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Abstract: Using a top-down magnetron sputtering technique with a high deposition-rate, a one-step
method for preparing germanium (Ge) hybrid film is presented. At present, graphite film is used as a
current collector because it is flexible, self lubricating, and possesses a stress–strain-relieving property.
In order to further suppress the volume changes of the Ge, a multilayered electrically conductive
nickel film is deposited between multilayered Ge films. The cells are cycled at a current density of
200 mA g−1. An initial discharge and charge capacity of 1180.7 and 949.3 mAh g−1 are achieved
by the prepared integrated pyramid patterned Ge composite film anode, respectively. The average
capacity was maintained at 580 mAh g−1 after 280 cycles. In the rate capability measurement, the Ge
composite demonstrated a reversible capacity of 1163.1 mAh g−1. It is easily made using magnetron
sputtering, which is widely accepted in the industry. A physical approach to increase pure Ge’s
specific capacity and its cycle life for LIBs is demonstrated in this work.

Keywords: germanium; graphite film; lithium-ion battery; magnetron sputtering

1. Introduction

One element with a relatively high abundance on the Earth’s surface is germanium
(Ge). It has special energy band structure, which is classified as a semiconductor. Based
on this semiconductor characteristic, this element has been utilized in semiconductors,
catalysts, optical fibers, and sensors [1–5]. Graphite has been commercially available
for many years. Based on the application and study of carbon anodes, the ion storage
mechanism was further revealed. It also aroused researchers’ interest in studying other
materials, such as silicon (Si), stannum, plumbum, etc. Ge has been also extended to the
field of lithium-ion batteries (LIBs) as a result of the rapid advancement of science and
technology [6–13].

Through the research of materials, these batteries finally turned into devices suitable
for use in daily life. LIBs, which provide power for electric vehicles and personal computers
and support a new energy generation, have sparked widespread public concern [14–19].
The LIBs’ anode materials, which primarily consist of carbon materials, a semiconductor
alloy, and metal oxide, play an important role. Though many factors affect the performance
of the LIBs, numerous methods have been employed to improve their performance [20–29].
An artificial structure design of an anode material could optimize the original structure
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of the materials, improving their specific capacity and cycle life. Theoretical simulation
revealed the mechanism of anode materials in the discharge– charge process, which could
provide a suggestion for material research and development. The theoretical capacity of
graphite material is lower than that of the Ge (~1624 mAh g−1), reaching 372 mAh g−1.
When Ge is used as anode material for LIBs, a serious issue arises. The volume of the
Ge alloy formed with lithium-ions will increase to 300% of its natural volume, allowing
for high specific capacity. Following a de-alloying process, the volume of the Ge-based
alloy will shrink. Meanwhile, the Ge particles will clump together during the subsequent
process, resulting in higher resistance and a longer diffusion path for lithium-ions [30–32].
To achieve high capacity and a relatively long cycle, it is important to address the nega-
tive aspects of Ge. A variety of methods and strategies have been employed to achieve
the abovementioned objective. Ge can be prepared for use in nanoparticles, nanotubes,
nanowires, and film, which display excellent cycling performances. Among the various
methods, one that was used to improve electron transport and maintain the electrical
contact in anode materials was the use of conductive additives [33,34]. In order to re-
duce volume changes, Ge nanoparticles could be combined with one-dimensional carbon
nanostructures [35–38]. The one-dimensional carbon material provides good electrical con-
ductivity along its length and could be grown on the current collectors. By electrospinning
and then applying heat reduction, Ge clusters were enclosed in the nitrogen-doped carbon
nanofibers. After 50 cycles, the prepared hybrids offered a capacity of 1266.7 mAh g−1 at a
current of 100 mA g−1. The capacity marginally fell below average with an increase in the
current. The capacity of the Ge hybrids was 938.6 mAh g−1 at 1 A g−1 for 50 cycles. The
capacity was maintained at around 600 mAh g−1, even when cycled at a current density of
8 A/g. The carbon nanofibers were used during the design process to provide superior
electrical conductivity, as well as space for Ge clusters. The Ge clusters’ hybrid anode’s
superior electrochemical characteristics were a result of this structure’s design [39].

