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Abstract: This study aimed to develop and implement a nanotechnology-based alternative to tradi-
tional tracers used in the oil and gas industry for assessing interwell connectivity. A simple and rapid
hydrothermal protocol for synthesizing carbon quantum dots (CQDs) using agroindustry waste was
implemented. Three commercial CQDs were employed (CQDblue, CQDgreen, and CQDred); the
fourth was synthesized from orange peel (CQDop). The CQDs from waste and other commercials
with spherical morphology, nanometric sizes less than 11 nm in diameter, and surface roughness
less than 3.1 nm were used. These tracers demonstrated high colloidal stability with a negative zeta
potential, containing carbonyl-type chemical groups and unsaturations in aromatic structures that
influenced their optical behavior. All materials presented high colloidal stability with negative values
of charge z potential between −17.8 and −49.1. Additionally, individual quantification of these
tracers is feasible even in scenarios where multiple CQDs are present in the effluent with a maximum
percentage of interference of 15.5% for CQDop in the presence of the other three nanotracers. The
CQDs were injected into the field once the technology was insured under laboratory conditions. Mon-
itoring the effluents allowed the determination of connectivity for five first-line producer wells. This
study enables the application of CQDs in the industry, particularly in fields where the arrangement
of injector and producer wells is intricate, requiring the use of multiple tracers for a comprehensive
description of the system.

Keywords: carbon quantum dots; fluorescence; interwell connectivity; simultaneous detection;
tracers; waterflooding; nanotechnology

1. Introduction

For the hydrocarbon industry, it is essential to predict the flow of fluids through
complex and deep geological formations during waterflooding and enhanced recovery
processes. The ability to predict fluid behavior has significant implications for reservoir
management and can help optimize production and recovery [1]. One strategy to accom-
plish this mission is to inject tagged fluids with discriminative tracers and monitor their
appearance in producing wells. This methodology has demonstrated its efficacy in precisely
delineating fluid displacement, heterogeneous reservoir structures, and impediments to
fluid flow. Its application enables more intricate and accurate modeling of reservoir dynam-
ics, thereby fostering the development of advanced strategies for field development [2]. A
desirable behavior of the tracers is that they remain in the injected phase without interacting
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with the formation and the crude oil. Other tracers, the partitioned ones, can selectively
display the signal just by the presence of oil [3]. They can indicate formation saturation
and are particularly useful in cases where the injected fluid and crude oil are miscible or
similar in composition. Combining these different types of tracers makes it possible to
understand fluid behavior in the reservoir and optimize enhanced oil recovery strategies
accordingly [4].

Tracers have been extensively employed in the oil and gas industry for 60 years.
Their applications in water erosion processes, hydrogeological inquiries, geothermal in-
vestigations [5], and well connectivity determination [6] are among the most important
and widespread tracer applications. Two predominant categories of tracers have been
employed for these diverse applications: radioactive and chemical. Quantifying the appli-
cation of these tracers in the oil and gas industry has been extensive due to their ability to
comprehensively delineate subsurface and near-well properties effectively. Despite their
prevalent usage, both exhibit limitations linked to their environmental footprint, the costs,
and the technical intricacies involved in their precise quantification [7]. Tritiated water
is a common radioactive tracer due to its similarity to normal water, making it useful for
measuring fluid flow without disturbing the chemical equilibrium in most reservoirs [8].
Other tracers are based on radioactive isotopes of metal cations such as Co-57, Co-60,
Cs-134, and Eu-154 [9]. Despite their utility, the radioactive nature of these compounds
presents several inherent problems, including biotic toxicity and difficulties with transport,
analysis instrumentation, and costs. However, they face significant environmental criticism.
Additionally, their quantification requires complex analysis methods such as gas chro-
matography, high-performance liquid chromatography (HPLC), and liquid scintillation
counting, making the process neither simple nor swift.

These factors have led to decreased interest in its use over time. As a result of this need,
technological advances and the availability of alternative tracer options have helped to
mitigate some of these problems [5]. Chemical compounds have replaced radioactive tracers
due to their variety, lower toxicity, and ease of production [6]. Benzoic acid derivatives are
commonly used to study interconnected wells. However, they have limitations related to
high concentrations for accurate detection and their potential interaction with formation or
oil [7]. Also, they are classified as recalcitrant and toxic to humans and animals [10]. As a
result, complex and safety-intensive instrumental methods have been developed for their
quantification, leading to higher operating costs and delays in obtaining results. These
challenges can result in inappropriate decision-making in the field [11].

