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Abstract: Parkinson’s disease (PD) is a chronic brain disorder affecting millions worldwide. It occurs
when brain cells that produce dopamine, a chemical controlling movement, die or become damaged.
This leads to PD, which causes problems with movement, balance, and posture. Early detection is
crucial to slow its progression and improve the quality of life for PD patients. This paper proposes a
handwriting-based prediction approach combining a cosine annealing scheduler with deep transfer
learning. It utilizes the NIATS dataset, which contains handwriting samples from individuals with
and without PD, to evaluate six different models: VGG16, VGG19, ResNet18, ResNet50, ResNet101,
and Vit. This paper compares the performance of these models based on three metrics: accuracy,
precision, and F1 score. The results showed that the VGG19 model, combined with the proposed
method, achieved the highest average accuracy of 96.67%.

Keywords: artificial intelligence; deep transfer learning; data augmentation; Parkinson’s disease;
neurological disorders

1. Introduction

Parkinson’s disease (PD) is a progressive and incapacitating neurodegenerative dis-
order that primarily affects motor function, with symptoms often presenting subtly and
intensifying over time [1]. The disease is characterized by diverse motor symptoms such as
tremors, slow movement, and rigidity, as well as non-motor symptoms, including cognitive
impairment and sleep disturbances [2]. It mainly affects people over 65, but it has come on
earlier in recent years. The rates of disability and death from it are increasing much faster
than any other neurological disorder globally. More than 10 million people worldwide are
living with the disease in 2024. Particularly in Australia, the rates of Parkinson’s disease
patients are more severe. One in every three hundred and eight Australians has the dis-
ease, and there are approximately 37 new cases every single day [3]. Early detection may
enable the timely initiation of symptom management therapies, ultimately slowing disease
progression, enhancing the quality of life, and extending the life expectancy of affected
individuals [4].

Parkinson’s disease is a neurological disorder that is progressive and is marked by
five different stages. Stage 1 is mild symptoms with tremors and movement issues on only
one side of the body; stage 2 is a bit worse, with both tremors and rigidity affecting both
sides. Patients in stage 3 will lose balance and movements with frequent falls. In stage
4 and stage 5, they cannot live alone and likely find it impossible to walk or stand. The
traditional diagnosis of the disease is usually based on an assessment of clinical signs. The
Unified Parkinson’s Disease Rating Scale (UPDRS) is one of the most widely used clinical
rating scales, which includes the manifestation of a patient’s various motor symptoms like
facial expression, writing, walking, speaking, and drawing. However, this approach to
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diagnosis is prone to misclassification, as the non-motor symptoms in the early stages of
PD are very mild, and motor assessment relying only on human observation is challenging.
With the passage of time and the continued development of technology and techniques,
the advent of artificial intelligence (AI) has presented novel opportunities for healthcare,
particularly in the field of disease diagnosis and management. Leveraging the power of AI
could prove transformative in enhancing early detection and addressing current diagnostic
shortcomings. Researchers and doctors have been working for the past few years to identify
the disease correctly and promptly, for example, by using machine learning models to
analyze patients’ magnetic resonance imaging (MRI) and positron emission tomography
(PET) results to complete the diagnosis.

Several research studies have been conducted regarding using artificial intelligence
in medicine and healthcare [5–8]. Recently, more and more academic researchers are
attempting to use different deep learning algorithms in the classification tasks of detecting
Parkinson’s [9–12]. Haller et al. [13] presented a system that can help detect PD using
magnetic resonance images (MRI) because it is a neurodegenerative disease that probably
affects brain regions. A result of up to 97% accuracy at the individual level is achieved using
a support vector machine (SVM) analysis of a diffusion tensor image (DTI). There are some
studies that have used deep transfer learning in the analysis of DaTscan in the last three
years, where DaTScan is injected into the blood and, using special imaging equipment, scans
the head for detection [14]. DatScan imaging can also be used to diagnose PD, even when
patients are in a very early stage with less common parkinsonism clinical presentations [15].
The diagnoses of Parkinson’s using DatScan and clinical exams are similarly accurate.
These methods are commonly applied to diagnosis in hospitals and clinics.

Zham et al. [16] point out that the speed and pen pressure while using a pen to draw
patterns for PD patients are relatively low. Pereira et al. [17] introduced a method using
a smart pen with different sensors to extract visual and signal-based information from
healthy and PD patients. They invited them to complete a handwriting clinical exam; the
information collected from the exam is their dataset, with a result of 78.9% accuracy using
the Naïve Bayes (NB) classifier.