Due to its unique Dirac electronic band structure, high room temperature carrier
mobility of 230,000 cm2/V s, visible transparency of 97%, exceptional conductivity of
106 S/m, and thermal conductivity of 5000 W/m K, graphene has been used in a variety
of industries in areas such as hydrogen storage, electronic devices such as transistors,
and field emission displays [40–46]. With its high specific surface area, graphene has
also been applied as an electrode material for electrochemical energy devices, such as
batteries, supercapacitors, fuel cells and solar cells. The template-assisted in-situ reduction
method was used to create the three-dimensional interconnected porous graphene [47].
Then, in order to be employed as anode materials, the Ge nanoparticles were equally
distributed throughout the porous graphene. After 100 cycles, the synthesized Ge/porous
graphene anode achieved a high capacity of 1102 mAh g−1 at 0.2 C. At a high electrical
current of 5 C, it also had an excellent rate capacity of 494 mAh g−1. The composites’
three-dimensional porous graphene improved the materials’ electronic conductivity and
reaction kinetics, while also providing enough buffer area to minimize volume changes
during the cycling and preserve the anode’s structural integrity. Graphene with a different
structure could improve the performance of the electrode materials. The flexible graphene
framework, which served as an anode for LIBs, was distributed with Ge nanoparticles. In
the first cycle, the nanocomposite exhibited a high Coulombic efficiency of 80.4%. With a
capacity retention of 84.9% after 400 complete cycles, it demonstrated a reversible capacity
of 675 mAh g−1 at a current density of 400 mA g−1 [48].

Non-carbon materials are also being studied in LIBs. Titanium dioxide (TiO2) is a
common material for solar cells and catalysts [49,50] and it is also used for Ge-based
LIBs [51]. Dealloying of the GeTiAl ternary alloy in mild conditions made it easy to
create a macroporous Ge skeleton that was wrapped by TiO2 particles [52]. TiO2 particles
prevented the Ge skeleton from coming into direct contact with electrolytes by acting as
an outer buffer wall for the Ge skeleton. The prepared anode’s high reversible capacity of
774.8 mAh g−1 at 3.2 A/g after 300 cycles was optimal. Ge with a covering configuration
could successfully mitigate its volume changes to drag out its cycle life and further develop
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its electrochemical properties [53]. Using scalable ball milling, Ge-particles were embedded
in the thin graphite nanoplatelets. After 200 cycles, the prepared anode had a capacity of
822 mAh g−1 at 0.1 A/g.

The binder and conductive agent that were typically present in traditional Ge-based
electrode materials had the potential to boost the stability and the electrical conductivity,
but they also decreased the energy density of the whole [54–60]. The mass of the binder
would occupy a certain proportion of that of the whole electrode, which could not provide
energy storage. As a result, binder-free Ge-based anode material promised to elevate the
electrochemical performance [19,31,61,62]. The nanostructure was created by electrochem-
ical etching with hydrofluoric acid and plasma enhanced chemical vapor deposition of
a Ge film onto the metallic substrate. After 1000 cycles, the binder-free Ge anode had a
coulombic efficiency of 99.6% and a reversible capacity of 1300 mAh g−1 at 1 C. The stability
of the electrode could be attributed to the fact that Ge’s film structure effectively dampened
the volume fluctuations.

The analysis above suggests that the design of the nanostructure effectively enhanced
the Ge’s electrochemical properties. Additionally, the energy density of the whole electrode
increased as a result of the anode material’s decrease in the binding properties. In order
to prepare Ge-based composites with a novel structure and enhance their electrochemical
performance, it is desirable to combine the aforementioned methods. A top-down, high-
deposition-rate method for producing a Ge hybrid film is presented in this paper in the
form of a one-step procedure. The flexible and self-lubricating properties, as well as the
good thermal and electrical conductivity of graphite film could also help alleviate stress–
strain properties. Magnetron sputtering, which is capable of successfully preparing metal
and semiconductor films, was used to deposit Ge on the graphite film substrate. The
Ge’s volume fluctuation could be effectively mitigated by using a film pattern. A layered
structure was created to further suppress the Ge’s volume fluctuations. First, a graphite
film substrate was coated with a nickel film, and then the nickel film was coated with a Ge
film. A nickel film sandwiched between the Ge film and the graphite substrate could not
only effectively connect the two, but also lessen the impact of volume changes.