Nanotechnology-based tracers have been proposed for use in the oil and gas industry
to overcome the difficulties related to conventional tracers. Significant laboratory-scale
investigations were conducted to assess the stability of carbon quantum dots (CQDs)
when exposed to metallic ions, high salt concentrations, pH fluctuations [12], and their
behavior within porous media under both static and dynamic conditions [13]. These
studies encompassed analyses of CQD movement within packed columns, fluorescence
intensity correlation with CQD concentration, and simulation of CQD transport within
sandstone cores saturated with oil using a modified 1-D advection-dispersion-reaction
(ADR) equation [14]. The results obtained from these experiments unveiled remarkable dis-
persion characteristics in aqueous environments, nanoscale dimensions, outstanding optical
properties, resilience to adverse conditions of salinity and temperature, and an extended
operational lifespan [15]. Notably, during the experiment, the recovery of CQDs after
displacement through a low-permeability core approached 76% in a water solution with
one wt% NaCl at 80 ◦C. These laboratory findings collectively demonstrate the favorable
performance of CQDs and suggest the potential for their scalable utilization.

The application of CQDs as tracers has exhibited promising outcomes at the laboratory
scale, yet field implementations have remained limited. Kanj et al. [16] evaluated specifically
synthesized and functionalized CQDs called “A-Dots”. Examination of these tracers revealed
detection thresholds within the parts per billion range. Deployment in an observation well,
utilizing a “huff-and-puff” scheme, allowed for a two-day sampling period, resulting in an
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impressive recovery rate exceeding 86% of the CQDs. Alkasar et al. [17] employed A-Dots
as tracers in a carbonate reservoir, where they were injected at an approximate 3000 mg/L
concentration. These tracers were identified in producing wells for 60 days post-injection,
indicating that the A-Dots exhibited an earlier appearance compared to conventional chemical
tracers. In another study, Franco et al. [15] synthesized carbon quantum dots derived from
Mortiño (Vaccinium Meridionale Swartz) extract and used them as tracers in a sandstone
formation under realistic laboratory and field conditions. The authors injected the obtained
nanomaterials at a concentration of 500,000 mg/L in Colombia. The evaluation of these tracers
spanned ten producing wells, revealing diverse interconnections within the field. The study
observed tracer bursts occurring in certain wells three days post-injection, persisting for an
additional 15 days. The initial occurrence was noted in another well after three days, enduring
for eight days. The authors highlighted a significant reduction in the time required for sample
analysis and a substantial 70% decrease in project costs compared to conventional tracer
methods. Currently, the injection of a single CQD as a tracer has been expanded in Colombia
in six different fields and 13 injection patterns [18], resulting in a cost reduction of about 90%
regarding the projects using conventional tracers.

These findings underscore the potential of carbon quantum dots as nanotracers, which
can replace traditional ones by being applicable and stable under various petrophysical
conditions. The increasing number of studies enhances knowledge about this technology,
enabling its global and secure adoption in the oil industry.

Although the findings from these applications are important, the primary limitation
for achieving a comprehensive connectivity description is that more than one tracer is
commonly required. Co-injecting tracers is frequently necessary to effectively visualize
and quantify channeling effects or the impact of multiple injection wells. Consequently,
applications thus far have been limited in their ability to fully leverage the technology in
complex arrangements where only the injection of a single quantum dot is undertaken [15].

To the best of our knowledge, only a single carbon quantum dot has been used in
simple patterns in the studies conducted to date. For complex well patterns, the most
common scenario involves using multiple tracers with simultaneous quantification in the
same effluents. Therefore, applications in which more than one carbon quantum dot is
employed as a tracer remain challenging.

Hence, the novelty of this study lies in the acquisition of diverse emission-length smart
nanotracers and their application and simultaneous detection in the field. The investigation
involves studying their interactions with rock and fluids, validating their safety for the
reservoir under real conditions, and the subsequent field injection to demonstrate well con-
nectivity. An additional contribution of this study is the obtention of carbon quantum dots
(CQDs) from agro-industrial waste, suggesting an eco-friendly route for CQD production.
This proposal significantly broadens the technological scope of nanotracers, particularly in
the intricate applications of CQDs as interwell nanotracers.

2. Materials and Methods
2.1. Materials

Four different types of carbon quantum dots were employed. Three CQDs were
purchased from Petroraza S.A. (Sabaneta, Colombia) and are labeled according to the “color”
of the emission wavelength as CQDblue, CQDgreen, and CQDred. The fourth one was
synthesized from orange peel (Nariño-Colombia) and labeled as CQDop. The cultivation
area is located at an altitude of 2108 m above sea level, with an average temperature of
20 ◦C and a relative humidity of 85%. All other reagents used were of analytical grade.
Ethylenediamine was obtained from Sigma Aldrich (Saint Louis, MO, USA), and ethyl
acetate and urea were from Merck Millipore (Burlington, FL, USA). Production water and
crude oil were obtained from Colombia’s central region oilfield.
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2.2. Nanotracer Synthesis

The orange peel nanotracer was synthesized using the hydrothermal carbonization
methodology proposed by Sabet et al. [19] with some modifications. The collected oranges
were washed twice with ultra-pure water and manually peeled; the organic material
(orange peel) was carbonized at 180 ◦C for 20 min. Two grams of the carbonized peels were
homogenized with 0.03 g/mL of urea and 0.06 g/mL of citric acid in 30 mL of distillate
water. The solution was subjected to ultrasound for 20 min to homogenize the mixture.
Finally, synthesis was conducted at 188 ◦C for 6 h in a hydrothermal autoclave reactor with
a Teflon chamber. After the reaction, a homogeneous solution was obtained, filtered, and
centrifuged at 6000 rpm for 20 min to remove insoluble residues. Finally, the supernatant
was collected and stored at 4.0 ◦C for future analyses.

