–163]. All the in vitro studies showed a reduction in the amount of
CH4 released, ranging from 7 to almost 70%, depending on the type of antibodies and the
immunisation protocol [157]. Although antibodies-based in vitro research has shown very
positive results, in vivo changes in the rumen methanogen population or CH4 emissions
have not been particularly noteworthy or unsuccessful [161,164–166]. A vaccine against
protozoan antigens has also been reported, but it failed to significantly reduce the ciliate
population in Merino sheep [29]. So, it is complicated to evaluate the real effectiveness of
this strategy; therefore, more study is needed to reach a firm conclusion on its feasibility,
practicality, and long-term viability [157].
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3.3. Chemical Intervention

Using chemicals directly inhibiting methanogenesis has been the most often-used
strategy [165]. These substances must consistently reduce CH4 emissions while having no
negative effects on people, animals, or the environment. They should be cost-effective for
producers to accept them while boosting output and profitability. The majority of them
are CH4 analogues or methyl-coenzyme M cofactors involved in methyl transfer during
methanogenesis. In vivo-used inhibitors include bromochloromethane, trichloroacetamide,
chloral hydrate, 9,10-anthraquinone, nitroethane, 3-nitrooxypropanol, also known as 3-
nitrooxy-propan-1-ol or 1,3-propanediol mononitrate (3-NOP), and chloroform [62]. 3-NOP
is one of the most effective dietary and economically valuable supplements for cattle that
have been evaluated [165,166]. 3-Nitrooxypropanol mechanism of action involves inhibiting
the enzyme microbial CH4 formation (Methyl-coenzyme M reductase), which is responsible
for the final step in CH4 production by methanogenic archaea in the rumen [167]. The
additive is intended for use in dairy cow’s feed to reduce enteric CH4 emission at a dose
of 60 mg 3-NOP/kg (DM) [168]. 3-NOP is metabolised extensively to 3-nitrooxypropionic
acid (NOPA), 3-hydroxy-propionic acid (3-HPA), NO3

−/NO2
− and CO2 [169]. Besides

NO3
−, metabolites of 3-NOP contribute to the formation of endogenous compounds, such

as lactose and glucose, and are transformed into CO2.
The addition of 60 mg of 3-NOP per kg of DM to the total mixed ratio of dairy cows

resulted in a significant reduction in enteric CH4 emissions per day per kg of DM intake,
ranging from 20 to 35%. In parallel, there was a high increase in hydrogen emission,
resulting in a feed energy waste [168]. Liu et al. [170] suggest that the combination of
3-NOP and fumarate could alleviate the accumulation of H2 and enhance the inhibition
of methanogenesis compared with 3-NOP. The 3-NOP reduces CH4 generation; however,
high-concentrate meals have been used in other trials to achieve reductions of 80% or
more. However, the content of NDF in the diet has a detrimental impact on the 3-NOP’s
ability to influence the CH4 generation [171]. Using 3-NOP appears to help lower CH4
emissions, although further studies are needed. The EFSA Panel on Additives and Products
or Substances used in animal feed concludes that the genotoxicity potential of 3-NOP
cannot be ruled out, as well as the effects of consumer exposure to NOPA.

To decrease the number of rumen microbial population species, organic acids have
the potential to replace the antimicrobial compounds that are currently being used [165].
Malate, butyrate, and fumarate are all organic acids that naturally occur in biological tissues
and are intermediates in the randomising pathway of propionate production, and they
have been the subject of the majority of research on their use in ruminant feeding.

There are many mechanisms by which organic acid affects ruminal fermentation and
animal performance. They increase the digestibility of DM and organic matter and, thus,
influence CH4 production [172]. Moreover, an increase in the content of digestible energy
may be a precursor of propionate and serves as a source of an H2 acceptor [47,173]. Organic
acids containing halogens are involved in the methyl group transfer, thereby reducing
the methanogenesis [5]. Mohammed et al. [174] and Ebrahimi et al. [175] used fumarate
and malate in the presence of methanogenesis inhibitors (β-cyclodextrin iodopropane,
9,10-anthraquinone), with some success, to reduce H2 buildup caused by methanogen-
esis inhibition. Organic acids typically have only a minor impact on CH4 generation.
They could contribute to incorporating electrons into VFAs when another mechanism
suppresses methanogenesis. On the other hand, organic acid production is an expensive
process. Therefore, dietary supplementation with this group of substances is currently
uneconomical [61].