The morphology of the prepared Ge composite film’s cross-section resembled pyra-
mids. Cycled at a current density of 200 mA g−1, initial discharge and charge capacities of
1180.7 and 949.3 mAh g−1 were achieved by the pyramid-shaped Ge composite film anode,
respectively. After 280 cycles, it maintained an average capacity of over 580 mAh g−1. The
preparation did not contain many complicated chemical reactions because of the physical
method. In this study, a physical approach to enhance pure Ge’s specific capacity and
lifecycle for LIBs was demonstrated.

2. Experimental Section
2.1. Raw Materials and Methods

The graphite film was treated at 3073 K under argon atmosphere in the graphitization
furnace. Its average thickness was about 25 µm. The Ge target material was purchased
from Beijing Goodwill Metal Technology Co., Ltd. (Beijing, China) with a purity of 99.999%.
The nickel target material had a purity of 99.995%.

The designed composites were prepared via magnetron sputtering equipment, which
was provided by the SKY technology development Co., Ltd. (Shenyang, China), Chinese
Academy of Sciences.

The density functional theory (DFT) was applied to simulate the adsorption behavior of
Li ion on the surface of anode materials, as implemented in the Vienna ab initio simulation
package (VASP). The projector augmented wave (PAW) method was adopted to describe
the interactions between ions and electrons. The generalized gradient approximation
(GGA) in the form of Perdew, Burke, and Ernzerhof (PBE) was used to describe electron
exchange and correlation. The plane-wave cutoff was set to 400 eV. The Brillouin zones
were sampled with 2 × 2 × 1 Monkhorst-Pack meshes. The structures were fully relaxed
until the maximum force on each atom was less than −0.05 eV Å−1 and 10−5 eV. A vacuum
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space of at least 15 Å was inserted along the z direction to avoid any interactions between
the periodically repeated images. The van der Waals interaction has been considered using
the DFT-D3 scheme.

2.2. Characterizations and Electrochemical Evaluation

Field-emission scanning electron microscopy (SEM, JSM-7001F) and field-emission
transmission electron microscopy (TEM, JEM-2100F) were used to observe the microstruc-
ture of the samples. The microstructure of the samples was also studied by the Raman
spectra (HORIBA Jobin Yvon, LabRam HR800, λ = 532 nm). X-ray photoelectron spec-
troscopy (XPS) was performed with a Kratos Axis Ultra DLD spectrometer equipped with
a monochromatic Al Ka source (15 Kv, 20 mA).

CR 2016-type coin cells were assembled in a glovebox with Ar atmosphere. Li foil was
used as the counter electrode and reference electrode, with microporous polypropylene film
(Celgard 2400, South Lakes Drive, Charlotte, NC, USA) as the separator. The electrolyte
was composed of 1 M LiPF6 in ethylene carbonate-dimethyl carbonate (1:1 by volume) and
5 vol.% vinylene carbonate. The cells were galvanostatically discharged and charged using a
battery test system (LAND CT 2001A model, Wuhan Jinnuo Electronics Ltd., Wuhan, China)
in the voltage range of 0.01–2 V at room temperature. The electrochemical workstation was
purchased from Shanghai Chenhua Instrument Co., Ltd. (Shanghai, China) (CHI660E).

3. Results and Discussion

The Vienna Ab Initio Simulation Package (VASP) was used to apply the DFT cal-
culations to theoretically analyze the lithium–ion storage of the Ge and carbon material.
In Figure 1a,b, the 0 eV position represents the Fermi energy level. Figure 1b depicts
the density of states (DOS) curves of Ge, carbon, and lithium. At the Fermi energy level
position, the DOS of the Ge–lithium alloy was higher than that of the carbon–lithium
alloy. Figure 1c,d demonstrates the optimized geometry structure of pure Ge and carbon
structures with lithium-ion. The Li+ adsorption energies of the pure Ge and carbon struc-
tures were −0.1379 eV and 0.7821 eV, respectively, indicating the Ge had higher affinity
toward Li+.
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Figure 1. DFT analysis: (a) DOS of the Ge–lithium and carbon–lithium alloy; (b) DOS of the Ge,
carbon, and lithium; (c,d) optimized geometry structure of pure Ge and carbon structures. The green
atoms represent lithium atoms. The brown atoms represent carbon atoms. The dark blue atoms
represent Ge atoms.
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In view of the DFT calculation, an advanced novel construction of nano Ge/graphite
composite film was prepared using magnetron sputtering equipment. Figure 2 depicts a
one-step procedure for preparing a pyramid-patterned germanium composite film anode.
The nickel material was first deposited on the graphite film with 10 watts for 5 min. Then,
the Ge material was deposited on the nickel film with 18 watts for 10 min. According to
the sequence above, a series of experiments were performed. Finally, the nickel material
was deposited on the upper Ge film with 10 watts for 5 min, which covered the whole film.
During the experimental process, the working gas was argon gas with a purity of 99.999%
at room temperature. The prepared Ge composite film was used as the anode material for
the LIBs.
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Figure 2. Schematic illustration of the fabrication process of the pyramid-patterned Ge film anode by
magnetron sputtering.