2.3. Nanotracers’ Characterization
2.3.1. Physicochemical Characterization

Many techniques were employed for the physicochemical characterization of CQDs.
Initially, Fourier transform infrared spectroscopy (FTIR) was conducted using an IRAffinity-
1 FTIR instrument (Shimadzu, Kyoto, Japan) in transmittance mode with a resolution of
2 cm−1 over a range of 4000–400 cm−1 [20] to know the chemistry of the nanostructure.
Dynamic light scattering (DLS) was used to measure the CQDs’ hydrodynamic diameter.
To evaluate the stability of the hydrodynamic diameter measurement, measurements were
made in distilled water, water with 0.9% NaCl, and the supernatant of the static retention
test. Electrophoretic light scattering was employed for the determination of Zeta potential.
Both tests were conducted using a NanoPlus Zeta/nanoparticle analyzer (Micromeritics,
Norcross, GA, USA) at room temperature [21].

Morphological analysis was performed using transmission electron microscopy (TEM),
and images were captured with a Tecnai G2 F20 microscope (FEI, Hillsboro, OR, USA)
after preparing the sample using ultrasound to ensure good dispersion and obtain high-
quality images. Finally, Atomic Force Microscopy (AFM) was employed to determine the
surface roughness of the nanotracers using an AFM 5500 instrument (Agilent Technologies,
Chandler, AZ, USA). The images were analyzed with the Gwydion 2.62 software, and the
UV-visible absorption spectra of the CQDs were recorded using a Shimadzu UV 1800 UV
spectrometer (Kioto, Tokyo, Japan) with 1 nm step readings and with standard Q Quartz
glass 10 mm cuvettes, which have an optical path of 10 mm. Dispersions containing
100 mg/L of each of the nanotracers were used for the measurement.

2.3.2. Fluorescence Measurements

A PerkinElmer LS-55 (Waltham, MA, USA) spectrofluorometer was used to determine
the characteristic spectrum of the nanotracers [15]. Dispersions containing each nanotracer
at a concentration of 100 mg/L were prepared using distilled water. These dispersions were
introduced into the spectrofluorometer to establish the maximum excitation and emission
wavelengths. These specific wavelengths are the fluorometric conditions essential for the
distinct identification of each nanotracer. After confirming the specific excitation–emission
conditions, calibration curves were meticulously crafted to illustrate the relation between
concentration and fluorescence intensity emission. Solutions for the curve ranging from 1
to 500 mg/L were prepared by dissolving the nanotracer in distilled water. Subsequently,
the fluorescence intensity of each solution was measured under the pre-determined specific
excitation–emission conditions.

2.4. Fluid–Rock Interaction

To evaluate the interaction between rock (simulating reservoir mineralogy) and the
CQD dispersions, a detergency test (Supplementary Materials), changes in the wettability,
and static and dynamic retention tests were carried out as described below.
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2.4.1. Wettability Contact Angle

The wettability of porous media was determined by estimating the contact angle between
a synthetic core and a drop of water before and after immersion in crude for 24 h dry and then
in water with and without 100 mg/L of each CQD as described by Villegas et al. [22]. The test
was conducted by depositing a water droplet on the surface of the restored and treated cores.
The contact angle between the core and water is measured using an optical tensiometer Theta
(Biolin Scientific, Västra Frölunda, Sweden) equipped with a high-definition camera.

2.4.2. Static Retention Tests of Nanotracers

To evaluate the retention caused by the interaction between the rock and CQDs, a
static test was carried out as described by Diez et al. [23] with some modifications. A
batch-type adsorption setup with representative sand was used. Sand with 80% Quartz
and 20% Kaolinite was prepared and washed with an ethanol/water solution to remove
impurities and then dried in an oven. An amount of 20 g of washed sand was covered with
50 mL of CQD dispersion at 100 mg/L. The amount of adsorbed material was estimated
by the difference in the concentration calculated at the beginning and after 24 h using the
previously constructed calibration curves.

2.4.3. Dynamic Retention Test

The dynamic test methodology was carried out following the approach proposed by
Franco et al. [15]. To achieve the desired permeability, an artificial core was made from
previously washed, dried, and sieved sand. The test conditions are shown in Table 1.

Table 1. Reservoir operating conditions for the dynamic test.

