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Abstract: The increased use of chemicals in rice farming poses significant issues regarding the
emergence of pesticide/fungicide resistance and environmental sustainability concerns. This study
was aimed at the genetic improvement of blast, bacterial leaf blight (BB) and gall midge resistance in
a popular rice variety CO 51 which already harbours a blast resistance gene Pi54. Efforts were made
to pyramid an additional blast resistance gene Pi9 along with two BB resistance genes (xa13 and
Xa21) and two gall midge resistance genes (Gm1 and Gm4) into an elite rice variety CO 51 to enhance
the resistance level to biotic stresses. The superior lines were selected using functional markers
conferring resistance to blast (NBS4 and Pi54MAS linked to Pi9 and Pi54 genes, respectively) and BB
[(xa13Prom (xa13) and pTA248 (Xa21)] and SSR markers linked to Gm1 (RM1328) and Gm4 (RM22550)
for phenotypic screening and agronomic evaluation. The genotyping and phenotyping of F6 and
BC2F6 progenies of CO 51 X 562-4, for agronomic traits and resistance to BB and blast, identified ten
superior progenies in F6 and five superior progenies in BC2F6. The breeding lines harbouring both
xa13+Xa21 exhibited high levels of resistance to BB (score ≤ 1 cm) and Pi9+Pi54 exhibited strong
resistance to blast (score ≤ 2). Identified lines can be evaluated further for varietal improvement or
utilised as genetic stocks in breeding programs.

Keywords: rice; gene pyramiding; stacking; blast; bacterial leaf blight; gall midge

1. Introduction

Nearly half of India’s population and one-third of the world’s population rely on rice
for calorie and carbohydrate intake [1]. Despite enormous production and resolving global
hunger, a 30% increase in rice production is required by 2030 from the present level, and
rice production needs to be boosted by 160 million tonnes [2] and should increase by 70% in
2050 [3] to ensure global food security and nutritional security. Due to modern civilisation,
there is a reduction in cultivatable land and water resources for irrigation [4]. Continuous
changes in the ecosystem, and pests and pathogens have evolved for their survival in an
adverse environment. Due to several biotic and abiotic stresses, rice production can be
affected by unfavourable climate changes. The productivity of rice continues to be under
threat by biotic stresses, viz., blast and bacterial leaf blight (BB), which cause significant

Agriculture 2024, 14, 693. https://doi.org/10.3390/agriculture14050693 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture14050693
https://doi.org/10.3390/agriculture14050693
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-9668-4894
https://orcid.org/0000-0003-4337-8233
https://orcid.org/0000-0002-2875-5451
https://orcid.org/0000-0002-8803-7662
https://doi.org/10.3390/agriculture14050693
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture14050693?type=check_update&version=1


Agriculture 2024, 14, 693 2 of 20

losses in rice production [5]. Among fungal diseases affecting rice crops, blast disease
ranked first among the top 10 diseases [6,7]. Rice yield losses are severe in the southern state
of India due to blast and BB [5,8,9]. Blast, a fungal disease caused by the ascomycete fungus
Magnaporthe grisea Barr., poses a significant threat to global rice production, resulting in
yield losses of 70–80% [10,11]. Bacterial blight, caused by X. o. pv. oryzae, is considered
the oldest and most destructive disease affecting rice [12]. It can lead to significant crop
yield losses, up to 80% [13,14]. In India, during the Kharif season, the gall midge leads to
a substantial yield loss of approximately USD 80 million, while the estimated loss on the
Asian continent amounts to USD 550 million [15,16].

By way of releasing high-yielding varieties, food demand can be mitigated to meet the
demand of the growing population [17]. In the modern era of genetics and biotechnology,
various techniques are available to increase rice production and productivity by enhancing
the host plant resistance against biotic stresses, through the pyramiding/stacking of multi-
ple resistance genes/alleles into elite cultivars which provides strong and broad-spectrum
resistance against many pathogens. So far, 102 resistance (R) genes [18,19] and nearly
500 QTLs [20] have been identified for rice blast disease. Among them, 38 R genes have
been characterised at a molecular level and eight genes, namely Pi9, Pi54, pi21, Pi50, Pi7,
Pi57, Pigm, and Ptr, have been reported as broad-spectrum resistance genes against blast
disease [21]. The R genes were distributed to all 12 chromosomes in the rice genome except
chromosome 3 [22]. In rice, Pi-b is the first R gene that was identified in the japonica vari-
ety [23]. Pi9 is a major resistance gene, isolated from the wild species Oryza minuta [24,25],
and pi-kh, which was renamed to Pi54 [26] and isolated from the Tetep cultivar mapped in
chromosome 11L [27], has resistance to major isolates of M. oryzea [28].

Another important and destructive disease is bacterial leaf blight (BB) caused by (X.o
pv., oryzae), which resulted in up to 40% of yield losses at the tillering stage and up to
50% of yield losses in the initial stage [29]. So far, 46 R genes have been identified for
BB resistance and 13R genes, viz., Xa1, Xa3/Xa26, Xa4, xa5, Xa7, xa8, Xa10, xa13, Xa21,
Xa23, xa25(t), Xa27(t), and xa41(t), have been cloned and characterised at the molecular
level [30]. In total, 29 genes are dominant resistant, viz., Xa1, Xa3/Xa26, Xa4, xa5, Xa10,
xa13, Xa21, Xa23, xa25(t), Xa27(t), and xa41(t), whereas 17 genes are recessive resistant, viz.,
xa5, xa8, xa13, xa15, xa19, xa20, xa24, xa25(t), xa26(t), xa28(t), xa31(t), xa32(t), xa34(t), xa41(t),
xa42, xa44(t), and xa45(t) [30]. A major dominant R gene, ‘Xa21’, confers broad-spectrum
resistance against many virulent isolates in India and was initially identified in wild species,
O. longistaminata [31]. Another R gene xa13 also confers broad-spectrum resistance against
many virulent isolates in India and possesses mutation in the promoter region and is
homologous to nodulin [5,32].