Nitrate is another dietary supplement used in the form of calcium, sodium, or potas-
sium salt that has been used to decrease enteric CH4 in cattle. However, NO3

− can exert
direct toxic effects on methanogens through its reduction in the intermediate NO2

− [176].
Due to the ability of NO3

− and NO2
− to be absorbed from or passed out of the rumen, the

risk of toxicity increases, as does the possibility for NO2
− to be unintentionally converted

to N2O, a strong GHG. Another reason to stay away from NO3
− is that higher rumen
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NO3
− concentrations raise blood levels of NO3

− and methemoglobin, which might lead
to animal poisoning [177]. Furthermore, it appears to have no on-farm economic benefits,
similar to organic acid [166].

Ionophores are commonly used feed additives in beef cattle diets to reduce CH4
emissions. They are carboxylic polyether substances produced by Streptomyces spp. that
make the cell membranes of Gram-positive bacteria and protozoa more permeable to ions.
Generally, ionophores cause a delay in bacteria growth and shift ruminal fermentation
patterns, as well as improve the rumen’s ability to process feed. Several ionophores with a
similar mechanism of action in the rumen (lasalocid, monensin, salinomycin, laidlomycin,
and narasin) are commercially available. Furthermore, ionophores favour the growth of
Gram-negative microorganisms, such as F. succinogenes, while not affecting methanogens,
and, thus, indirectly inhibit ruminal methanogenesis by decreasing the availability of
hydrogen and formate, the main substrates for methanogenic bacteria [149,178,179].

The most commonly used ionophore is monensin, a medication used as a feed additive
for cattle to improve feed efficiency and prevent coccidiosis. As a general guideline, the rec-
ommended safe dose of monensin in feed for beef cattle is usually between 20 to 50 mg/kg
complete feed depending on the stage of production and the type of diet being fed [180,181].
The effects of ionophores on ruminal fermentation patterns might be related to the diet com-
position, ionophore type, and dose used. Monensin supplementation to ruminants resulted
in no significant effects, with up to a 30% reduction in CH4 emission [182]. For example,
monensin (33–36 mg/kg DM) suppressed CH4 production in both high- (10.8% alfalfa
silage, 75.2% corn silage, 12.9% canola meal, and 1.1% mineral mix) and low-concentrate di-
ets (22.7% alfalfa silage, 8.3% corn silage, 67.9% barley grain, and 1.1% mineral mix). In the
first four weeks of the low-concentrate diet, there was a 27% reduction in CH4 output, but
in the first two weeks of the high-concentrate diet, there was a 30% reduction in CH4 output.
Unfortunately, the CH4 levels returned to baseline after six weeks [183]. This occurred as
a result of microbiota adaptation to the ionophore [184–186]. It is important to note that
actual monensin dosing may vary based on individual animal and herd health factors.

On the other hand, the use of monensin in beef and dairy animals is prohibited in
some countries and permitted in others. For today, the use of ionophores seems acceptable.
Ionophores are not considered critically important in human medicine by the World Health
Organization (WHO) because they are not used in human medicine. However, some
reasons exist for seeking an alternative to continued ionophore use, including mitigating
potential negative consequences in the future. Moreover, breeders and feed manufactur-
ers must consider consumer concerns about current food production systems and food
safety [187]. The use of chemical additives must be considered in light of potential future
governmental legislation on chemical and antibiotic use and possible changes to importing
country requirements.

3.4. Reducing Methane Emissions through Genetic Selection

Several studies over the last decade have shown that the heritability of CH4 character-
istics in dairy cattle was moderate, ranging from 0.11 to 0.33; however, the heritabilities
of CH4 yield in sheep were higher (0.24–0.55) [188–192]. Genetic selection is a very at-
tractive solution because changes are cumulative and permanent; however, it requires
multidisciplinary investigation and a large number of animals with CH4 records, but only
a few countries actively record CH4 animal emissions. Moreover, animal selection is a
very long-term process, and selecting animals with low CH4 emissions looks rather like an
excellent future strategy. Here are some examples of multidisciplinary and international
CH4 mitigation projects in animals: RuminOmics is a multidisciplinary research project
funded by the European Union that aims to develop innovative solutions for reducing
CH4 emissions from ruminants. The project brings together experts from various fields,
such as genomics, microbiology, nutrition, and environmental science, to study the inter-
actions between rumen microbiota and the host animal; The Animal Selection, Genetics,
and Genomics Network (ASGGN) is a collaborative research initiative that formalised
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protocols for the collection and storage of data (including direct and indirect phenotypes,
DNA, and rumen samples (if available)) from all animals measured; The Global Research
Alliance is an international partnership that aims to coordinate and fund research on green-
house gas mitigation in agriculture, including livestock. The alliance involves more than
60 member countries, including many of the world’s major livestock-producing nations,
and focuses on a range of research areas, including livestock genomics, nutrition, and
manure management.

