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Abstract: Recently, many floating renewable energy platforms have been deployed in coastal regions,
where sloping bottoms are an important factor when evaluating their safety. In this article, a simplified
method coupling an eigenfunction matching method (EMM) and a finite-depth Green’s function
(FDGF) is developed to evaluate floating-body motion responses over a sloping bottom for which
bathymetry is homogeneous in the longshore direction. We propose an extended EMM to create an
incident wave model over the sloping bottom, thereby obtaining the Froude–Krylov (F–K) force and
Neumann data on the wet surfaces of the floating body for the diffraction problem. An equivalent
depth is introduced to account for the interaction between the sloping bottom and floating bodies
when dealing with the diffraction and radiation problems. The accuracy of the present method is
validated through a comprehensive comparison with numerical and/or experiment results for a
liquefied natural gas (LNG) ship and a floating hemisphere from the literature. Generally, the present,
simplified method can give predictions with sufficient accuracy.

Keywords: motion response; sloping bottom; simplified method; eigenfunction matching method;
finite-depth Green’s function

1. Introduction

Recently, more and more floating renewable energy facilities have been installed in
coastal regions. For example: (1) China’s first offshore floating PV station using ocean sun
floats (water depth: 20–30 m) was set up in 2022 in the Chinese Yellow Sea (see Figure 1).
(2) China’s first floating offshore wind turbine, called “San Xia Yin Ling Hao” (water depth:
approximately 28 m), was connected to the grid in 2021 in Yangjiang in South China’s
Guangdong province.

However, when a floating body is installed near shoreline and islands, the seabed’s
effects on the motion of the floating body become more significant than those for a deep
water environment [1]. From the beginning of the 21st century, lots of ocean engineering
experts have paid attention to motion responses of floating structures in nearshore areas.
Their investigations show that large interaction has been found between the seabed and the
response characteristics of floating structures, especially in low-wave-frequency ranges [2,3].

For hydrodynamic problems, water depth is always assumed to be constant when
considering seabed effects. Hydrodynamic theories have been well established for both two-
dimensional (2D) and three-dimensional (3D) problems. And scholars have developed cor-
responding numerical approaches, which can be divided into two types, i.e., analytical ap-
proaches and numerical approaches. For two-dimensional [4–6] and three-dimensional [7,8]
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problems, analytical approaches (such as eigenfunction matching approaches) can be em-
ployed when the floating structure is of rectangular/cylindrical/spherical shape. In general,
analytical approaches are always efficient, and their results have high accuracy, which
means they can serve as benchmark solutions. While for hydrodynamic problems of
arbitrary-geometry floating structures, numerical approaches are adopted due to their
generality and flexibility. The boundary element method (BEM) is a specified numerical
approach with a relatively small computational burden since all unknowns are distributed
on the boundaries. Traditional surface-wave–body hydrodynamic problems using BEM
always employ the finite-depth Green’s function (FDGF), the evaluation of which is time-
consuming since the function meets the demand of requiring partial boundary conditions.
Different numerical techniques such as polynomial approximation [9,10] and power series
expansions [11,12] have been developed to calculate this function and its partial derivatives.
Corresponding commercial software [10,13] has been well-utilized in ocean engineering
fields. Another BEM method, called the Rankine source approach, puts a simple green func-
tion on all the boundaries except for those in the far field, for which the numerical integral
needs to be calculated. However, truncation of the numerical domain always introduces
unwanted wave reflection from the artificial boundaries, which can be treated by specified
techniques (see Feng et al. [2], Israeli and Orszag [14], Filippas and Belibassakis [15], Zhang
and Beck [16], etc.).

Figure 1. China’s first offshore floating PV station using ocean sun floats (water depth: 20–30 m).

However, when it comes to areas near the shoreline, the degree of seabed changes
is significant with respect to the average water depth. Thus, previous methods using a
constant depth assumption can no longer be applied. Analytical approaches have been
developed to deal with this type of problem. For example, hydrodynamic wave loads
of the floating body over sill on the bottom can be calculated [17], and this was further
extended by Liu et al. [18] to a more general situation. To study the sloping seabed problem,
a 2D Rankine source method with a novel source distribution strategy was brought up to
eliminate the reflection from the truncated boundary [19].