In 1978, Nelson proposed the concept of integrating specific QTLs/genes for resistance
to abiotic and biotic stresses into crop varieties via gene pyramiding or introgression. Gene
pyramiding involves combining two or more genes from different donor parents, each
controlling multiple traits, into the genetic background of a desired variety, known as
multi-trait introgression. This can be accomplished through three methods described by
Singh [33]. 1. Separate backcross programs: Each donor parent is used as a pollen parent
and crossed with the recurrent parent as a seed parent. The goal is to introgress the target
gene from each donor parent into the genetic background of the recurrent parent. The
resulting F1 lines are then crossed with the recurrent parent to produce Backcross Inbred
Lines (BILs) with homozygous or heterozygous conditions for the targeted QTLs/genes [33].
Subsequently, the BILs carrying the targeted QTLs/genes are intercrossed to combine all
desired QTLs/genes into a single genetic background. 2. Single backcross: Symmetrical
mating- Each donor parent serves as a pollen parent and is crossed with the recurrent parent
as a seed parent. The resulting F1 lines, genotyped with targeted QTLs/genes, are selected
and intercrossed to combine all desired QTLs/genes into a single genetic background [33].
These intercrossed progenies carrying targeted QTLs/genes are then backcrossed with the
recurrent parent to the Recover Recurrent Genome (RRG) and develop BILs. 3. Single
backcross: Tandem mating. In this approach, the recurrent parent is first introgressed



Agriculture 2024, 14, 693 3 of 20

with targeted QTLs/genes by crossing with one donor parent (improved recurrent parent).
Then, the improved recurrent parent, now containing targeted QTLs/genes, is crossed with
a second donor parent (also called the improved recurrent parent) to further introgress
targeted QTLs/genes [33]. These methods allow for the development of crop varieties
with improved stress tolerance and resistance by combining multiple beneficial traits from
different donor parents into a single genetic background.

Das and Rao [34] developed an Improved Lalat variety that is tolerant to multiple
stresses by incorporating four bacterial blight resistance genes (Xa4, Xa21, xa13, and xa5),
as well as QTLs/genes for blast, gall midge, salinity, and submergence. In another study,
Das et al. [35] successfully combined several QTLs/genes into a cultivar named enhanced
Tapaswini (xa13 and Xa21), which exhibits resistance to submergence (Sub1), salinity (Saltol),
blast (Pi9, Pi54), and gall midge (Gm1, Gm4). This groundbreaking research involved the
stacking of ten distinct genes/QTLs (six previously identified and four newly introduced)
and their expression at desired levels in a new genetic background, showcasing the potential
for a new era of molecular plant breeding. Dixit et al. [36] achieved the pyramiding of genes
for blast (Pi9), bacterial leaf blight (BLB) (Xa4, xa5, xa13, and Xa21), brown plant hopper
(BPH) (Bph3, Bph17), gall midge (Gm4 and Gm8), and QTLs for drought tolerance (qDTY1.1
and qDTY3.1) in the Swarna variety, combining a total of 11 genes with existing traits.

Through the utilisation of MAS, researchers introduced five biotic stress resistance
genes (Pi40, Xa4, Xa5, Xa21, and Bph18) into a Korean japonica rice variety Jinbubyeoa,
resulting in the creation of gene-pyramided breeding lines specifically targeting bacte-
rial blight, blast, and brown plant-hopper [37]. These gene-pyramided lines exhibited
impressive resilience against biotic stresses. SSR graphical mapping indicated that gene-
pyramided lines retained 93% of the recurrent parent Jinbubyeo’s genome. The researchers
evaluated the impact of these QTLs/genes in a novel genotype using phenotypic screen-
ing methods, demonstrating enhanced levels of resistance/tolerance against the targeted
stresses. Furthermore, through marker-assisted backcrossing, two significant QTLs (Sub1
and Qbph12), associated with abiotic and biotic tolerance/resistance, were introduced
into traditional jasmine rice cultivar KDML105. Positive progenies carrying both QTLs
exhibited tolerance to both abiotic and biotic stresses, showcasing notable differences in
Days to Flowering, Plant Height, and grain yield [38].

This present study focused on the development of a durable resistant cultivar against
gall midge, blast, and BB pathogens through the stacking of six R genes. The closely
linked markers, viz., xa13Prom for the xa13 gene, pTA248 for Xa21, NBS4 for the Pi9 gene,
Pi54MAS for Pi54 genes, RM1328 for Gm1, and RM22550 for Gm4, were used to confirm the
presence of the target genes against blast, BB, and gall midge in rice cultivar CO 51.

2. Materials and Methods
2.1. Genotypes Used

A popular rice variety CO 51 was used as a recurrent parent in this study. It is a
short-duration (110–115 days), fine-grain, and high-yielding rice genotype cultivated in
14 states in India [39,40]. CO 51 is moderately resistant to blast due to the presence of the
Pi54 allele and is severely susceptible to BB disease. An intermittent genetic stock #562-4
derived between CO 43 X VRP 1 harbouring Pi9, xa13, Xa21, Gm1, and Gm4 was used
as a donor and was developed in the Department of Plant Biotechnology, Tamil Nadu
Agricultural University, Coimbatore, Tamil Nadu India (Table 1. The details of markers
listed in Supplementary Table S1) [41].

2.2. Development of Pyramided Lines to Enhance Biotic Stress Tolerance of CO 51

For marker-assisted selection (MAS), leaf samples from all progenies and parent
lines were collected 3 weeks after transplanting. DNA extraction was performed with the
CTAB method [42]. Molecular markers NBS4, Pi54MAS, xa13Prom, pTA248, RM1321, and
RM22550 were used for foreground selection which are closely linked with Pi9, Pi54, xa13,
Xa21, Gm1, and Gm4, respectively.
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Table 1. Target region from donor parent and position.

Target Traits Target
QTLs/Genes

Donor
Parents Chromosome Position

in Mb References

Blast resistance
Pi9 562-4 6 10.38 [26,36,42]

Pi54 CO 51 11 24.2 [43,44]

BB resistance
xa13 562-4 8 26.0 [44–46]
Xa21 562-4 11 20.5 [44–46]

Gall midge resistance Gm1 562-4 9 9.20 [35]
Gm4 562-4 8 5.45 [35]

QTLs: Quantitative Trait Loci, BB: bacterial leaf blight.