Thus far, the anode material generally used for LIBs is graphite, which is resistant to
acid, alkali, and corrosion [20,63]. Graphite powder can provide a capacity of 370 mAh/g
for LIBs. The anode composites’ current collector can be made of graphite film because of
its good electrical conductivity [64,65]. Figure 3a displays the obvious layer structure of
the cross-sectional part of the graphite film. The layers of graphite were tightly stacked.
Figure 3b mainly contains a carbon element, after the line scanning test along the yellow
line of Figure 3a. In Figure 3c, the surface appearance of the graphite film looks like clouds.
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In order to prepare the Ge composite film anode, the Ge and nickel were designed
and grown on the graphite film. The nickel had strong interfacial bonding with Ge and
graphite [66–71]. The nickel was first deposited on the graphite film. Then, the Ge was
deposited on the nickel film. As per the arrangement above, 25 tests were carried out.
Once again, the nickel was deposited on the upper Ge film, which covered the whole film.
The surface appearance of the prepared sample is shown in Figure 4a,b. It seemed as
though there were many particles on the surface. With the increase in the magnification,
the particles are clearly observed in Figure 4c,d. They have the appearance of pyramids,
which is an undulating and closely connected arrangement. There is a clear connection
between the smaller pyramid and the larger pyramid nearby. The pyramids had a nickel
coating on their surface, which was the result of the most recent nickel deposit.
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Figure 4. SEM images of surface Ge composite film with different magnification: (a) 200 times,
(b) 500 times, (c) 1000 times, and (d) 5000 times.

The map scanning was used in the SEM test to find all the elements in Figure 5a. The
components are depicted in Figure 5b. Many different-colored dots joined together. The Ge
element is represented by the red dots in Figure 5c. The green dots represent the carbon
element in Figure 5d, which matched the graphite film. The nickel element is represented
by the blue dots in Figure 5e. In Figure 5f, each element’s presence indicates distinct
peak patterns. The three components were equally distributed across the whole area. The
experiment’s design was supported by the aforementioned outcomes.
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5 

Figure 5. SEM images: (a) the surface part of the Ge composite film, (b) the mapping pattern of
Figure 3a, (c) the Ge element distribution map, (d) the carbon element distribution map, (e) the nickel
element distribution map, and (f) the element mapping of the Ge, carbon, and nickel.

The various magnification images were chosen to examine the transverse section of
the Ge composite film. In Figure 6a, the transverse of the Ge composite film is slim, and
the piece of film was curled up. In Figure 6b, the upper light-colored part of the material
is the Ge composite film, and the dark-colored part is the graphite film substrate. The
appearance of the Ge composite film is similar to pyramids with well-spaced distribution
in Figure 6c. As depicted in Figure 6d, the pyramids adhered well to the graphite film
without showing any phase separation. It also indicates that the graphite film had been



Coatings 2023, 13, 555 8 of 16

combined with the Ge composite film. This was beneficial to the structural stability of the
integrative composite material used as anode material for LIBs.
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Figure 6. SEM images: (a,b) the transverse section of the Ge composite film with low magnification
and (c,d) the pyramids pattern of Figure 4a with high magnification.

The Ge composite film was grown on the graphite film using nickel as a binder. The
results of TEM test are exhibited in Figure 7a. Its mapping analysis covered the entire
area. The nickel is represented by the green dots. The Ge is represented by the red part of
the sample in Figure 7c. The blue dots represent the graphite film substrate in Figure 7d.
Once again, this confirmed that the prepared samples contained graphite, nickel, and
Ge. Additionally, it was possible to draw the conclusion that the structure design of the
Ge composite film that was growing on the graphite was feasible. The integrated hybrid
resulted in good structural stability, which helped reduce the material’s stress–strain impact.