To investigate 3D wave–body interactions over a sloping seabed, scholars have pro-
posed some new numerical models. For instance, a very large floating structure (VLFS)
can be divided into a number of small bodies, and their hydrodynamic responses are
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solved by assuming every floating body is on a flat bottom with each local depth [20]. It
should be pointed out that the researchers also assume a flat seabed for the far field in the
circumferential direction. Another numerical model introduces a fixed underwater body
to represent the undulating seabed [21,22]. However, the edge of the fixed body exerts a
significantly irrational disturbance on the hydrodynamic responses [21], and an improved
model by Hauteclocque et al. [23] was suggested to reduce the negative effects through
introducing so-called transparent coefficients on the edges. Note that these coefficients are
empirical and should be verified and corrected by experiments. Belibassakis [24] developed
a new 3D BEM for the sloping seabed hydrodynamic problem by coupling a wave propa-
gation model [25] and a sloping seabed Green’s function [26]. However, Belibassakis [24]’s
method requires the seabed to be smoothly varying, which is not in conformity with reality.

Moreover, a direct model coupling Boussinesq equations and the Rankine source
method to solve the outer domain and the inner domain, respectively, was developed
by Ding et al. [27] so as to include nonlinear wave effects. Similarly, Kim and Kim [28]
developed a Rankine source method coupled with a numerical wave tank, in which a
numerical damping zone is introduced by modifying the free surface boundary condition
to avoid wave reflection in the far field. Their investigation using an LNG ship in moderate
depths revealed that the main portion of wave loads is contributed by linear water waves.
In addition, inhomogeneous waves are considered in Yang et al. [29]’s model to analyze
the hydroelastic responses of a VLFS.

It can be seen that existing research about wave–body hydrodynamic interactions over
a sloping seabed is insufficient. In order to carefully consider the effects of a sloping seabed
with computational efficiency guaranteed, this article tries to develop a simplified method
based on a wave propagation model and FDGF.

Scholars and experts in coastal engineering fields have set up various models [30–33]
to treat wave propagation over a sloping seabed. Among these models, EMM [32] can deal
with arbitrarily shaped seabeds, while a mild-slope equation assumes the seabed inclination
to be small enough, and Athanassoulis and Belibassakis [25]’s model assumes a consistently
varied seabed. EMM was employed in our previous research [34] to consider sloping seabed
effects in a wave–body interaction problem in which the normal sea situation is considered.
In this article, we further extend EMM into oblique incident wave problems. And it is
obvious that EMM can provide accurate estimation of not only the Froude–Krylov force but
also the Neumann data on the wet surface of the floating body for the diffraction problem.

Though the FDGF in terms of the constant water depth assumption does not permit
its direct application in a sloping bottom problem, we believe that by introducing a proper
choice of an equivalent depth he that is between the minimum and maximum depth of the
bottom, one can obtain solutions with sufficient accuracy, as will be demonstrated later in
this paper.

The differences between the present method and conventional commercial codes asso-
ciated with finite-depth Green’s function are threefold. The first one is that in the present
method, EMM is applied to take the sloping bottom effects on incident wave potential into
account. A second difference is that the Neumann data of boundary condition on the wet
surface for the diffraction problem are provided by EMM, while the counterpart for conven-
tional commercial codes is pre-given, which does not take the sloping bottom into account.
The last one is the choice of the equivalent depth for the diffraction and radiation problems.
As implementation of EMM is not difficult and evaluation methods for the finite-depth Green
function have been established in many literature sources so far, it is expected that the present
simplified method can provide an efficient way to treat this type of problem.