The rice cultivar CO 51 was used as a female parent and the donor parent 562-4 was
used as a male parent to develop F1. The identification of true F1 was performed using
closely linked markers for the target genes, viz., NBS4, Pi54MAS, xa13Prom, pTA248,
RM1328, and RM22550. Then, these true F1s were crossed with recurrent parent CO 51
to generate BC1F1, and selfing was allowed for generating F2. The positive BC1F1 plants
were identified with foreground markers and crossed with CO 51 to generate BC2F1. Then,
BC2F1 was allowed to BC2F6 and each generation was genotyped with foreground markers.

Then, simultaneously, the selected F2 was allowed to generate F3 and genotyped with
linked markers. Superior F3 progenies were selected based on grain type and advanced
to F4 in the field conditions. In F4:5, selections were based on grain type and high yield
over the recurrent parent CO 51. Selected progenies in F5:6 and BC2F6 were used for blast
screening in natural hotspot areas and BB screening in field conditions.

2.3. Screening of Selected RILs and BILs against Blast Pathogen

Selected progenies of F5:6 and BC2F6 were raised in the Uniform Bed Nursery (UBN) in
the Hybrid Rice Evaluation Centre, Gudalur, Tamil Nadu, India. Plants were raised along
with recurrent and donor parents. The susceptible check CO 39 was sown on both sides
of UBN and one in every five rows to ensure a continuous supply of blast inoculum. The
disease infection was measured at an interval of 15 days up to 45 Days After Sowing (DAS)
in all the test entries. Scores 0–3 were considered resistant (R), 4–5 moderately resistant
(MR), and 6–9 susceptible (S) [1].

2.4. Screening of Selected RILs and BILs against BB Pathogen

Twenty-one day-old seedlings of selected progenies of F5:6 and BC2F6 were trans-
planted in the main field along with parents and the susceptible check TN 1. TN 1 was
transplanted once every five rows to ensure a continuous supply of BB pathogen. A viru-
lent bacterial blight pathogen X. o p.v. oryzae was collected from the Department of Plant
Pathology, Tamil Nadu Agricultural University (TNAU), Coimbatore. The pathogen X. o
p.v. oryzae strain was grown in peptone sucrose agar media for the production of inoculum.
The bacterium was scraped from all plates and suspended in sterilised double-distilled
water. The maximum tillering stage (40–45 days) of rice was inoculated with BB pathogen
X. p.v., oryzae using the clip inoculation method with sterilised scissors [47]. A total of
ten plants were inoculated and approximately ten upper leaves/plants were measured for
lesion length. The lesion lengths were measured 14 and 21 days post inoculation when
the lesion was stable. The average lesion length was calculated from 10 maximum lesion
lengths per entry. Based on lesion length, plants were classified as resistant (R) when the
length was 0–3 cm, moderately resistant (MR) when the length was more than 3–6 cm,
moderately susceptible (MS) when the length was more than 6–9 cm, and susceptible (S)
when the length was more than 9 cm [36,48].

2.5. Agronomic Performance and Grain Quality Parameters of RILs and BILs

Selected superior progenies in F5:6 and BC2F6 populations were raised under field
conditions. Twenty-one day-old seedlings were transplanted in the main field. Those
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selected RILs were grown in 3 rows of 2 m in length along with recurrent and donor parents
with two randomised replication plots. The row-to-row distance was 0.2 m and the plant-
to-plant distance was 0.15 m. Standard agronomic practices were followed. Phenotypic
traits including Plant Height (PH), Number of Tillers (NT), Number of Productive Tillers
(NPT), Days to First Flowering (DFF), Days to 50% Flowering (D50%F), Flag Leaf Length
(FLL), Flag Leaf width (FLW), Panicle length (PL), and Grain Length and width (GL and
GW) were recorded.

3. Results
3.1. Introgression of Pi9, xa13, Xa21, Gm1, and Gm4 into CO 51 Harbouring Pi54

Marker-assisted breeding was followed for the stacking of genes in the background
of CO 51 (Figure 1). The cultivar CO 51 already possesses the Pi54 gene, giving broad-
spectrum resistance against blast pathogens. This study focused on the stacking/pyramiding
of Pi9, xa13, Xa21, Gm1, and Gm4 genes in the CO 51 background to enhance strong and
stable durable resistance against blast pathogens, BB pathogens, and the gall midge biotype
in the southern part of India.
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Figure 1. Flowchart depicting the breeding method for the development of RILs of CO 51 harbouring
blast and BB-resistant genes.

Initially, donor parent 562-4 was crossed with CO 51 to generate F1 plants. The
markers which were closely linked to genes Pi9, Pi54, xa13, Xa21, Gm1, and Gm4 were used
to identify true F1 plants. A total of 17 plants were raised in a pot in greenhouse conditions
and four were identified as true F1 plants, viz., #2, #7, #9, and #14. The true F1 was identified
using the foreground markers linked with the target genes (NBS4, Pi54MAS, xa13Prom,
pTA248, RM1328, and RM22550 for Pi9, Pi54, xa13, Xa21, Gm1, and Gm4, respectively). The
F1 progeny (#9) was forwarded into F2, and six progenies out of thirty in F2 were found to
harbour all four genes, viz., Pi9, Pi54, xa13, Xa21, Gm1, and Gm4 (Supplementary Table S2).
Those six selected progenies of F2 were harvested and raised as F3 in a greenhouse. Those
F3 progenies were genotyped with linked markers of Pi9, Pi54, xa13, xa21, Gm1, and Gm4.
A total of 26 F3 were selected based on the grain type and forwarded into F4. In the
segregating population of F4:5, five plants/progeny were tagged in all 26 families and
genotyped with foreground markers for Pi9, Pi54, xa13, Xa21, Gm1, and Gm4. Out of five
plants per progeny, one plant was selected that harboured the maximum QTLs/genes. In
F5:6, 26 progenies were selected with different QTL/gene combinations of Pi9, Pi54, xa13,
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Xa21, Gm1, and Gm4 with different zygotic statuses of target QTLs/genes (Figure 2 and
Table 2).
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Table 2. Genotyping of 26 F6 progenies using markers linked to BB, blast, and gall midge resistance.