Basnin et al. [18] presented their methods using deep transfer learning with 91.36%
testing accuracy. In their study, the dataset used was only hand-drawn spiral images,
with 800 images. Das et al. [19] explore an advanced method for detecting Parkinson’s
disease through hand-drawn images by patients, leveraging a fusion of discrete wavelet
transform coefficients and histograms of oriented gradient features for improved accuracy.
They demonstrated the superiority of combining these techniques in extracting relevant
information and identifying crucial coefficients, achieving higher accuracy in disease
detection through machine learning methods, particularly noting the effectiveness of
random forest and support vector machine classifiers with spiral pattern images.

Based on the previous findings, although the diagnostic accuracy is relatively high
and stable, such a diagnostic strategy is time-consuming and costly. People with PD suffer
from changes in neuronal mechanisms that make it difficult to control body movements
and motor skills. Researchers have found it easier to identify PD by analyzing handwriting
or hand drawings [20]. Shaban [21] argues for using a fine-tuned VGG-19 model for
diagnosis based on spiral and wave handwriting patterns. The dataset used is small
and contains 102 wave and 102 spiral images. Data augmentation, like image rotation
augmentation, was used to minimize model overfitting. The CNN model achieved a
high accuracy of 88% and 89% for the wave and spiral images after applying 10-fold
cross-validation.

This paper employs deep transfer learning for the early diagnosis of PD. Six deep
learning models, namely VGG16, VGG19, ResNet18, ResNet50, ResNet101, and Vit, are used
on hand-drawn datasets to classify the disease. The dataset used consists of hand-drawn
spiral images and hand-drawn wave images. The data size is increased using AugMix
and PixMix augmentation techniques to improve the models’ performance, accuracy, and
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generalization. Moreover, a cosine annealing scheduler is used to enhance the learning
process of the models, especially for image classification tasks.

The paper has been organized accordingly: Section 2 describes the methodology used
in the paper, including different deep learning techniques. Section 3 presents the results
and discussion using the dataset with the proposed methodology. Finally, Section 4 shows
the conclusions and future work discussions.

2. Methodology

Figure 1 provides an overview of the experimental methodology. Initially, it is essential
to note that data about PD patients are typically limited due to confidentiality concerns.
Consequently, the dataset utilized in this paper, sourced from Kaggle, is relatively small,
comprising only 102 wave and 102 spiral pattern images. To mitigate this, pretrained deep
learning models are employed to mitigate the risk of model overfitting.
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The experiments are divided into two distinct branches. The first branch serves as the
control group and does not incorporate data augmentation techniques, while the second
branch leverages three different forms of data augmentation. Subsequently, the workflow
involves configuring model parameters and implementing a cosine annealing scheduler.
This scheduler facilitates fine-tuning network weights and expedites convergence toward
the optimal solution by dynamically adjusting the learning rate. The ultimate output of the
process is a binary classification, where “0” signifies a healthy condition and “1” indicates
the presence of PD.

2.1. Dataset Preprocessing

This study used a dataset of hand drawings from healthy individuals and Parkinson’s
patients curated by Adriano de Olivera Andrade and Joao Paulo Folado from the NIATS of
the Federal University of Uberlândia. Their data are collected from 12 healthy individuals
and 15 patients with PD. Each participant drew between three and four sine waves and a
spiral drawing. The dataset includes two types of patterns: spiral and wave. Both patterns’
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training and testing sets had 72 and 30 images, respectively. The dataset is shown in
Figure 2.
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Before the analysis, the dataset was split into training and test sets. All the handwriting
samples were used in all six models, which was a random selection. In the preprocessing
phase, the dataset images underwent sequential transformations through the application of
the compose function provided by PyTorch. The transformations were as follows: First, the
images were resized to 224 × 224 pixels, a standard input size for deep learning algorithms
like CNNs. Then, the images were normalized by setting each channel’s mean and standard
deviation to 0.5, which usually helped improve the stability and convergence of training.

2.2. Data Augmentation

Data augmentation is a technique to increase the diversity of training datasets by
introducing transformed versions of existing instances to avoid overfitting. It has been rec-
ognized as a practical approach to enhance the performance and generalization of machine
learning models. In this study, we performed fundamental geometric transformations,
like flipping and rotation, and complex manipulations, such as color jittering, cropping,
and synthetic image generation, using Generative Adversarial Networks (GANs). These
techniques increase the model’s robustness to variations in the input data and also help to
mitigate overfitting by artificially increasing the size of the training dataset. The following
augmentations are used in the paper.