The rest of this paper is organized as follows: The mathematical model of a 3D
hydrodynamic problem over a sloping bottom is formulated in Section 2. Section 3 gives a
detailed description of the present, simplified method to treat the present problem. Then,
in Section 4, accuracy of this present method is verified by comparing experimental and
numerical results from the existing literature. Finally, Section 5 gives the conclusions of
this article.
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2. Governing Equations and Boundary Conditions

As shown in Figure 2, hydrodynamic responses of a floating structure over an undu-
lating seabed are considered in this section. We use Cartesian coordinates (x, y, z) with a
horizontal x-axis, upward z-axis and origin based on still water. An incident wave with
angle θ propagates from left to right, with wave forces acting on the floating body. An
arbitrarily one-dimensional (1D) varied seabed is assumed, since most bathymetric lines in
coastal areas are straight in the y direction. The left and right semi-infinite bottoms are flat,
and the undulating part lies between them. The varied depth is expressed as

h =

{
hl x < a
hr x > b

(1)

where hl represents the depth of the left semi-infinite bottom, while hr represents the depth
of the right semi-infinite bottom.

x

z

hl

hr

SF

SB

S0

x=a

y

x=b



Figure 2. Wave–body hydrodynamic interaction over a sloping bottom.

S0, SF and SB denote the bottom, free water surface and wet surface of the floating
body, respectively. An ideal fluid that is inviscid, incompressible and irrotational is as-
sumed, and the amplitude a of the incident wave is small compared to the wavelength L
(a/L < 1/30) [35]; therefore, nonlinear effects are neglected. The water depth is also small
compared to L (hl/L < 0.5) [35]; thus, the seabed exerts effects on the waves.

The governing equation of the velocity potential ϕ over the fluid domain is given by

∂2ϕ

∂x2 +
∂2ϕ

∂y2 +
∂2ϕ

∂z2 = 0 (2)

When incident wave ϕI acts on the floating body, the scattered wave field can be
described by diffraction wave potential ϕD, while the forced oscillating body creates the
radiation potential ϕR. All of the three potentials listed above must satisfy Equation (2).

On the still water surface, the wave potential gives

∂ϕ

∂z
− ω2

g
ϕ = 0 (on SF) (3)

where ω and g represent the frequency and gravitational acceleration, respectively.
An impenetrable seabed condition gives (n denotes a unit normal vector on the seabed)

∂ϕ

∂n
= 0 (on S0) (4)
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For the diffraction problem, the body is assumed to be fixed, with the incident wave
acting on the body; thus, the boundary condition on the wet surface is given by

∂ϕD
∂n

= −∂ϕI
∂n

(on SB), for diffraction problem (5)

On the other hand, for the radiation problem, the body is assumed to be experiencing
forced oscillating motions vb; then, the boundary condition on the wet surface is given by

∂ϕR
∂n

= vbn (on SB), for radiation problem (6)

where vbn is the local velocity component on the boundary in the n direction, i.e., vbn = vb · n.

3. A Simplified Method Combining the Eigenfunction Matching Method with the
Finite-Depth Green’s Function

In this section, to analyze motion responses of floating bodies over a sloping bottom,
a simplified method is established based on the EMM and FDGF. The EMM is extended
to treat the problem of oblique propagation of water waves over a sloping seabed. For
the diffraction and radiation solutions, effects of the sloping seabed are considered by
introducing an equivalent depth, and the FDGF is still utilized.

3.1. Incident Wave Problem for Sloping Bottom Environment

Since the seabed is assumed to be 1D varied, the dimensionality of ϕI can be de-
graded [36] by

ϕI(x, y, z) = eikyy φ(x, z) (7)

where ky = k11 sin θ, and k11 can be solved by

k11 tanh (k11hl) = ω2/g (8)

where k11 is the first eigenvalue (wave number) of the first rectangular subdomain x ∈ (−∞, a],
and the first ‘1’ and the second ‘1’ represent the first subdomain and the first eigenvalue,
respectively.