S. No RILs Gm1
(RM138)

Gm4
(RM22550)

Pi9
(NBS4)

Pi54
(Pi54MAS)

xa13
(xa13Prom)

Xa21
(pTA248)

1 RIL #9-10-1-1 - + + + - +

2 RIL #9-10-10-6 + + + - - +

3 RIL #9-10-10-8 + + + - - +

4 RIL #9-10-7-17 - + + + + -

5 RIL #9-10-7-19 H + + + H -

6 RIL #9-10-8-21 + + + + - +

7 RIL #9-10-8-23 + + + + - +

8 RIL #9-10-8-25 + + + + - +

9 RIL #9-9-4-30 - - + H + +

10 RIL #9-9-2-31 + + + + - +

11 RIL #9-9-2-32 + + + + - +

12 RIL #9-9-2-34 + + + - H +

13 RIL #9-9-2-35 + + + - H +

14 RIL #9-9-13-61 H - + - + +

15 RIL #9-20-2-96 H + + - + +

16 RIL #9-20-2-97 H + + - + +

17 RIL #9-20-2-98 H + + - + +

18 RIL #9-20-2-99 + + + - + +

19 RIL #9-20-2-100 + + + - + +
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Table 2. Cont.

S. No RILs Gm1
(RM138)

Gm4
(RM22550)

Pi9
(NBS4)

Pi54
(Pi54MAS)

xa13
(xa13Prom)

Xa21
(pTA248)

20 RIL #9-20-7-102 H + + - + +

21 RIL #9-20-9-112 + + + - H +

22 RIL #9-10-9-145 + + + - - +

23 RIL #9-10-9-146 + + + - - +

24 RIL #9-10-9-149 + + + - - +

25 RIL #9-10-9-150 + + + - + +

26 RIL #9-10-9-152 - - + - + +

RIL: Recombinant Inbred Line, +: presence of QTLs/genes, -: absence of QTLs/genes, H: heterozygosity of
concerned QTL/gene.

In F1, progeny (#9) was used in backcrossing, and the evaluation of seven BC1F1
progenies identified one BC1F1 progeny, namely Plant# 9-2 possessing all six target genes,
namely, Pi9, Pi54, xa13, Xa21, Gm1, and Gm4. Then, BC2F1 was generated from crosses
between #9-2 of BC1F1 and CO 51. A true BC2F1 plant was identified with foreground
selection and BC2F1 was forwarded into BC2F5. Seventy-seven progenies were selected
in BC2F5. The presence of target genes, viz., Pi9, Pi54, xa13, Xa21, Gm1, and Gm4, was
confirmed with SSR markers and functional markers. Out of 77 progenies, 16 progenies
harbouring all six genes with a homozygous condition were selected for phenotyping for
blast and BB screening (Figure 3 and Table 3).
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and Gm4.

Table 3. Selected progenies of BC2F5 of CO 51 harbouring six QTLs/genes.

S. No. BC2F5 Gm1 Gm4 Pi9 Pi54 xa13 Xa21 No. of QTLs/Genes

1 BIL #6-17-5-18-29-1-1 + + + + + + 6

2 BIL #6-17-5-18-29-1-2 + + + + + + 6

3 BIL #6-17-5-18-29-1-3 + + + + + + 6
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Table 3. Cont.

S. No. BC2F5 Gm1 Gm4 Pi9 Pi54 xa13 Xa21 No. of QTLs/Genes

4 BIL #6-17-5-18-29-1-5 + + + + + + 6

5 BIL #6-17-5-18-29-1-6 + + + + + + 6

6 BIL #6-17-5-18-29-1-7 + + + + + + 6

7 BIL #6-17-5-18-29-1-9 + + + + + + 6

8 BIL #6-17-5-21-19-1-1 + + + + + + 6

9 BIL #6-17-5-21-19-4-1 + + + + + + 6

10 BIL #6-17-5-21-19-4-3 + + + + + + 6

11 BIL #6-17-5-21-19-4-9 + + + + + + 6

12 BIL #6-17-5-18-5-1-1 + + + + + + 6

13 BIL #6-17-5-18-5-1-2 + + + + + + 6

14 BIL #6-17-5-18-5-1-4 + + + + + + 6

15 BIL #6-17-5-18-5-1-5 + + + + + + 6

16 BIL #6-17-5-18-5-1-6 + + + + + + 6

BIL: Backcross Inbred Line, QTL: Quantitative Trait Loci, +: positive allele.

3.2. Introgression of Pi9 to Enhance the Resistance to Blast in CO 51

A total of 26 RILs and 16 BILs were pyramided with Pi9, Pi54, xa13, Xa21, Gm1, and
Gm4 and were subjected to screening against blast and BB. The blast screening was carried
out in the Hybrid Rice Evaluation Centre, Gudalur, Tamil Nadu, India. Blast scoring
was performed on the 30th and 45th Days After Sowing in UBN at 15-day intervals. The
susceptible check CO 39 had scales of 6.8 and 9.9 in the first and second scores with an
average of 8.35 showing a susceptible reaction to pathogens (Figure 4a and Supplementary
Table S3). CO 39 acted as an inoculum source and the blast pathogen spore reproduced
in CO 39, which ensures a continuous supply of spores in UBN. The donor parent (562-4)
recorded scales of 1.3 and 2.3 in the first and second scores with an average score of 1.8
showing resistance, whereas the recurrent parent CO 51 exhibited scales of 4.4 and 5.9
in the first and second scores with an average of 5.15, showing moderate resistance to
blast pathogens.