Parameter Value

Porosity 20%
Mineralogy 80% Quartz and 20% Kaolinite

Pressure 2000 psi
Temperature 114 ◦C

SW 22%
Injection water salinity 800 ppm

The tracer injection was carried out following the setup represented in Figure 1.
Effluents were collected to measure their fluorescence using the PerkinElmer Fluorometer.
The data obtained allowed the construction of the nanotracer breakthrough curve.
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2.5. Technology Assurance and Field Implementation
2.5.1. Baseline

Before the injection stage, the natural fluorescence of produced water must be mea-
sured and periodically monitored. The natural fluorescence of the injection waters must
be known. It will be used as a control parameter to establish the CQDs’ presence after
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injection. Fifteen days before the CQDs’ injection, water samples were collected from the
production wells, and the fluorescence was analyzed in the laboratory.

2.5.2. Conventional Tracer Fluorescence

During the performance of this study, a fluor benzoic acid tracer is injected into
the field, so it is necessary to consider the fluorescence signal caused by this molecule.
Conventional tracer solutions at 1–1000 mg/L concentrations were prepared and evaluated
in the spectrofluorometer.

2.5.3. Simultaneous Quantification

This study held a significant challenge: concurrently injecting multiple nanotracers
utilizing carbon quantum dots. Consequently, before implementing these in the field, it
was imperative to assess the feasibility of independently quantifying each carbon quantum
dot (CQD), even in the presence of other nanotracers within the same dispersion. Four
dispersions were prepared, each with different concentrations of the four nanotracers, as
follows. Dispersions were prepared with the four nanotracers, each of them at different
concentrations of 10, 50, 250, and 500 mg/L. The concentration of each CQD was measured
in every dispersion. A comparison was then made between the prepared concentration and
the concentration calculated using fluorometric calibration curves. This analysis aimed to
ascertain the feasibility of quantifying each tracer in a mixture under the given conditions.

2.6. Field Implementation

The injection of CQDgreen occurred in January, and CQDblue was injected in March.
A total of 50 gallons of aqueous dispersion, containing 71 kg of each CQD, was injected
into wells I1 and I2, respectively. A 700 psi pump facilitated the injection process, with
operations paused for tracer disposal before recommencing for movement. Over one
year, the periodic monitoring of the effluents in the production wells took place. The
collected samples underwent processing to extract water and were then analyzed to detect
both CQDs. The baseline established before injection served as a comparison parameter,
determining the presence of CQDs in the outlet fluids.

3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy (FTIR)

This technique determines CQDs’ functional groups. Figure 2 shows the FTIR analysis
results for quantum tracer samples.
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Figure 2. FTIR spectrum of commercial carbon quantum dots CQDblue, CQDgreen, and CQDred,
and CQDop was synthesized from orange peel.
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Several chemical groups in CQD samples were identified throughout the spectrum.
According to Vieira et al. [24], the structure of a CQD is based on a core–shell shape
that can be graphitic crystalline (sp2) or amorphous (mixed sp2/sp3), depending on the
abundance of the occurrence of sp2 carbon in the core. Many functional groups related
to the components used during the synthesis steps can be attached to the core. Given
the nature of these nanoparticles, the presence of various carbon atoms bonded by triple
bonds (2127 cm−1) [25] and forming cyclic structures with carbon–carbon double bonds
(1651 cm−1) [26] was expected. The prevalence of unsaturations with sp configuration of
triple bonds remains consistent across all the carbon quantum dots investigated. However,
more pronounced picks in the CQDred FTIR spectrum exhibit more sp2 unsaturations. This
unique optical behavior, as elucidated later, is intricately linked to the specific hybridization
of electrons within the carbonaceous structure.

In addition to these common bands, it was possible to identify chemical groups present
exclusively in the commercial tracers. Carboxylic groups (1396 cm−1) [27] and hydroxyl
groups (1277 cm−1) [28] were detected. These two are strongly related to the materials’
negative charge surface (to be demonstrated later). Towards the end of the spectrum, the
presence of halogenated groups was also observed (667 cm−1) [29].

The fundamental differences in the chemistry of the commercial materials compared
to those synthesized according to the developed protocol can be directly associated with
the synthesis method and the raw materials used for their production. While the detailed
protocols of commercial products are unknown, the presence of atoms intercalating with
the fundamental molecule, such as fluorine (1070 cm−1) and nitrogen (1015 cm−1) [28], is
evident. These atoms modify the structure and behavior of the tracers, which is related to
their fluorescence patterns discussed later.

3.2. Zeta Potential and Dynamic Light Scattering (DLS)

The values obtained for the hydrodynamic diameter were 95.5 nm, 12 nm, 36 nm, and
37.4 nm for CQDgreen, CQDred, CQDblue, and CQDop, respectively. These measures were
significantly greater than those evaluated by TEM microscopy. TEM is an observation of the
individual nanoparticle, allowing for the edge of the CQD to be much more delimited. Authors
such as Lim et al. [30] connect this phenomenon to the measurement of small aggregates of
CQDs in aqueous dispersion using DLS. They suggest that factors such as sample concentration
effects or limitations of the equipment, given the small size of the CQDs, could lead to an
overestimation of the values of the hydrodynamic diameter of the CQDs. Measurements were
also conducted in a 0.9% NaCl solution, where differences < 3% were obtained regarding
distilled water with values of 94.8 nm, 12.1 nm, 36.9 nm, and 36.1 nm, respectively. These results
suggest that the colloidal stability of the evaluated CQD suspensions is high.