Thus, the corresponding 2D governing equation and boundary conditions are obtained

∂2 φ

∂x2 +
∂2 φ

∂z2 − k2
y φ = 0 (9)

∂φ

∂z
− ω2

g
φ = 0 (on SF) (10)

∂φ

∂n
= 0 (on S0) (11)

According to the main idea of EMM, we approximate the sloping seabed into shelves
with vertical steps, thus forming a list of rectangular subdomains. From Figure 3, it can
be seen that the seabed is divided into M parts, and hm represents the depth of the m-th
rectangular subdomain x ∈ (xm−1, xm], for which the incident wave potential is given:

φ =


φ1 x ∈ (−∞, a], y ∈ (−∞, ∞), z ∈ [−h1, 0]
φm x ∈ (xm−1, xm], y ∈ (−∞, ∞), z ∈ [−hm, 0]
φM x ∈ [b, ∞), y ∈ (−∞, ∞), z ∈ [−hM, 0]

(12)
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x

z

h1=hl

xm

hm hm+1

x1=a xM-1=b

hM=hr


y

xm-1

Figure 3. Approximation of the sloping seabed by shelves.

By eigenfunction expansion of Equation (9), the wave potential in the m-th subdomain
is given by

φm = [Cm1ei
√

k2
m1−k2

y(x−xm)
+ Dm1e−i

√
k2

m1−k2
y(x−xm−1)]Zm,1

+
∞

∑
n=2

[Cmne
√

k2
mn+k2

y(x−xm)
+ Dmne−

√
k2

mn+k2
y(x−xm−1)]Zm,n

(13)

where the first and remaining terms are the propagating eigenfunction and the evanescent
eigenfunctions, respectively. Zm,n is the vertical expression of the n-th eigenfunction:

Zm,n =

{
cosh km1(z + hm)/ cosh km1hm n = 1

cos kmn(z + hm)/ cos kmnhm n = 2, 3, 4 . . .
(14)

where kmn is obtained by solving the following equation:{
km1 tanh (km1hm) = ω2/g

kmn tan (kmnhm) = −ω2/g n = 2, 3, 4 . . .
(15)

On the interfaces between adjacent rectangular subdomains, the pressure and normal
velocity should be consistent. For instance, at x = xm, the following equations should
be satisfied:

φm = φm+1 − hm+1 ≤ z ≤ 0 (16)

∂φm

∂x
=

{
∂φm+1

∂x −hm+1 ≤ z ≤ 0
0 −hm ≤ z < −hm+1

(17)

Multiplying the above equations by Zm,n and integrating over the vertical interface,
one has ∫ 0

−hm+1

φmZm+1,ndz =
∫ 0

−hm+1

φm+1Zm+1,ndz n = 1, 2, 3, . . . (18)

∫ 0

−hm

∂φm

∂x
Zm,ndz =

∫ 0

−hm+1

∂φm+1
∂x

Zm,ndz n = 1, 2, 3, . . . (19)

By substituting Equation (13) into Equations (18) and (19), assuming n to be truncated
to N, and having m vary from 1 to M − 1, then 2(M − 1)N linear equations are derived
with 2MN unknowns, i.e., Cmn and Dmn.

In order to obtain solutions of the wave propagation problem, far field conditions give
the remaining 2N linear equations, which are expressed as follows:
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C11 = −ig/ω
D1n = 0 n = 2, 3, 4 . . .
DM1 = 0
C1n = 0 n = 2, 3, 4 . . .

(20)

3.2. Diffraction and Radiation Problems Considering the Sloping Seabed

By applying Green’s theorem, the boundary value problem for the diffraction and
radiation potential can be solved by the following equations:

1
2

σ(P) +
1

4π

∫
SB

σ(Q)
∂G

∂n(P)
dS =

∂ϕ(P)
∂n(P)

(21)

where P and Q are source points on the wet surfaces of floating bodies, G is Green’s
function, σ is the source strength, and ∂

∂n denotes the normal partial derivative. And the
wave potential ϕ(P) can be expressed as

ϕ(P) =
1

4π

∫
SB

σ(Q)GdS (22)

and

∂ϕ(P)
∂n(P)

= −∂ϕI
∂n

(on SB), for diffraction problem (23)

∂ϕ(P)
∂n(P)

= vbn (on SB), for radiation problem (24)

A good choice for the Green’s function G is the bottom-dependent Green’s function of
water waves over a sloping bottom connecting two flat bottoms developed by Belibassakis
and Athanassoulis [26], as it automatically satisfies all the boundary conditions except for
the wet surfaces. However, its calculation is quite cumbersome and time-consuming, which
restricts its direct application.