All 26 progenies of CO 51 RILs harbouring Pi9 and Pi54 genes recorded scores of blast
ranging from 1.2 to 3.6 with an average of 2.24 in the F6 population, and they exhibited
a resistance reaction to blast pathogens. RIL #9-10-8-23 recorded 1.8 and 1.8 in scores
I and II, respectively, with constant resistance against blast pathogens. RIL # 9-10-8-25
recorded scores of 2.2 and 1.4 in scores I and II with an average of 1.8. RILs #9-20-2-99 and
#9-20-2-100 recorded scores of 1.0 and 2.2 in scores I and II with an average of 1.6. RIL
#9-20-7-102 recorded scores of 1.0 and 2.6 in scores I and II with an average of 1.8, whereas
RIL #9-20-9-112 recorded scores of 0.6 and 1.8 in scores I and II with an average of 1.2. All
the RIL populations of CO 51 showed better resistance than the recurrent parent against
blast disease.

Sixteen BC2F6 progenies of CO 51 X 562-4 harbouring Pi9 and Pi54 ranged from 1.3
to 2.8 with an average resistance score of 2.0 to blast pathogens. BILs #6-17-5-18-29-1-1,
#6-17-5-18-29-1-2, #6-17-5-21-19-4-1, and #6-17-5-18-5-1-5 all recorded scores of 1.4 and 1.8 in
scores I and II, respectively, with an average of 1.6 as strong resistance. BIL #6-17-5-18-5-1-6
recorded scores of 1.2 and 1.4 in scores I and II, respectively, with an average of 1.3 as
strong resistance. The BILs harbouring Pi9 and Pi54 recorded scores of 0 < 2 against blast
(Figure 4b and Table 4).
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Figure 4. (a) Blast screening of F6 harbouring Pi9- and Pi54-gene-stacked lines. (b) Blast screening of
BC2F6 harbouring Pi9- and Pi54-gene-stacked lines.

Table 4. Blast and BB scores of 16 progenies of BC2F6.

Blast Score BLB Score (in cm)

BC2F6 Score I Score II Average Score I Score II Average

CO 51 4.4 5.9 5.2 (MR) 7.49 12.32 9.91 (S)

BIL #6-17-5-18-29-1-1 1.4 1.8 1.6 (R) 0.28 0.45 0.37 (R)
BIL #6-17-5-18-29-1-2 1.4 1.8 1.6 (R) 0.32 0.53 0.43 (R)
BIL #6-17-5-18-29-1-3 1.6 1.8 1.7 (R) 0.25 0.52 0.39 (R)
BIL #6-17-5-18-29-1-5 1.8 2.2 2.0 (R) 0.28 0.32 0.30 (R)
BIL #6-17-5-18-29-1-6 1.6 2.0 1.8 (R) 0.27 0.44 0.36 (R)
BIL #6-17-5-18-29-1-7 1.8 2.6 2.2 (R) 0.33 0.48 0.41 (R)
BIL #6-17-5-18-29-1-9 1.5 2.4 2.0 (R) 0.32 0.56 0.44 (R)
BIL #6-17-5-21-19-1-1 1.8 2.2 2.0 (R) 0.28 0.41 0.35 (R)
BIL #6-17-5-21-19-4-1 1.4 1.8 1.6 (R) 0.24 0.39 0.32 (R)
BIL #6-17-5-21-19-4-3 1.4 3.0 2.2 (R) 0.21 0.45 0.33 (R)
BIL #6-17-5-21-19-4-9 2.0 2.8 2.4 (R) 0.48 0.52 0.50 (R)
BIL #6-17-5-18-5-1-1 2.4 3.0 2.7 (R) 0.31 0.38 0.35 (R)
BIL #6-17-5-18-5-1-2 2.4 3.2 2.8 (R) 0.30 0.44 0.37 (R)
BIL #6-17-5-18-5-1-4 1.6 2.4 2.0 (R) 0.35 0.46 0.41 (R)
BIL #6-17-5-18-5-1-5 1.4 1.8 1.6 (R) 0.24 0.38 0.31 (R)
BIL #6-17-5-18-5-1-6 1.2 1.4 1.3 (R) 0.23 0.38 0.31 (R)
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Table 4. Cont.

Blast Score BLB Score (in cm)

BC2F6 Score I Score II Average Score I Score II Average

Mean of BILs 1.7 2.2 2.0 (R) 0.29 0.44 0.37 (R)

562-4 1.3 2.3 1.8 (R) 0.23 0.34 0.29 (R)

CO 39 6.8 9.9 8.4 (S) - - -
TN1 - - - 15.00 19.82 17.41 (S)

SD 1.5 1.7 1.6 3.93 4.99 4.46
SE 0.3 0.4 0.4 0.90 1.15 1.02
CD (at 5%) 1.24 1.15 1.19 1.19 1.21 1.20

BIL: Backcross Inbred Line; BB: bacterial leaf blight; CO 39 and TN 1 were used as checks in blast and BB screening,
respectively; SD: Standard Deviation; SE: Standard Error; CD: Critical Difference; R: resistant; MR: moderately
resistant; S: susceptible.

3.3. RILs Harbouring Xa13 and Xa21 Exhibited Enhanced Resistance to BB

A total of 26 RILs and 16 BILs of CO 51 X 562-4 along with recurrent parent CO
51, donor parent 562-4, and TN 1 (susceptible check) were sown in the nursery and then
transplanted into the main field. TN 1 recorded 15 cm in score I and 19.82 cm in score
II with an average of 17.41 cm. The recurrent parent CO 51 recorded 7.49 cm in score I
and 12.32 cm in score II with an average of 9.91 cm, whereas donor parent 562-4 recorded
0.23 cm in score I and 0.34 cm in score II with an average of 0.29 cm (Figure 5a).

The RILs of the population ranged from 0.24 cm to 0.43 cm in score I with a mean of
0.31 cm and 0.36 cm to 0.79 cm with a mean of 0.54 cm in score II (Supplementary Table S3).
The grant means ranged from 0.29 cm to 0.58 cm with an average of 0.42 cm. RIL #9-10-8-23
recorded 0.32 cm and 0.42 cm in scores I and II with a mean of 0.37 cm. RIL #9-10-8-25
recorded scores of 0.37 cm and 0.79 cm in scores I and II with an average of 0.58 cm. RILs
#9-20-2-99 and #9-20-2-100 recorded scores of 0.28 cm and 0.29 cm in score I and scores
of 0.38 cm and 0.39 cm in score II with an average of 0.33 cm and 0.34, respectively. RIL
#9-20-7-102 recorded scores of 0.24 cm and 0.34 cm in scores I and II with an average of
0.29 cm, whereas RIL #9-20-9-112 recorded scores of 0.26 cm and 0.36 cm in scores I and II
with an average of 0.31 cm. All the RIL populations of CO 51 pyramided with resistance
genes showed better resistance over the recurrent parent in BB disease. The graphical
representation for the blast and BB scoring of CO 51 and 562-4 and the 10 selected superior
progenies is given in Figure 6 and Table 5.
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Table 5. Blast and BB scoring of selected superior progenies of the F6 population.