First, the images were randomly flipped horizontally with a 0.5 probability to increase
the dataset’s diversity. Next, the images were randomly rotated by an angle within a
specified range, another augmentation technique.

Also, the AugMix algorithm generated augmented versions of the input images by
applying random transformations to each input image. Each augmented version of an
image was then preprocessed (e.g., normalized) and added to a ‘mixture’ image, which
was a weighted sum of the preprocessed augmented images. The weights for this sum
(ws) were drawn from a Dirichlet distribution. AugMix is a new way of augmenting
data to make machine learning models more robust and reliable. It was proposed by
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Hendrycks et al. [22] to mix different augmentations on a single input and combine them
probabilistically. The goal is to create more varied and realistic samples that enhance the
performance and robustness of the model.

The final augmented image is a convex combination of the original preprocessed
image and the mixture image, where the mixing coefficient (m) was drawn from a beta
distribution. The depth of the augmentation (i.e., the number of transformations applied in
sequence to each input image) was either fixed (if mixture_depth > 0) or drawn randomly
from {1, 2, 3}. The severity of the augmentation (i.e., the intensity of the transformations)
was controlled. Figure 3 presents some samples using the AugMix augmentation.
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Similarly, the PixMix augmentation method was applied to the dataset. PixMix [23]
is an effective data augmentation technique because it combines the advantages of both
mixing-based and transformation-based methods, leading to enhanced diversity in the
training data, which can improve the model’s robustness and generalization ability.

In the PixMix function, the original image and an image for mixing were taken as
input. A series of augmentations and mixing operations were performed on these images.
A mixing operation was randomly selected from the mixings and applied to the mixed
image, followed by an augmented version of the original or mixing image. The mixing
intensity was controlled by beta, and the operation was repeated a random number of times
(up to k, where k is set to four). The result was clipped to the range [0, 1] to ensure that it
was a valid image. If the flag was incremented, the original image had been augmented
before being mixed. Some samples using the PixMix augmentation are demonstrated in
Figure 4.
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Cosine Annealing Schedule

Cosine annealing schedulers, an effective learning rate scheduler, play an instrumental
role in enhancing the performance of machine learning models, especially in image classifi-
cation. Loshchilov and Hutter [24] argue that the learning rate is regulated based on the
cosine function, thereby helping a model converge optimally and preventing overfitting.

In the proposed study, the cosine annealing scheduler initiates with a high learning
rate, which is progressively diminished in accordance with a cosine curve until it attains a
predetermined minimum. Subsequently, the learning rate is increased again to a higher
value. This cycle is iteratively repeated to ensure that the model explores various local
minima within the error landscape. The learning rate for cosine annealing for each batch
within ith runs is shown below, where ηi

min and ηi
max define the ranges for the learning rate

and Tcur is the number of epochs that were performed.

ηt = ηi
min +

1
2

(
ηi

max − ηi
min

)
× (1 + cos

(
Tcur

Ti
π

)
) (1)

This approach has shown effectiveness when used in conjunction with data augmenta-
tion techniques. The cosine annealing scheduler is combined with the cyclic augmentation
technique in automatic speech recognition (ASR). It is revealed that this combination en-
ables the model to perform robust learning by providing various augmented data, thereby
improving the overall ASR system performance.

2.3. Deep Learning Models

After augmentation, six deep transfer learning models were used to analyze the datasets,
which are Resnet18, ResNet50, ResNet101, VGG16, VGG19, and ViT_base_patch16_224.

2.3.1. Residual Network (ResNet)

The Residual Network, commonly referred to as ResNet, represents a groundbreak-
ing development in deep learning, specifically engineered to facilitate the training of
significantly deeper neural networks [25]. The ResNet18 model consists of four distinct
components: the initial convolution, residual blocks, global pooling, and the fully con-
nected layer. A hallmark feature of ResNet lies in its introduction of residual blocks or skip
connections. These innovative elements enable the direct propagation of gradients to earlier
layers, effectively mitigating the vanishing gradient predicament. Rather than striving to
learn an absolute mapping from inputs to outputs, ResNet’s layers focus on acquiring the
residual, i.e., the disparity between the input and output of a sequence of layers. Each
fundamental block within ResNet comprises two sets of c‘onv2d,’ B‘atchNorm2d,’ and
R‘eLu’ layers. This transformative advancement has empowered the successful training of
networks exceeding one hundred layers, leading to significant performance enhancements
across diverse machine learning tasks.