The zeta potential allows for identifying the surface charge of the CQDs and the
electrostatic contact that may occur between them [31]. The magnitude of the zeta potential
indicates the colloidal stability of a system. As mentioned by Larson et al. [32], the charge
(negative or positive) of the zeta potential is associated with the surface charge of the
nanoparticle in the dispersion at the medium’s conditions. Whether the value is positive
or negative, a high magnitude of the zeta potential value is generally associated with a
strong electrostatic repulsion between the nanoparticles, preventing them from coming
into close contact and aggregating. Therefore, higher zeta potential values indicate greater
stability against aggregation phenomena. The values obtained for the zeta potential of the
CQDs under study were −49.09 mV, −21.79 mV, −17.80 mV, and −20.32 mV for CQDgreen,
CQDred, CQDblue, and CQDop, respectively.

These results agree with Ateia et al. [33], who obtained CQDs from citric acid and orange
juice using hydrothermal synthesis and chemical oxidation techniques. When evaluating
the zeta potential of the synthesized CQDs, the authors observed negative values ranging
between −21 and −30 mV. These values are attributed to the presence of oxygen-containing
functional groups on the surface of the CQDs. Moreover, Clogston et al. [31] define CQDs
as strongly anionic when their zeta potentials fall below −30 mV. The values obtained for
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the CQDs in this study support their anionic nature. This observation is related to the FTIR
analysis, which reveals that CQDgreen exhibits a higher abundance of negatively charged
chemical groups on its surface than the other samples.

3.3. Morphology (TEM-AFM)

Transmission electron micrographs and atomic force microscopy were used to eluci-
date the morphology of the CQDs and the results are shown in Figure 3.
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Figure 3. TEM images of (a1) CQDgreen, (b1) CQDred, (c1) CQDblue, and (d1) CQDop; average
diameter histogram of (a2) CQDgreen, (b2) CQDred, (c2) CQDblue, and (d2) CQDop; and AFM
images of (a3) CQDgreen, (b3) CQDred, (c3) CQDblue, and (d3) CQDop.
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TEM micrographs allow us to determine the crystal morphology detected as parallel lines,
forming round structures that confirm the presence of nanocrystals. Detailed analysis of the
TEM images demonstrates a quite monodispersed and spherical morphology; these structures
have also been seen in the CQDs analyzed by Su et al. [34], which revealed that the CQDs are
zero-dimensional nanomaterials with diameters between 1 and 20 nm. The statistical analysis
of the micrographs allows for the calculation of the average diameters of CQDgreen, CQDred,
CQDblue, and CQDop as 8.5 nm, 5.7 nm, 3.9 nm, and 10.1 nm, respectively. The presence
of constant irregularities on the surface of the CQDs can be seen in the AFM images. The
average surface roughness was 3.1 nm, 2.1 nm, 2.9 nm, and 1.4 nm for CQDgreen, CQDred,
CQDblue, and CQDop, respectively. The CQDs’ morphology was similar to the findings of
Lim et al. [35] for carbon quantum dots synthesized using citric acid. These studies revealed
a thickness in the range of 1–20 nm. Authors such as Islam et al. [36] relate these defects to
imperfections or irregularities in the crystalline structure of the material, which are generated
naturally during its formation and could affect its ability to emit photoluminescence.

3.4. Spectrophotometric Properties

The interactions between light and certain chemical compounds allow us to determine
absorption patterns in the ultraviolet or visible regions [37]. These interactions have been
the basis for the study of UV-visible spectroscopy. UV-visible absorption spectra were
measured between 180 and 500 nm. Figure 4 shows the UV absorption spectrum of all the
carbon quantum dots under study.
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Figure 4. UV-Vis spectra of commercial carbon quantum dots CQDblue, CQDgreen, and CQDred
and CQDop synthesized from orange peel.

The bands observed between 200 and 300 nm correspond to electronic transitions of
aromatic structures with C=C unsaturation of the π→π* type and bonds associated with
functional groups containing oxygen present on the surface of the CQDs, and these are
consistently detected in all synthesized CQDs. The absorption band observed at 340 nm
is related to the n→π* electronic transition of the C=O bond present in the carboxylic
acid [38,39]. The absorption bands agree with the functional groups determined in the FTIR
analysis at wavenumber of 1651 cm−1 for the conjugated structures and 1396 cm−1 (related
to the sp3 carbon) of the carboxyl group. Shapiro et al. [40] suggest that the location of
absorption bands generally varies depending on the precursor and the synthesis technique.

According to Lakowicz et al. [41], fluorescence is an optical phenomenon in which
certain substances, called fluorophores, absorb light energy of a specific wavelength and
subsequently emit it as longer-wavelength light. This process occurs when the electrons
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of the fluorophore atoms or molecules are excited to higher energy levels by absorbing
photons. The fluorescence spectrum for the CQDs of the present study is shown in Figure 5.
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and (d) CQDop.