Blast Score BB Score in cm

RILs Score I Score II Average Score I Score II Average

RIL #9-10-8-23 1.8 1.8 1.8 (R) 0.32 0.42 0.37 (R)
RIL #9-10-8-25 2.2 1.4 1.8 (R) 0.37 0.79 0.58 (R)
RIL #9-20-2-98 1.4 2.2 1.8 (R) 0.29 0.39 0.34 (R)
RIL #9-20-2-99 1.0 2.2 1.6 (R) 0.28 0.38 0.33 (R)
RIL #9-20-2-100 1.0 2.2 1.6 (R) 0.29 0.39 0.34 (R)
RIL #9-20-7-102 1.0 2.6 1.8 (R) 0.24 0.34 0.29 (R)
RIL #9-20-9-112 0.6 1.8 1.2 (R) 0.26 0.36 0.31 (R)
RIL #9-10-9-145 1.6 1.8 1.7 (R) 0.29 0.68 0.49 (R)
RIL #9-10-9-146 1.0 1.8 1.4 (R) 0.36 0.77 0.57 (R)
RIL #9-10-9-152 1.4 1.8 1.6 (R) 0.43 0.53 0.48 (R)
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Table 5. Cont.

Blast Score BB Score in cm

RILs Score I Score II Average Score I Score II Average

CO 51 4.4 5.9 5.2 (MR) 7.49 12.32 9.91 (S)
562-4 1.3 2.3 1.8 (R) 0.23 0.34 0.29 (R)

CO 39 6.8 9.9 8.4 (S) - - -
TN 1 - - - 15.00 19.82 17.41 (S)

Mean of RILs 2.10 2.40 2.20 (R) 0.30 0.50 0.40 (R)

SD 1.737 2.384 2.051 4.385 6.050 5.211
SE 0.482 0.661 0.569 1.216 1.678 1.445
CD (at 5%) 1.38 1.24 1.31 0.49 1.12 0.80

RIL: Recombinant Inbred Line; BB: bacterial leaf blight; CO 39 and TN 1 were used in blast and BB screening,
respectively; SD: Standard Deviation; SE: Standard Error; CD: Critical Difference; R: resistant; MR: moderately
resistant; S: susceptible.

Sixteen BC2F6 progenies of CO 51 X 562-4 harbouring xa13 and Xa21 ranged from 0.30
to 0.50 cm with an average of 0.37 cm against blight pathogens (Figure 5b and Table 4). BIL
#6-17-5-18-29-1-1 recorded scores of 0.28 and 0.45 cm in scores I and II with an average of
0.37 cm. BIL #6-17-5-18-29-1-2 recorded scores of 0.32 cm and 0.53 cm in scores I and score
II with an average of 0.43 cm. BIL #6-17-5-21-19-4-1 recorded scores of 0.24 and 0.39 cm in
scores I and II with an average of 0.32 cm, and BIL #6-17-5-18-5-1-5 recorded scores of 0.24
and 0.38 cm in scores I and II with an average of 0.31 cm. BIL #6-17-5-18-5-1-6 recorded
scores of 0.23 cm and 0.38 cm in score I and score II with an average of 0.31 cm. The BILs
harbouring Pi9 and Pi54 recorded a score of 0 < 0.5 against the BB pathogen (Figure 7).
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Figure 7. Performance of BILs of BC2F6 against blast and BLB pathogen.

3.4. Performance of RILs and BILs of CO 51 X 562-4 Lines for Important Traits

The 10 superior progenies of F6 of CO 51 X562-4 were selected based on resistance
against blast and BB diseases. Those selected progenies were evaluated for their agronomic
performance for yield and its attributing traits. CO 51 single plant yield (SPY) was recorded
as 29.58 g, whereas those for RILs and F6 ranged from 29.97 to 36.45 g with an average of
32.94 g. The 1000-grain weight was recorded as 19.02 g in CO 51, whereas those for RILs
ranged from 15.50 g to 23.28 g with an average of 19.63 g (Supplementary Table S4). The
yield in improved CO 51 lines ranged from 1.32 to 42.70% over CO 51 (Figure 8). Maximum
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yields were recorded in RILs #9-10-9-146 (42.70%), #9-10-8-23 (26.27%), #9-20-2-98 (23.23%),
and #9-10-8-25 (19.10%).
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Figure 8. Graphical representation of RIL yield increased over CO 51.

The BILs of CO 51 X 562-4 recorded single plant yields of 33.29 to 43.74 g with an
average of 37.64 g, whereas the 1000-grain weight recorded in RILs ranged from 18.50
to 23.92 g with an average of 21.16 g (Supplementary Table S4). The yield in improved
CO 51 lines ranged from 12.54 to 47.87% compared to CO 51 (Figure 9). Maximum yields
were recorded in BILs #6-17-5-18-5-1-5 (47.87%), #6-17-5-18-29-1-5 (45.17%), #6-17-5-18-5-1-4
(43.91%), and #6-17-5-18-29-1-6 (42.06%).
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4. Discussion