The prepared sample’s crystallite was identified using Raman spectroscopy, as shown
in Figure 8a. In the composite in Figure 8b, the Ge peaked at 262.98 cm−1 [30,38,72]. The
nickel played a role in the apex at 536.4 cm−1. Pyramid-patterned Ge/nickel film was
deposited on the graphite film. The Raman was sensitive to the upper Ge/nickel film of the
Ge composite material. The signal of the Ge and Ni was strong in the Raman spectra. The
height of the pyramids was not uniform. The bigger pyramids were on the scale of about a
few hundred nanometers. Thus, the carbon signal was relatively weaker than that of the
Ge/nickel film. In Figure 8c, the carbon peak can be observed at 1574.01 cm−1, which was
related to the graphite film [73].
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Figure 8. Raman spectra of the Ge composite film (a), Raman spectra of the Ge (b), and Raman
spectra of the graphite (c).

The XPS survey of the Ge composite film developing on the graphite is shown in
Figure 9a. It is the Ge 3d peak at 32.38 eV in the Figure 9b [52]. At 184.08 eV, the Ge 3s
peak underwent testing. At 125.08 eV, the Ge 3p peak was identified. Additionally, the
Ge 2p peak matched the peak of 1251.08 eV [39]. The manufactured samples’ graphite
substrate, as shown in Figure 9c, was related to the C 1s peak at 284.78 eV [74,75]. As
depicted in Figure 9d, the Ni 2p peak was observed at an energy of 855.68 eV [68,76]. The
aforementioned findings showed that the three types of elements’ XPS characteristic peaks
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agreed with the basic composite material design scheme. There was no other material
involved in the final composite.

 

2 

 
 
 
 
9 

Figure 9. XPS survey: (a) the Ge composite film growing on the graphite, (b) the Ge 3d peak, (c) the
C 1s peak, and (d) the Ni 2p peak.

As shown in Figure 10a, the cycle performance of the Ge composite film was tested at
a current density of 200 mA g−1. The diameter of the graphite film collector was 16 mm.
The average mass loading was 0.37 milligrams, which included the Ge film and nickel film.
The initial discharge and charge capacities of the Ge composite film electrode were 1180.7
and 949.3 mAh g−1, respectively, with a Coulombic efficiency of 80.4% (Figure 10c). The
first discharge energy density was 494.5 Wh/kg and the first charge energy density was
686.1 Wh/kg. Without chemical bonding, the Ge composite had physical bonding. The
Ge composite had full volume expansion/contraction when cycled at low current density,
repeatedly producing the SEI. The SEI became comparatively stable after about 30 cycles,
and the reversible capacity was reduced to around 600 mAh g−1. Then, the Ge composite
maintained an average capacity of over 580 mAh g−1 after 280 cycles.

In the Ge composite, the graphite film was used as a substrate for Ge film to grow on
in addition to being employed as a negative current collector. The good flexible and self-
lubricating properties of the graphite film substrate lessened the negative impacts of stress
and strain caused by the volume change of the Ge materials, and successively prevented
shedding between the active material and the collector. In order to increase the stability of
the material, the nickel film was chosen as a metal binder between the graphite film and
the Ge film. Both the graphite and nickel exhibited strong electrical conductivity, which
improved the conductivity of the whole material. The multilayered nickel between the Ge
films effectively alleviated the volume changes, improving the structural stability. In order
to reduce the contact between the Ge and electrolyte, the Ge composite material was coated
by the nickel layer during the final procedure. The integrated Ge composite film electrode’s
electrochemical performance was enhanced jointly by the aforementioned comprehensive
measures. The only equipment used to prepare the composites was magnetron sputtering.
Additionally, the Ge-based composite film was prepared with few chemical reactions.



Coatings 2023, 13, 555 11 of 16

Coatings 2023, 13, x FOR PEER REVIEW 13 of 19 
 

 

ite film and the Ge film. Both the graphite and nickel exhibited strong electrical conduc-

tivity, which improved the conductivity of the whole material. The multilayered nickel 

between the Ge films effectively alleviated the volume changes, improving the structural 

stability. In order to reduce the contact between the Ge and electrolyte, the Ge composite 

material was coated by the nickel layer during the final procedure. The integrated Ge 

composite film electrode’s electrochemical performance was enhanced jointly by the 

aforementioned comprehensive measures. The only equipment used to prepare the 

composites was magnetron sputtering. Additionally, the Ge-based composite film was 

prepared with few chemical reactions. 