In this study, we still employ the FDGF established by John [37], which can be ex-
pressed in the following form:

G =
1
r
+

1
r2

+ 2
∫ ∞

0

(k + υ) cosh k(z + he) cosh k(ζ + he)

k sinh khe − υ cosh khe
e−kh J0(kR)dk (25)

where G denotes the velocity potential at the field point (x, y, z) due to a point source at
(ξ, η, ζ), υ = ω2/g, r is the distance between the source and field points, and r2 is the
distance between the field point and the image of the source point with respect to the
bottom: here, an equivalent constant depth he is assumed to represent the contribution of
the variable depth associated with the sloping seabed on the wave diffraction and radiation.
Numerical methods for solving the finite-depth Green’s function have been fully studied
elsewhere [10–12,33,38,39] and, thus, are not discussed here.

It is expected that solutions of the diffraction or radiation problem over a sloping
bottom are between the results for the two constant water depths that denote the minimum
and maximum depth of the bottom, i.e., hmin and hmax, respectively. Kim and Kim [28]’s
results are associated with the radiation problem of an LNG ship have confirmed this
assumption. With this in mind, one purpose of this study is to determine the equivalent
constant depth he to represent a sloping seabed when analyzing wave diffraction and
radiation to complete our simplified method.

After solving the problems above, incident, diffraction and radiation wave potentials
are obtained. By using the Bernoulli equation and integrating it over the wet surface, the
dynamic motion equations of the floating body are established:

(−ω2[M + A]− iω[B] + [K]){ξ} = { fw} (26)
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where M is the mass matrix of the floating body, A is added mass, B is the damping
coefficient, K is the hydro-static restoring matrix, and ξ and fW are the complex amplitude
of motion responses and wave exciting forces, respectively. Noted that one can refer to
ref. [9] for the detailed derivation process of these physical quantities.

4. Results and Discussion

The numerical results for an LNG ship over mild-slope seabeds using the present method
are shown and verified with the results of Hauteclocque et al. [23], Kim and Kim [28] and
the experimental results of Buchner [21]. In order to demonstrate a broader range of this
simplified method, comparisons are also made with the results of a floating hemisphere
over a steep-slope bottom using a BEM method using a sloping seabed Green’s function [24].
Through these investigations, the equivalent depth is determined, and the accuracy of the
present method is examined.

4.1. Comparison with Numerical Results for an LNG Ship

The motion response induced by an LNG ship over a sloping bottom is investigated
here to show the accuracy of the simplified method. The length of the slope and the depths
of two flat bottoms are designated as L = 300 m, hl = 30 m and hr = 15 m, respectively.
The angle of the straight slope connecting the flat regions is arctan 1/20, and it can be
deemed to be a mild slope. The LNG ship is located at the center of the sloped bottom, the
local water depth of which is 22.5 m. The size parameters of the LNG ship are given in
Table 1.

Table 1. The LNG ship’s size parameters.

Parameter Unit Value

Length m 274
Beam m 44.2
Draft m 11
Displacement m3 97120
Longitudinal center of gravity m −1.06 from midship
Vertical center of gravity m 5.3 above still water plane
Roll radius of gyration m 15.2
Pitch radius of gyration m 68.5