The present study aimed to pyramid or stack genes against blast, BB, and gall midge
disease into the CO 51 background to improve the existing cultivar, which can be quickly
achieved using marker-assisted selection (MAS) and marker-assisted backcross breeding
(MABB) through closely linked markers to targeted genes. The pyramiding of multiple
genes/alleles in a single background gene-based marker or tightly linked markers paved
the way for achieving the introgression of target QTLs/genes and saved time and re-
sources [43–45]. In MAS, foreground selection, background selection, and recombination
selection played a vital role in the selection of RILs harbouring pyramided QTLs/genes
with a maximum of recurrent genomes and a minimum of donor segments. The recurrent
parent, CO 51, was recorded as having an average yield of 29.58 g, a blast score of 5.2 as
moderately resistant, and a BB score of 9.91 cm. RIL #9-10-9-146 recorded a single plant
yield of 42.21 g, a blast resistance score of 1.4, and a BB resistance score of 0.57 cm. RIL
#9-10-8-23 was recorded as having an average yield, average blast score, and average BB
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score of 37.35 g, 1.8, and 0.37 cm, whereas RIL #9-20-2-98 recorded 36.45 g, 1.8, and 0.34 cm,
respectively. RIL #9-10-8-25 recorded an average yield of 35.23 g, a blast score of 1.8, and
a BB score of 0.58 cm. Transgressive segregation in the phenotypic traits of the RILs, viz.,
PH, NT, NPT, PL, total grain, FG, 1000-grain WT, and SPY, were recorded and compared to
the recurrent parent, whereas DFF was recorded as earlier genotypes as compared with
the recurrent parent [49–51]. BIL #6-17-5-18-5-1-5 recorded an SPY of 43.74 g, a blast score
of 1.6 as a resistant reaction to blast pathogens, and a BB score of 0.31 cm as a resistant
reaction to BB pathogens, and the SPY recorded in BIL #6-17-5-18-29-1-5 was 42.94 g, its
blast score was 2.0 as a resistant reaction to blast pathogens, and its BB score was 0.30 cm
as a resistant reaction to BB pathogens.

Among several R genes against diseases, the Pi9 gene conferring resistance was re-
ported in previous studies [9,46,52] and is resistant against a broad-spectrum range of
Indian blast isolates [43]. Among the R gene, the Pi54 gene confers resistance against
M. oryzea [28]; Pi1, Pi2, and Pi9 are the most effective fungus races; and Pi9 is a major resis-
tance gene, isolated from wild species Oryza minuta [24,25] which shows broad-spectrum
resistance against a vast isolate of M. oryzea. In this study, Pi9 was stacked along with
the Pi54 gene. The resistance level of CO 51 (plus Pi54 gene) showed a mean of 5.2 as
moderate resistance, and donor parent 562-4 (plus Pi9 gene) showed 1.8 as a high-resistance
reaction to blast pathogens (Tables 4 and 5). The RILs harbouring Pi9 and Pi54 genes
together, viz., RIL #9-10-8-23, #9-10-8-25, #9-20-2-98, #9-20-7-102, #9-20-9-112, #9-10-9-145,
#9-10-9-146, and #9-10-9-152, and all BILs harbouring Pi9 and Pi54 genes together showed
high resistance to blast pathogens in UBN (Tables 4 and 5). The stacking of more than
one R gene into the recurrent parent also revealed a strong and durable resistance being
imparted to diverse isolates of blast pathogens [43]. The improved lines with R genes
combinations of Pi54+Pi1+Pita, Pib+Pi9+Pi5, and Pi2+Pib+Pi5 were shown to impart a high
level of resistance to a wider range of isolates of blast pathogens [43,53]. The RIL lines, viz.,
RIL #9-10-8-23 and RIL #9-10-8-25, harbouring both R genes Pi9 and Pi54 were recorded as
highly resistant to blast pathogens. The RIL line harbouring Pi9 alone, viz., RIL #9-20-2-98,
RIL #9-20-7-102, RIL #9-20-9-112, RIL #9-10-9-145, RIL #9-10-9-146, and RIL #9-10-9-152,
also imparted high levels of resistance to blast pathogens over the recurrent parent CO
51. RILs harbouring Pi9 monogenic genes and exhibiting high resistance to blast than the
RIL and BILs harbouring Pi9 and Pi54 genes were identified [54,55]. The Pi2 and Pi54
broad-spectrum resistance genes were stacked in Pusa Basmati 1509 against blast disease
and can confer high resistance to various isolates of pathogens [45]. The genes Pi9 and
Pi54 trigger an effector-induced immune response to pathogen infection through nuclear
binding site leucine-rich repeats (NBS-LRR) and have a synergistic effect on the pathogen,
to enhance resistance for a wider range of pathogen isolates [54]. In this study, Pi9 and
Pi54 together conferred a highly resistant reaction to leaf blast and panicle blast and the
additive effect was recorded in a leaf blast-pyramided line that harboured either Pizt or Pi9
and Pi54 [54]. However, together, these genes exhibited lower resistance likely due to the
presence of incompatible reactions of the pathogen for Pi9 and Pi54 genes [56].