The fluorescence spectra allow for the identification of the maximum excitation and emis-
sion lengths of the fluorescence pattern. The lengths where the maximum excitation–emission
signals were found were 446–515 nm for CQDgreen, 550–577 for CQDred, 396–450 nm for
CQDblue, and 407–420 nm for CQDop. A classification based on emission length [42] reveals
that the analyzed CQDs correspond to cyan, yellow, blue, and violet light, respectively. Cer-
tainly, a single factor does not completely govern the mechanism by which carbon quantum
dots can emit energy. Studies related to the synthesis of CQDs with unique optical properties
describe factors such as the size [43], synthesis route [44], and precursors of the reaction [45];
passivation and surface coating [46]; as well as the presence of heteroatoms [47]. Variations
in experimental factors and these parameters have allowed authors to obtain CQDs with
emission lengths in a wide range (300–600 nm). Several anticipated theoretical explanations
exist to elucidate the emissive characteristics of CQDs, including the quantum size effect,
surface-state electron-hole radiation reorganization, and molecular-state luminescence emis-
sion mechanism [33]. Where the emission length shift is more toward the red, this shift is
attributed to structures with a higher conjugation. Particularly for CQDred, which has a
longer emission length (574 nm), a greater abundance of conjugated unsaturations is observed
in aromatic structures. The maximum emission lengths of the other CQDs correspond to
420 nm for CQDop, 450 nm for CQDblue, and 515 nm for CQDgreen, a strong shift in this
case, as sp2 hybridization allows for greater delocalization of the π electrons, which can favor
the absorption and emission of light at shorter wavelengths, such as those corresponding to
the color red.

The emission lengths found and the average sizes measured by TEM do not have a
clear correlation. Although the smallest CQD is blue (shortest emission length), for the
other CQDs, the size and emission length vary independently; therefore, the differences in
the fluorescence pattern of the CQDs studied could be more related to the chemical groups
present on the surface of the nanocrystal than to the size effect.

Once the optimal excitation and emission conditions have been identified, it is crucial
to verify the existence of a linear correlation between the fluorescence intensity measure-
ments under these conditions and the concentration of a sample containing carbon quantum
dots (CQDs). Figure 6 shows the evaluated intensity–concentration relationship between
10 and 500 mg/L for each nanomaterial evaluated.
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Figure 6. (a1) Emission spectra at different concentrations of CQDgreen; (a2) correlation of concentra-
tion and maximum emission intensity of CQDgreen. (b1) Emission spectra at different concentra-
tions of CQDblue; (b2) correlation of concentration and maximum emission intensity of CQDblue.
(c1) Emission spectra at different concentrations of CQDred; (c2) correlation of concentration and
maximum emission intensity of CQDred. (d1) Emission spectra at different concentrations of CQDop;
(d2) correlation of concentration and maximum emission intensity of CQDop.
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The relationship between concentration and intensity shows linearity for each of
the CQDs, with correlation coefficients (R2) up to 0.99 in all cases. Selecting a specific
excitation–emission pair for each CQD increases the specificity of the measurement. The
radiated energy is expected to be selectively absorbed by the molecular structures capable
of doing so at that wavelength and that are present in the nanoparticle, excluding others
in the surrounding environment [48]. This improves sensitivity, specificity, and substance
identification, resulting in more accurate and reliable measurements.

Henceforth, the developed curves will be used to determine the concentration of
the nanotracer in unknown samples. This approach allows for quantification by linear
interpolation using the specific tracer curve to be quantified.

3.5. Contact Angle Measurements

Changes in the wettability of the porous media were also measured [49]. This property
is crucial because it can affect the efficiency of the enhanced oil recovery processes. If
the rock is water-repellent, displacing oil through water injection can be challenging. In
this investigation, CQDs were not designed to change wettability behavior. However, it
is important to measure it as a control and technological assurance parameter and as an
indirect measurement of retention in the porous medium.

Wettability was calculated using the contact angle between a water droplet and a solid
surface at the point of contact. The contact angle values for the water in the absences of
nanomaterials and the cores that have been in contact with CQD dispersions at 100 mg/L
were as follows: 79.5◦ for the control sample, 78◦ for CQDgreen, 79.0◦ for CQDred, 76.5◦ for
CQDblue, and 78.9◦ for CQDop. A marginal reduction in the contact angle was observed
across all instances. These small changes suggest that there are no negative effects in
wettability when injecting the CQDs and that the nanomaterials can perform in an adequate
way as interwell tracers.

3.5.1. Static Retention Tests

The static retention test indicates the degree of interaction of the CQDs with the porous
medium and provides insight into the amount of tracer that could remain retained [50].
The results are presented as the retained concentration for each CQD and the percentage
regarding the initial concentration in dispersion. The obtained results are shown in Figure 7.