Figures 4–6 show the predicted motion response amplitude operators (RAOs) of heave,
pitch and surge calculated utilizing the present method with he = 15, 22.5 and 30 m and
compared with the solutions from [28], who employed a numerical tank coupled with a
Rankine source method, and the results from [23], who applied a new formulation of BEM
with incident wave angle θ = 0 deg. In Figure 4, the surge RAO using the present method
with he = 15 and 22.5 m shows good agreement with numerical results [23] over almost all
the frequencies. From Figures 5 and 6, it can be seen that the heave and pitch RAOs using
the present method with he = 22.5 m exhibit close agreement with numerical solutions from
the literature [23,28]. It seems that the present, simplified method with an equivalent depth
corresponding to the local depth at the midship position can give accurate predictions
of motion RAOs of the floating structure over a sloping seabed. This supposition can be
further confirmed from Figure 7, which shows comparison of the heave RAO between the
present method with he = 15, 22.5 and 30 m and the numerical results from Hauteclocque
et al. [23] for an oblique wave θ = 15 deg for an LNG ship. The heave RAO for an oblique
wave using the present method with he = 15 and 22.5 m agrees well with the results from
Hauteclocque et al. [23]. And the present method with he = 15 m shows good agreement,
especially in the frequency range 0.6 rad/s ≤ ω ≤ 0.8 rad/s.
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Figure 4. Comparison of surge RAOs between present method with he = 15, 22.5 and 30 m and
solutions from Hauteclocque et al. [23] for incident wave with θ = 0 deg for an LNG ship over a
sloping seabed.
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Figure 5. Comparison of heave RAOs between present method with he = 15, 22.5 and 30 m and
numerical results from Hauteclocque et al. [23], Kim and Kim [28] for incident wave with θ = 0 deg
for an LNG ship over a sloping seabed.
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Figure 6. Comparison of pitch RAOs between present method with he = 15, 22.5 and 30 m and solu-
tions from Kim and Kim [28] for incident wave with θ = 0 deg for an LNG ship over a sloping seabed.
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Figure 7. Comparison of heave RAOs between present method with he = 15, 22.5 and 30 m and
solutions from Hauteclocque et al. [23] for an oblique wave with θ = 15 deg for an LNG ship over a
sloping seabed.

4.2. Comparison with Experimental Results for an LNG Ship

A model test of an LNG ship was carried out to investigate its motion responses over
a sloping seabed by Buchner [21], and the main particulars of that LNG ship are the same
as those used by Kim and Kim [28] and are given in Table 1. The author found that a
method including a second fixed body is not possible (without special measures) when
representing variable bathymetry using diffraction theory. In his model test, the normal
water depth of the basin was 35 m. A wedge-type wooden straight slope with a sloping
angle of arctan 1/20 (mild slope) and a horizontal length of 550 m long was mounted on
the flat bottom of the basin. With this slope, the water depth gradually decreased from
28 m at the bow to 21.5 m midship and 15 m at the stern of the LNG ship. We assume the
position of midship to be at x = 0 m; thus, the starting and end points of the slope are at
x = −270 m and x = 280 m, respectively.
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Buchner [21] intended to model a sloping bottom connecting two flat bottoms, the
depths of which were 35 m and 7.5 m, respectively, as shown in Figure 8a Slope I. However,
we suggest that the model test is identical to Slope II (see Figure 8b) with an abrupt step
at x = 280 m. In order to demonstrate this, both slopes are calculated using the present
method and are compared with the experimental results from [21].

x

z
y

7.5 m

35 m

x

z
y

35 m

x=-270 m x=280 m

35 m

(a)

(b)

Slope 

Slope

Figure 8. Configurations of the sloped bottom used to demonstrate a comparison with the experi-
mental results from Buchner [21].

A comparison of pitch and heave motion RAOs between the present method with
he = 15, 21.5 and 28 m over Slope I and the experimental results from Buchner [21] is
illustrated in Figures 9 and 10, respectively. A slight difference between the curves of the
pitch and heave motion RAOs using the present method with he = 15, 21.5 and 28 m is
observed. A possible reason is that the dominant factor of problems associated with sloping
bottoms is the characteristics of incident waves, i.e., the Froude–Krylov force and Neumann
data on the wet surfaces of floating bodies for the diffraction problem. In this connection,
differences between the results for different equivalent depth he values are not obvious;
thus, we cannot tell which he gives better prediction results. Though the overall trends
between the present method and the experimental results are similar, they agree well only
in high-frequency regions, i.e., ω > 0.65 rad/s for the pitch RAO and ω > 0.55 rad/s for
the heave RAO.