The architecture of ResNet offers various versions, including ResNet18, ResNet50, and
ResNet101, each differentiated by its network depth. Among these, ResNet18 stands out
as the shallowest, with 18 layers, rendering it the fastest option in the lineup. It is often
preferred when computational resources or time constraints are present, yet there is a need
for relatively high performance. ResNet18 has demonstrated remarkable performance in
this research and delivered outstanding accuracy while minimizing time overhead.

2.3.2. Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) [26] is a deep learning model renowned for
its exceptional performance in handling various image recognition and computer vision
tasks. Its architectural elegance, characterized by the use of small (3 × 3) convolution filters
and deep layers, sets a groundbreaking standard within the deep learning community,
emphasizing the pivotal role of network depth in enhancing performance. VGGNet, a
prominent CNN architecture, comprises three main components: convolutional layers,
pre-logits, and classification layers.
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Convolutional layers constitute a critical component of VGGNet, featuring a series
of convolutional layers followed by ReLu activation functions and max-pooling layers.
This design effectively reduces the spatial dimensions of the feature maps while enhancing
depth, aiding in feature extraction. In the pre-logits section, fully connected layers generate
features or activations, which are subsequently transformed into logits before reaching
the SoftMax layers. The classification layer, the network’s final segment, produces class
scores. It encompasses global pooling, dropout, a fully connected layer, and a flattening
identity layer.

Furthermore, this study also incorporates the VGG19 model, which boasts more convo-
lutional layers than VGG16. VGG19 includes additional convolutional layers, allowing the
network to discern more intricate and nuanced features from the input images. However,
this augmentation also escalates the model’s parameter count, translating to lengthier
training times and an elevated risk of overfitting.

2.3.3. Vision Transformers (ViTs)

The ViT_base_patch16_224 model represents a notable variant within the ViT (vision
transformer) family that has garnered substantial attention. In this configuration, the input
image undergoes segmentation into 16 × 16 patches, forming a sequence employed as input
for the transformer. This approach enables the model to discern and learn relationships
between distinct patches, distinguishing itself from the localized focus of CNNs (convolu-
tional neural networks) [27]. The model’s operation involves dividing the input image into
small patches (in this instance, 16 × 16), linearly projecting each patch into a corresponding
embedding, and subsequently feeding these embeddings into the transformer architecture.

The ViT_base_patch16_224 model in this study comprises several key components:
PatchEmbed, a dropout layer, blocks, layer normalization, and the head. PatchEmbed
is the initial embedding layer responsible for partitioning the input image into fixed-
sized patches and linearly embedding them. Subsequently, dropout layers are applied
after introducing positional embeddings to the patch embeddings. The block section
plays a vital role in this vision transformer network. Each block includes a normalization
layer, an attention mechanism, and an Mlp (multi-layer perceptron). Following this, layer
normalization is applied to the output of the last transformer block. In summary, this model
architecture involves dividing input images into patches, embedding them, processing
them through a series of transformer blocks, and ultimately utilizing the transformer’s
output for classification.

In medical image analysis, the ViT_base_patch16_224 model exhibits promising appli-
cations. Given a sufficiently extensive dataset comprising pertinent medical images, such
as brain MRIs of individuals with PD, the model could undergo fine-tuning to identify
disease-indicative patterns. This potential application could facilitate early detection and
diagnosis, as outlined by Mei et al. [28].

2.4. Evaluation Metrics

In this paper, accuracy, precision, recall, and Matthews Correlation Coefficient (MCC)
metrics are used. Here, TPs (True Positives) indicate instances correctly identified as the
positive class, while FPs (False Positives) refer to non-target class instances incorrectly
labeled as positive. Conversely, FNs (False Negatives) represent target class instances
mistakenly classified as negative, and TNs (True Negatives) are correctly identified non-
target class instances:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)
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MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

3. Result

Numerous experiments were undertaken to determine the optimal accuracy for the early
detection of PD using deep transfer learning. Table 1 provides the classification accuracy per-
centages for different deep learning models (VGG16, VGG19, ResNet18, ResNet50, ResNet101,
Vit_base_patch16_224) across various augmentation methods (no augmentation, rotation and
flipping, AugMix, and PixMix) and two different datasets (spiral and wave).

Table 1. Classification accuracy (%) for various models using different augmentation techniques.