The results indicate that CQDgreen, CQDblue, and CQDop exhibit no retention within
the porous medium. Conversely, for CQDred, a retention phenomenon within the porous
medium is evident, independent of the initial nanotracer concentration in the solution.
On average, 21.4% of the introduced CQDred was retained. Sun et al. [51] studied the
transport and retention of CQD synthesized using a hydrothermal route, affirming that the
retention in saturated and unsaturated porous media is related to ionic strength and sand
grain size. According to the authors, retention increases with the increased ionic strength
because of the reduction in electrostatic repulsion. Due to the studies being conducted
with a representative rock, this outcome signifies that in media primarily composed of
Quartz and Kaolinite, an undesirable retention phenomenon could occur with the CQDred,
conflicting with the intended application.

The size of all four CQDs was analyzed through DLS after retention, with changes in
the average hydrodynamic diameter < 3% regarding the size before the tests (see Section 3.2).
This result corroborates the high stability of the selected nanomaterials under the conditions
evaluated.
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Figure 7. Static retention test in 80% Quartz–20% Kaolinite sand and dispersions with an initial
concentration of 100mg/L for (a) CQDgreen, (b) CQDred, (c) CQDblue, and (d) CQDop. The CQD
retained (%) was estimated by the difference in the concentration calculated at the beginning and
after 24 h. The mean deviation values correspond to <10% of the measurement.

3.5.2. Dynamic Retention Tests

Only one of the nanomaterials was selected for the test. Due to similarities in static re-
tention with CQDblue and CQDop, CQDgreen was chosen based on possibilities for scaling
up for a field trial. The injection breakthrough curves of CQDgreen and its corresponding
mass balance measured through detection in the effluents are shown in Figure 8.

The dynamic test results demonstrate that CQDgreen has no retention within the
porous medium, aligning consistently with the static test outcomes. The maximum tracer
concentration value is found after a 1.0 porous volume of injection, showing a piston-
type flow behavior capable of moving completely and without restrictions through the
porous medium. In addition, more than 95% of the total injected mass of the nanotracer is
recovered. This rapid decline in concentration strongly suggests that the introduced tracer
swiftly departs the formation upon contact, exiting the porous medium entirely.
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Figure 8. Dynamic retention tests of CQDgreen: (a) injection breakthrough and (b) mass balance.

3.6. Technology Assurance and Field Application
3.6.1. Baseline Construction

The baseline was constructed for each of the wells considered in the interwell connec-
tivity study, and spectrofluorometric measurements were taken according to the previously
established conditions for each CQD. Sampling was conducted on twenty different dates
before the injection of the CQDs to estimate the natural fluorescence of the production
waters. This approach will allow for the confirmation of the tracer’s presence in the eval-
uated well when the fluorescence signal exceeds the average of the natural signal plus
three times the standard deviation of the measurements made before the CQDs’ injection.
Figure 9 shows the baseline for one of the wells under investigation. However, it is worth
mentioning that the same procedure was carried out for all wells within the influence zone.
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Figure 9. Baseline fluorescence. Natural fluorescence of the production water for the producing well
1 measured at the conditions of each of the CQDs. Purple line: fluorescence reading at excitation
and emission lengths of CQDop. Blue line: fluorescence reading at excitation and emission length of
CQDblue. Green line: fluorescence reading at excitation and emission length of CQDgreen. Red line:
fluorescence reading at excitation and emission length of CQDred. Dashed lines represent the linear
trend of florescence measured over time.

According to the findings depicted in Figure 9, the intrinsic fluorescence of the water
sample consistently registers at levels below ten across all assessed dates under the param-
eters of all CQDs. This consistent trend suggests that the introduced chemical agents and
inherent constituents within the production water do not manifest a substantial fluores-
cence signal when analyzed under the specifications of the CQDs’ conditions. Comparable
patterns were observed in the remaining pertinent producing wells (data not presented).

3.6.2. Simultaneous Quantification

This experiment simulates a scenario where four CQDs are present in the same sample.
The results of the individual quantification of the four CQDs are shown in Table 2.

Table 2. Simultaneous quantification results of the tracers.

Tracer
Theoretical

Concentration
(mg/L)

Calculated
Concentration

(mg/L)

Interference
Percentage

(%)

CQDgreen

500 567.16

11.55
250 285.47
50 54.33
10 9.01

CQDred

500 550.10

14.32
250 281.02
50 58.45
10 11.80

CQDblue

500 538.42

7.90
250 246.71
50 47.77
10 11.81

CQDop

500 468.21

15.48
250 267.78
50 57.10
10 13.43

As observed in the results, despite having four CQDs present simultaneously in the
dispersion, the calibration curves allowed for a quantification of each CQD very close to
the theorical values, with deviations of 11.55%, 14.32%, 7.90%, and 15.48% for CQDgreen,
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CQDred, CQDblue, and CQDop, respectively. Despite a slight deviation in the measure-
ment when the CQDs were present simultaneously compared to the individual dispersions,
it is possible to quantify them with a good approximation. Each CQD has an independent
linear relationship, responding to its concentration and the fluorescence intensity read at
specific conditions.