Figures 11 and 12 show a comparison for pitch and heave motion RAOs, respectively,
between the present method with he = 15, 21.5 and 28 m over Slope II and the experi-
mental results from Buchner [21]. For the pitch RAO, the results between the present
method and the experimental results show good agreement except for a small region from
0.45 rad/s < ω < 0.6 rad/s. And the heave RAO using the present method agrees well
with the experiment results when ω > 0.55 rad/s, while major differences occur in the
low-frequency region. Note that the existence of the abrupt step at x = 280 m imposed
a complex reflection of incident waves, leading to clear “wiggles” in the motion RAO
curves using the present method (see Figures 11 and 12), which is also observed in the
experimental results.
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Figure 9. Comparison of pitch RAOs between present method with he = 15, 21.5 and 28 m over Slope
I and experimental results from Buchner [21] for an incident wave with θ = 0 deg for an LNG ship.
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Figure 10. Comparison of heave RAOs between present method with he = 15, 21.5 and 28 m over
Slope I and experimental results from Buchner [21] for an incident wave with θ = 0 deg for an
LNG ship.
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Figure 11. Comparison of pitch RAOs between present method with he = 15, 21.5 and 28 m over Slope
II and experimental results from Buchner [21] for an incident wave with θ = 0 deg for an LNG ship.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 3

0 . 6

0 . 9

1 . 2

He
ave

 (m
/m

)

ω ( r a d / s )

 E x p e r i m e n t  d a t a  b y  B u c h n e r  ( 2 0 0 6 )
 S l o p e  ΙΙ , P r e s e n t  m e t h o d , h e = 1 5 m
 S l o p e  ΙΙ , P r e s e n t  m e t h o d , h e = 2 1 . 5 m
 S l o p e  ΙΙ , P r e s e n t  m e t h o d , h e = 2 8 m

Figure 12. Comparison of heave RAOs between the present method with he = 15, 21.5 and 28 m
over Slope II and experimental results from Buchner [21] for an incident wave with θ = 0 deg for an
LNG ship.

Taken together, these results suggest that Slope II is more suitable for representing the
model test, and differences between the results of the present method with different he values
are slight. In combination with the conclusion of the last subsection, we can infer that the
present method with an equivalent depth he corresponding to the local depth midship can
give accurate predictions of motion RAOs for an LNG ship over a mild-slope bottom.

4.3. Comparison with Numerical Results for a Floating Hemisphere

In the above subsections, comparisons of our method with published data related
to LNG ships over mild-slope bottoms are shown. To expand the applicable scope of the
present method, problems associated with a steep-slope bottom are considered in this part.
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Recently, by using the boundary element method [24], we numerically investigated
the effects of a sloping bottom on a floating hemisphere [40]. Note that Belibassakis [24]’s
method assumes that h(x) should be second-order continuous. And the h(x) used by Liu
et al. [40] is expressed as

h(x) =
hl + hr

2
− hr − hl

2
tanh 3π

(
x − a
b − a

− 1
2

)
(27)

where a = −10 m and b = 10 m, and they are located at the start and end, respectively, of
the sloping bottom areas. The water depths hl = 26 m and hr = 14 m are also assumed for
the start and end of the slope, respectively; thus, the maximum slope of the bottom is 2.83,
and the slope can be deemed to be very steep.

Table 2 gives the size parameters of the floating hemisphere, and it is located at the
center of the sloping bottom at a local water depth of 20 m.

Table 2. The floating hemisphere’s size parameters.