Bringing together the data from various studies and countries could help create a
future and accurate genomic reference database and develop precise genetic parameters for
CH4 traits. Unfortunately, we should start reducing CH4 and other GHGs from livestock
right now.

When making a genetic selection, we must consider the effect on productivity. There
are numerous examples from across the industry of how rising animal performance has,
over time, decreased the intensity of CH4 emissions. However, as animal productivity
increases, CH4 intensity decreases curvilinearly. Thus, increasing the productivity of lower-
producing animals has a relatively significant impact, whereas increasing the productivity
of high-producing animals has a relatively small impact [12]. Manzanilla-Pech et al. [193],
based on their analyses, find that CH4 concentration is genetically more closely related to
CH4 production than any of the other CH4 variables investigated. They conclude that, when
compared to CH4 production (MeP; g/d), CH4 yield (MeY; g/kg DMI), and CH4 intensity
(MeI; g/kg energy-corrected milk), residual CH4 has the greatest potential for inclusion in
the breeding goal because it allows for selecting low methane-emitting animals without
compromising other economically important traits. Furthermore, possible relationships
between enteric CH4 emissions and feed efficiency must be considered.

The selection of low-emitting animals may reduce the efficiency of fed digestion,
particularly NDF, an essential ruminant characteristic in human food production. Many
interacting biological and physiological factors, such as digestion rate, passage rate, rumen
microbiome, and rumen fermentation, can all have an impact on feed efficiency and CH4
emission.

In a 10-year investigation, Rowe et al. [190,194] demonstrated that CH4 yield is her-
itable and, consequently, is under host control. Genetic selection has resulted in physio-
logical changes affecting the rumen, feeding behaviour, rumen outputs, and body com-
position [194,195]. These changes appear to be economically beneficial, as ewes with low
CH4 yield wean heavier, leaner lambs that produce more wool. Selected ewes have a
12% difference in CH4 emission yield between high and low emitters [194]. Moreover, the
heritability and repeatability of CH4/(CH4 + CO2) for the CH4 yield traits were higher
than CH4/DMI, indicating that gas traits are a reliable and accurate substitute for DMI
at a constant level of feed intake [196]. On the other hand, preliminary studies show that
genetic variation in CH4 emissions is present in Angus cattle; however, they did not identify
antagonistic phenotypic or genetic relationships between CH4 and body composition traits.

One of the most difficult challenges in selecting animals with low CH4 production is
measuring the CH4 in a large group of animals. Even commercial farms have difficulty
performing these measurements [197]. A genetic selection program necessitates thousands
of measurements, which should be taken on a weekly basis. Selection is also difficult
because grazing systems differ depending on climate, plant species, soil types, and livestock
and include season-long continuous grazing, rest-rotation grazing, deferred rotational
grazing, and intensively managed grazing. It appears that animal selection is required to
develop biomarkers that can reliably estimate CH4 production on all types of farms [193].
Bringing together the data from various studies and countries could help create a future
and accurate genomic reference database and develop precise genetic parameters for CH4
traits. Unfortunately, we should start reducing CH4 and other GHGs from livestock right
now, not with additional 10 years. If the country governments decide to implement animal
breeding strategies to reduce enteric CH4 production and achieve the expected breeding
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impact, there must be predictability. The only way to accomplish this is to have a sufficient
number of animals genotyped and phenotyped, and this data should be made public [197].