Augmentation
Methods Dataset VGG16 VGG19 ResNet18 ResNet50 ResNet101 Vit_base_patch16_224

No
Augmentation

Wave 92 93.33 86.67 81.32 85.33 68

Spiral 77.34 66 78.7 73.34 79.33 70

Rotation and
flipping

Wave 86.67 96.67 92.67 87.33 94 60

Spiral 80 90 86.67 87.33 84.67 86.67

AugMix
Wave 90 86.67 90 76.67 84.67 64

Spiral 83.33 80 86.67 83.33 81.33 73.33

PixMix
Wave 76.67 63.33 47.33 44 51.33 83.33

Spiral 46.67 53.33 52.67 50 47.33 86.67

With rotation and flipping data augmentation, VGG19 performed the best across
both the wave and spiral datasets, achieving the highest accuracy among the models.
Applying rotation and flipping data augmentation to the images in the dataset, VGG19
again excelled with the highest accuracy. For the spiral dataset, VGG19 and ResNet50
performed the best, with VGG19 having a slightly higher accuracy. AugMix was a more
advanced data augmentation technique that improved the accuracy for the wave dataset.
VGG19 maintained its high performance in the wave dataset, while in the spiral dataset,
the accuracy was similar to where there was no augmentation used. PixMix, on the
other hand, did not perform well in the wave dataset, with lower accuracy across all the
models. However, the spiral dataset improved the accuracy of some models, particularly
Vit_base_patch16_224 and ResNet18. According to Table 2, it was evident that the models’
accuracy improved after using cosine annealing.

Table 2. Classification accuracy (%) for various models with and without cosine annealing.

Methods Dataset VGG16 VGG19 ResNet18 ResNet50 ResNet101 Vit_base_patch16_224

W/O Cosine
Annealing

Wave 90 82 92.67 87.33 79.33 82.67

Spiral 79.33 83.33 83.33 82.67 86 66

Cosine
Annealing

Wave 92 96.67 92.67 87.33 94 83.33

Spiral 83.33 87.66 86.67 87.33 84.67 86.67

Overall, the choice of data augmentation method had a significant impact on model
performance. VGG19 consistently performed well, especially with rotation and flipping
augmentation and AugMix. ResNet18 also performed reasonably well in multiple scenarios.
The choice of the dataset also affected the results, with the wave dataset generally yielding
higher accuracy than the spiral dataset. The confusion matrix of VGG19 with rotation and
flipping augmentation is shown in Figure 5. According to the data in Table 3, the value of
MCC is 0.94, and the recall value equals 0.93. Moreover, Figure 5 presents the confusion
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matrix to highlight important details of the best-performing model on both the spiral and
wave datasets. Significantly, a model in the healthcare domain is more focused on recall
value because a high value of recall means predicting more accurately among people with
PD. In this case, they will not miss anyone who is a Parkinson’s patient, and it can have a
better chance of saving some lives.
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Table 3. Evaluation metrics of VGG19.

Model Dataset Accuracy Precision Recall MCC

VGG19
Wave 0.97 1 0.93 0.94

Spiral 0.87 0.92 0.80 0.74

Table 3 showcases the evaluation metrics of the model VGG19 with rotation and
flipping augmentation for Parkinson’s wave detection tasks. As depicted in Figure 6, the
training loss dwindled to 0, while the testing loss consistently hovered around 0.461. This
phenomenon can be attributed mainly to the VGG19 model’s intricate architecture featuring
19 layers and many parameters, predisposing it to overfitting, primarily when operating
on a relatively small dataset. To address this overfitting concern in future endeavors,
implementing regularization techniques such as L1/L2 regularization or dropout in the
model’s design may mitigate the problem, potentially leading to improved accuracy. In the
case of the VGG19 model employed for Parkinson’s wave detection, overfitting appears to
be a noticeable issue. Figure 7 shows prediction output samples from the VGG19 model
with augmentation and cosine scheduling.
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4. Conclusions

In this paper, various deep transfer learning models have been presented for the early
diagnosis of PD using hand-drawn spiral and wave patterns. Furthermore, different data
augmentation techniques, including some state-of-the-art augmentation techniques, such
as AugMix and PixMix, have been used to avoid model overfitting. Additionally, among
all the models introduced, it was observed that the VGG19 model outperformed the other
models with an accuracy of 96.67%. However, the target users are only the patients in
stage 1 and stage 2 or healthy individuals. A limitation of this diagnosis is that some PD
individuals in a very early stage would not experience tremors. Overall, early diagnosis
through image classification was found to be both feasible and convenient. This approach
allows for relatively early diagnosis in all patients, enabling timely intervention and disease
management. In the future, efforts will be made to enhance the results by incorporating
more data and exploring alternative detection techniques.
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