Parameter Unit Value

Diameter m 10
Displacement m3 261.8
Vertical center of gravity m 0
Roll radius of gyration m 3.16
Pitch radius of gyration m 3.16
Yaw radius of gyration m 3.16

Numerical simulations associated with the hemisphere over a sloping bottom for an
incident wave angle θ = 0 deg are shown in Figures 13 and 14. They show a comparison of the
surge and heave RAOs between the present method with he = 14, 20 and 26 m and numerical
results using Belibassakis [24]’s method. Firstly, it is observed that the results obtained using
the present method with different he values are nearly identical, which further confirms our
supposition that the dominant factor for problems associated with sloping bottoms is the
velocity potential of the incident wave, which determines the F-K wave force and Neumann
data for wave diffraction problems. Then, good agreement between the results using the
present method and the method in the literature [24] further validates our method.
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 P r e s e n t  m e t h o d , h e = 2 6 m

Figure 13. Comparison of surge RAOs between present method with he = 14, 20 and 26 m and
numerical results using Belibassakis [24]’s method for incident wave with θ = 0 deg for a hemisphere
over an undulating seabed.
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Figure 14. Comparison of heave RAOs between present method with he = 14, 20 and 26 m and
numerical results using Belibassakis [24]’s method for an incident wave with θ = 0 deg for a floating
hemisphere over a sloping bottom.

Further numerical simulations are performed to validate the present method for
oblique waves. Figures 15–17 show the comparison of surge, sway and heave RAOs
between the present method with he = 14, 20 and 26 m and numerical results using Be-
libassakis [24]’s method for an oblique wave θ = 30 deg for a floating hemisphere over a
sloping bottom. Similar conclusions are deduced from these comparisons.
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Figure 15. Comparison of surge RAOs between present method with he = 14, 20 and 26 m and
numerical results using Belibassakis [24]’s method for an oblique wave with θ = 30 deg for a
hemisphere over an undulating seabed.
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Figure 16. Comparison of sway RAOs between present method with he = 14, 20 and 26 m and
numerical results using Belibassakis [24]’s method for an oblique wave with θ = 30 deg for a
hemisphere over an undulating seabed.
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Figure 17. Comparison of heave RAOs between present method with he = 14, 20 and 26 m and
numerical results using Belibassakis [24]’s method for an oblique wave with θ = 30 deg for a
hemisphere over an undulating seabed.

5. Conclusions

A simplified method combining the EMM with the FDGF is developed to study
floating-body motion responses over a sloping seabed. An extended EMM is proposed
to create an incident wave propagation model over a sloping bottom, with which the
Froude–Krylov force and Neumann data on the wet surfaces of the floating body for the
diffraction problem are obtained. Thus, the sloping bottom is carefully considered when
solving the incident wave problem. In order to consider the effects of the undulating seabed
for both wave diffraction and radiation, an equivalent depth between the minimum and
maximum depths of the bottom is introduced, which indicates that a flat bottom is assumed
when solving diffraction and radiation problems.
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The accuracy of the present method is validated through some comparisons with
numerical results and experimental data in the literature:

(1) For an LNG ship over a mild-slope bottom (a 300-meter-long slope), the present
method with an he corresponding to the local depth midship agrees well with numerical
results [23,28] for both normal and oblique waves. However, the differences between the
results for the minimum and maximum depths of the bottom with data in the literature are
relatively large. For the second mild-slope case (a 550-meter-long slope), the differences
due to different he values are small, and the results using the present method agree well
with the experimental results [21] except for at some frequency regions.

(2) Problems with respect to a hemisphere over a steep-slope bottom for both normal
and oblique waves are further considered. The differences due to different he values
between the minimum and maximum depths with the present method are not visible, and
they agree well with the solutions using Belibassakis [24]’s approach.

In summary, the present, simplified method with an equivalent depth corresponding
to the local depth midship can always give numerical results with sufficient accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

hl Water depth of the left flat bottom
hr Water depth of the right flat bottom
ϕ Wave velocity potential
ϕI Incident wave potential
ϕD Diffraction wave potential
ϕR Radiation wave potential
ω Wave frequency
g Gravity acceleration
n Unit normal vector
vbn Body velocity in the normal direction
kmn Eigenvalue of the dispersion relation
G Green’s function
σ Source strength
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he Equivalent constant depth
r Distance between the source and field points
r2 Distance between the field point and the image of the source point
RAO Response amplitude operator
BEM Boundary element method
FDGF Finite-depth Green’s function
2D Two-dimensional
3D Three-dimensional
F-K Froude–Krylov
EMM Eigenfunction matching method
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