A challenge that appears in stacking a gene against BB is the distinct virulence of X.o
pv., oryzae strains in different geographical regions [57]. Hence, F6 line with high resistance
to BB strain, stacking more than one R genes, in contrast to single R genes to overcome the
pathogenicity of X.o pv., oryzae strains that become virulent to stacked R genes [58]. In this
study, xa13 and Xa21 genes were stacked in the RIL lines. The recurrent parent recorded a
mean of 9.91 cm for BB symptoms, whereas donor parent 562-4 (harbouring xa13 and Xa21)
recorded a mean of 0.29 cm for BB symptoms against X.o pv., oryzae. The RILs harbouring
monogenic Xa21 alone recorded a mean of 0.37 cm to 0.79 cm for BB symptoms, whereas
RILs harbouring monogenic xa13 alone recorded 0.37 cm for BB symptoms (Table 3). The
RILs harbouring digenic xa13 and Xa21 together recorded BB symptoms ranging from
0.29 cm to 0.48 cm. Also, BIL BC2F6 harbouring digenic xa13 and Xa21 recorded 0.30 to
0.50 cm with an average of 0.37 cm against blight pathogens. RIL #9-20-7-102 showed
symptoms of 0.29 cm on par with donor parent 562-4 (Supplementary Table S3). The R genes,
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viz., xa13 and Xa21 digenic or together, are resistant to broad-spectrum strains and impart
resistance against the X.o pv., oryzae races in the Basmati growing region of India [44,45,59].
This study confirmed that, together, the R genes, viz., xa13 and Xa21, revealed the genetic
potential of stacked genes at a phenotypic level in the southern part of India. Those selected
R genes xa13 and Xa21 have been used widely to improve popular rice varieties such as
Improved Pusa Basmati 1 [59], Pusa Basmati 1728, and Pusa Basmati 1718 [60]. The R-gene-
stacked plant is invaded by BB strains X.o pv., oryzae, which possesses a gene pthXo1 for its
virulence; gene xa13 is a recessive allele of gene Os8N3, a Nodulin family gene; and the
transcript of xa13 is unresponsive to pthXo1, which reslts in resistance [61]. The other genes,
Xa21, activated by RaxX protein, and tyrosine-sulphated protein from X.o pv., oryzae [62]
encode receptor-like protein kinase [62,63]. Tyrosine-sulphated protein from X.o pv., oryzae
triggers the immune defence responses in rice [64]. In plant immune response, WRKY
transcriptional factors act as key regulators [65] and WRKY comprises a superfamily of
mostly plant-specific transcriptional factors and a highly conserved WRKYGQK sequence
at their N-termini [66,67]. A total of over 80 WRKY gene families have been identified in the
rice genome [68] and have a region of approximately 60 amino acids containing a conserved
WRKY amino acid sequence adjacent to a zinc-finger-like motif [66]. The RIL lines have
been stacked with broad-spectrum resistance genes, viz., Pi9, Pi54, xa13, and X21, and have
shown strong resistance to blast and BB pathogens. When plants are invaded by M. oryzae
and X.o pv., oryzae, around 45 OsWRKYs are induced against early responsive genes to
confer resistance reaction [69,70]. The resistance level of RILs could overexpress OsWRKY
genes due to an immune response triggered by pathogens. Different studies revealed that
the overexpression of OsWRKY71 and OsWRKY13 showed enhanced resistance to the X.o
pv., oryzae pathogen [71,72], whereas a reduced expression of OsWRKY45 compromised
resistance to the X.o pv., oryzae pathogen [73].

The superior RIL lines harbouring Pi9+xa13+Xa21 genes together (RIL #9-9-4-30, #9-
20-2-98, #9-20-2-99, and #9-20-7-102) and BIL lines harbouring Pi9+Pi54+xa13+Xa21in (BIL
#6-17-5-18-29-1-1, #6-17-5-18-29-1-2, #6-17-5-21-19-4-1, #6-17-5-18-5-1-5, and #6-17-5-18-5-
1-6) imparted resistance (Supplementary Table S3 and Table 4) against biotic stress (M.
oryzae and X.o pv., oryzae), which is probably a complete expression of OsWRKY genes
in pyramided/stacked lines and was an additive effect of stacked genes. On the other
hand, RIL lines, viz., RILs #9-10-10-6, #9-10-10-8, #9-10-9-145, #9-10-9-146, and #9-10-9-
149, harbouring Pi9+Xa21 and #9-10-7-17 harbouring Pi9+Pi54+xa13 showed moderate
resistance to M. oryzae and X.o pv., oryzae. It may have a reduced expression of OsWRKY
genes in pyramid/stacked lines. The R gene Pi9+Pi54-pyramided lines, viz., RILs #9-10-7-
17, #9-10-7-19, #9-10-8-21, #9-9-2-31, and #9-9-2-32, showed blast resistance scores of 2.8,
2.2, 4.0, 2.4, and 2.6, whereas RILs harbouring Pi9 alone, viz., RILs #9-20-2-98, #95-2-99,
#9-20-2-99, #9-20-2-100, #9-20-7-102, and #9-10-9-145, recorded 1.8, 1.6, 1.6, 1.8, 1.2, and 1.7,
respectively. RILs harbour Pi9 monogenic genes and exhibit high resistance to blast than
the RILs harbouring Pi9 and Pi54 digenic genes [54].

The RILs and parental lines were screened against blast, bacterial leaf blight, and
agro-morphological performance. The RILs were recorded as superior progeny compared
to their parent. As compared with agronomic performance and phenotypic screening,
10 promising progenies in F6 (viz., RILs #9-10-8-23, #9-10-8-25, #9-20-2-98, #9-20-2-99, #9-20-
2-100, #9-20-7-102, #9-20-9-112, #9-20-9-145, #9-10-9-146, and #9-10-9-152) and 5 promising
progenies of BC2F6 (viz., BIL #6-17-5-18-5-1-5, #6-17-5-18-29-1-5, #6-17-5-18-29-1-6, #6-17-5-
18-5-1-4, and #6-17-5-18-5-1-1) were selected as superior RILs and BILs as compared with
their recurrent parent CO 51 (Supplementary Tables S2 and S3, Figure 6). In this study, RILs
harbouring both genes, Pi9+Pi54 (RIL#9-10-7-17, #9-10-7-19, and #9-10-8-21) and xa13+Xa21
(RIL#9-20-2-96), displayed a moderate level of resistance to blast and BB, respectively.
This may be due to the recombination between genes and markers that were used in
this study [74], the interaction among QTLs/genes, and the possibility of antagonistic or
synergistic interaction among QTLs/genes in the recurrent plant [1,35,75,76]. Because of
climate change, different variants of pathogens still evolve across the environment and
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appear active, and immediate attention should be given to new biotypes in developing
varieties with resistance to concerned biotic stress. From the successful introgression of Pi9,
xa13, Xa21, Gm1, and Gm4 into CO 51+Pi54 through MAS in early generation and stringent
phenotypic selection in advanced generation, pyramided lines impart resistance to blast
and BB pathogens.

5. Conclusions

The present study was successful in stacking broad-spectrum resistance and durable
genes against blast (M. oryzae), BB (X.o pv., oryzae), and gall midge (Orseolia oryzae) through
marker-assisted selection in early generation. From the phenotypic selection of blast and
BB in advanced breeding lines, the genes with broad-spectrum and durable resistance can
reveal the complete expression of the gene in the CO 51 elite cultivar. The selected superior
improved CO 51 can be used as a genetic stock in future breeding programs.

Supplementary Materials: The following supporting information can be downloaded at
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scoring of RILs against blast and BLB disease; Table S4: Agro-morphological performance of RILs
population.
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