3.5. Forage Management

Feeding cellulosic material increases enteric CH4 emissions, with significant varia-
tion due to forage source, chemical composition, digestibility, forage selection, grazing
management, and other factors. On the other hand, forage development systems are
highly variable and dependent on farm site conditions (such as soil type and fertility, water,
climate, country, and animal), as well as management practices and country policies re-
garding animal welfare. This variation opens up possibilities for CH4 reduction via forage
management. So, when discussing CH4 mitigation, it is critical to consider the implications
of the various options above. Moreover, mitigation of CH4 emissions from forage-based
diets can be achieved to some extent by improving forage quality, harvest timing, use of
forage species with superior digestibility, use of condensed tannin-containing plants, and
storage of forages to conserve digestible nutrient content. Many publications deal with
these comprehensive aspects; however, they are outside the scope of this review. It is critical
that changes in forage management to reduce enteric CH4 emissions be assessed at the
farm level using regionally specific life cycle assessments that account for differences in
forage and animal productivity.

4. Perspectives and Conclusions

To meet the Paris Agreement’s projected goals, CH4 emissions from animal production
must be reduced by 24 to 47% by 2050 compared to 2010. Livestock, produced worldwide,
is an important agricultural product around the world. Globally, the livestock sector
(particularly cattle, buffalo, sheep, goats, and camels) contributes 9–25% of anthropogenic
GHG emissions, with the range in values attributed to different models and emission
sources. Nitrous oxide from manure application and nitrogenous fertilisers, CO2 from fossil
fuels and land-use changes, CH4 from enteric fermentation, and manure decomposition
are all greenhouse gas emissions from livestock production [198].

Several enteric CH4 mitigation solutions discussed in this review are technically
available, but many barriers to their implementation exist. Thus, reducing CH4 emissions
on a global scale is still highly challenging. Dietary reformulation and feed additives can
reduce enteric CH4 emissions immediately, whereas selective breeding could have effects
in the future.

The practical approaches described above reduce CH4 emitted by ruminants with
varying degrees of efficiency. However, it should be noted that the methods must be
tailored to each of them individually, and a direct translation is unlikely. It is also neces-
sary to consider producers’ economic expectations and consumer attitudes towards feed
additives. Studies are still needed to develop strategies to achieve both CH4 mitigation
and improvements in animal performance that benefit society and livestock producers.
Furthermore, all chemical and biological interventions that may impact the health of ru-
minants and consumers should be handled with great care. The use of tannins, despite
limiting methanogenesis, can be risky due to their toxicity. Probiotics also deserve special
attention because natural microorganisms can change the biochemical reactions during
methanogenesis and can stimulate the immune system. Moreover, little is known about
the distribution of methanogens in gastrointestinal tracts and how additives affect them.
Additionally, the net environmental GHG impacts need quantification, especially for algae
farming. Another research priority is the implementation of CH4 mitigation strategies in
grazing systems and different farming cultures.

Assume we want to adhere to Paris Agreement’s guidelines. In that case, we must
intensify in vivo multidirectional research because much of the research data comes from
in vitro research and cannot be translated into in vivo conditions (80% reduction vs. 25%, re-
spectively). In vitro data, on the other hand, remain an important scientific result indicating
directions for new strategy development.
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Many feeding strategies are only now being introduced in ruminant farming to reduce
CH4 production. Unfortunately, we generally continue to observe a global increase in CH4
emissions. Between 2000 and 2020, farm-gate GHG emissions increased by 13%; 57% of
them are associated with livestock [199]. While CH4 emissions are decreasing in Europe,
Australia, and North America, they are rapidly increasing in developing countries, particu-
larly in Africa, followed by South America and Asia [200]. This rise is linked to the ongoing
increase in the number of animals since 2000. The United States Department of Agriculture
(USDA) reported a 1.0 billion head global cattle inventory in 2021, up 13.2 million heads
from the previous year. It was the largest world inventory since 2004 [201]. World sheep
numbers reached a new high of 1.266 billion heads in 2021, up from 1.263 billion heads in
2020. In addition, we have seen an increase in the number of goats and camels in recent
years [200]. According to the data presented above, more intense research is needed to
reduce ruminant CH4 emissions. These studies must take into account both the economic
capabilities of developing countries and the animal husbandry methods used.

It is difficult to predict whether farmgate GHG emissions can be reduced using the
current strategy, whether the trend of decreasing emissions in developed countries will
continue, and whether this will be enough to offset increases in other regions.

We should use all available methods to reduce GHG emissions, but it appears that we
should reduce breeding herd growth and increase the proportion of plant- and insect-based
protein in food production; however, as long as it does not increase GHG emissions more
than animal farming.
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