Also, the conventional tracer does not exhibit a significant fluorescence intensity
within the evaluated concentration range. Consequently, when assessing the intensity
values on the calibration curve for each CQD, the concentrations were equal to zero. These
results suggest that the presence of the conventional tracer will not generate a significant
fluorescence signal that could interfere with the quantification of any of the CQDs if any of
them coexist with the traditional tracer.

3.7. Field Implementation

Post-assurance at a laboratory scale, CQDgreen and CQDblue were selected for the
field implementation. According to the results, the connectivity between the wells would
depend exclusively on the CQD detected in the effluents. The time required for its appear-
ance is correlated with the injector–producer well distance. The tracking and analysis of
the field samples took over one year.

The main difficulty in monitoring the nanotracer is the absence of water in some of
the effluents taken. Given that the fluorescence analysis had to be conducted in an aqueous
portion, some of the samples taken for the monitoring and detection of the nanotracers
were discarded since they consisted only of crude oil. However, the samples where water
was obtained were analyzed. A historical record of the injected CQD concentration was
created for each well under study. The historical record of one production well is described
in Figure 10.
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Figure 10. First nine months of tracer tracking: (a) CQDgreen and (b) CQDblue monitoring in
Producer Well 1.

As observed in Figure 10, both CQDs were effectively tracked and quantified in real-
time within the production waters. The detection of CQDgreen was noted in the fourth
month after its injection and was persistently detected for a consecutive three-month period.
Conversely, the blue tracer manifested one month after its injection and remained detectable
for six months. The proximity of the production well to the injection wells is consistent
with the timing of the appearance of each tracer in the effluents. A similar analysis was
conducted for each production well; a primary description is shown in Figure 11.
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Figure 11. Interwell connectivity determination with CQDs.

To date, the fluid flow pattern in the northern zone is completely described, where
some wells are only influenced by injection well two and others by both. The scope
of influence of injection well one was unknown, and the information derived from this
study is important, especially for the planning of future enhanced recovery projects in the
studied pattern. Prior to the monitoring period, the injection of two conventional tracers
(fluorobenzoics) and two nanotracers was conducted in four inverted 5-point patterns.
As of the current stage, the conventional tracers have not yet been detected during the
monitoring, whereas the monitoring of the CQDs has been carried out. Given their rapid
response times and analytical precision, the study remains ongoing to achieve a more
thorough and detailed characterization of the area. Nonetheless, these preliminary findings
are closely aligned with geological studies and the spatial arrangement of wells within
the pattern.

The carbon quantum dots employed in this study are devoid of heavy metals known
for their environmental toxicity. However, addressing environmental concerns related
to quantum dots remains intricate due to the diverse nature of this nanomaterial cat-
egory. Quantum dots encompass a broad and heterogeneous range of nanomaterials,
distinguished by variations in size, charge, concentration, coating, surface modifications,
oxidative stability, and optical properties. Consequently, determining their environmen-
tal implications, including absorption, distribution, metabolism, excretion, and toxicity,
hinges upon numerous factors stemming from intrinsic physicochemical properties and
environmental conditions. Thus, comprehensive and targeted investigations are imperative
to ascertain the environmental safety of these nanomaterials.

4. Conclusions

This study proposes an efficient and successful application of carbon quantum dots as
fluid flow descriptors in a complex reservoir. The transition from a laboratory scale to field
implementation allows for the positioning of the technology as feasible and has promising
results. To achieve the above, an eco-friendly protocol for synthesizing nanotracers using
agro-waste such as orange peels as the main precursor was developed. The chemical,
physical, morphological, and optical properties were comparable with commercial CQDs
that were included in the study. It was found that for all the CQDs evaluated, the diameter
was between 3.4 and 10.1 nm, with a zero-dimensional spherical shape.

The fluid–rock interactions revealed that the CQDs studied do not alter or modify
the porous medium. The natural properties of water remain unaltered by the presence
of the nanotracer particles. Moreover, protocols for the individual quantification of the
nanotracers, even in scenarios with multiple tracers, are proposed. The optical behavior
of these nanoparticles is inherent to their chemical nature and remains unmodified by
the presence of other particles. Therefore, it is feasible to implement them in fields with
complex arrangements of injection and production wells.
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Although the carbon quantum dots used in this work were not synthesized using
heavy metals and they are presumed to be environmentally harmless, detailed studies of
their ecotoxicity should be developed to evaluate the possible environmental implications.

The sample tacking during the study period allowed us to identify some of the main
interwell connections, and the time and well in which the nanotracer was present was
consistent with the geological studies. These preliminary results represent an important
growth for nanotracer technology and propose a safe and eco-friendly alternative.
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using 80% Quartz, 20% Kaolinite as solid phase and solutions with 100 mg/L of a. CQDgreen, b.
CQDred, c. CQDblue, and d. CQDop. Refs. [15,52–54] are cited in the supplementary materials.
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