In order to effectively execute the discharge–charge cycles, the Ge was able to ex-

pand and contract in nature, thanks to its thin composite film structure. As the cycle 

number increased, a stable cycle stage was indicated by the obvious overlap in the ca-

pacity–voltage curves, as depicted in Figure 10c. 

For the use of LIBs in power applications, rate capability is a crucial factor. It was 

found that the corresponding rate capability with the various stepwise rates increased 

from 50 mA g−1 to 1000 mA g−1 and then switched back. The Ge composite film delivered 

the reversible capacity of 1262.7, 954.5, and 720 mAh g−1 after 5, 10, and 15 cycles, respec-

tively. The reversible capacity started to decrease as the current densities increased. At 

the densities of 800 and 1000 mA g−1, the Ge composite film obtained the reversible ca-

pacity of 164 and 122.8 mAh g−1, respectively (Figure 10b). The Ge composite film elec-

trode tested at 50 mA g−1 had a reversible capacity of 1163.1 mAh g−1 following the 

high-rate measurements, which was close to the value of the fifth cycle. The data above 

demonstrate that the Ge composite film is a suitable anode material for LIBs due to its 

high rate capability. As shown in Figure 10d, the first five capacity–voltage curves were 

tested at 50 mA g−1. The first reversible capacity of the Ge composite was 1389.6 mAh g−1. 

The voltage platform was about 0.24 V, corresponding to half of the reversible charging 

capacity.  

 

Figure 10. (a) Cycle performance of the Ge composite film. (b) Rate capability of the Ge composite 

film. The discharge—charge curves of the germanium composite film (c) at a current density of 0.2 

A g−1 and (d) at a current density of 0.05 A g−1.  

Figure 10. (a) Cycle performance of the Ge composite film. (b) Rate capability of the Ge composite
film. The discharge—charge curves of the germanium composite film (c) at a current density of
0.2 A g−1 and (d) at a current density of 0.05 A g−1.

In order to effectively execute the discharge–charge cycles, the Ge was able to expand
and contract in nature, thanks to its thin composite film structure. As the cycle number
increased, a stable cycle stage was indicated by the obvious overlap in the capacity–voltage
curves, as depicted in Figure 10c.

For the use of LIBs in power applications, rate capability is a crucial factor. It was
found that the corresponding rate capability with the various stepwise rates increased from
50 mA g−1 to 1000 mA g−1 and then switched back. The Ge composite film delivered the
reversible capacity of 1262.7, 954.5, and 720 mAh g−1 after 5, 10, and 15 cycles, respectively.
The reversible capacity started to decrease as the current densities increased. At the
densities of 800 and 1000 mA g−1, the Ge composite film obtained the reversible capacity
of 164 and 122.8 mAh g−1, respectively (Figure 10b). The Ge composite film electrode
tested at 50 mA g−1 had a reversible capacity of 1163.1 mAh g−1 following the high-rate
measurements, which was close to the value of the fifth cycle. The data above demonstrate
that the Ge composite film is a suitable anode material for LIBs due to its high rate capability.
As shown in Figure 10d, the first five capacity–voltage curves were tested at 50 mA g−1.
The first reversible capacity of the Ge composite was 1389.6 mAh g−1. The voltage platform
was about 0.24 V, corresponding to half of the reversible charging capacity.

Figure 11 depicts a typical cyclic voltammetry (CV) measurement of the Ge composite
film electrode in the voltage range of 0.01–2.0 V at a sweep rate of 1 mV/s. During its
cathodic half-cycle, the cathodic peak was clearly observed at a potential of 1.2 V, as shown
in Figure 11a. This possibly resulted from the formation of the SEI film. In the anodic
scan, there were obvious anodic peaks appearing at 0.51, 1.11, and 1.56 V. This might
have resulted from the structure and component of the anode material. After the first
activation cycle, the electrode material was relatively stable. After the next two cycles, the
peak potential shifted to 0.49, 1.06, and 1.56 V, which overlapped quite well. During the
second and third scan, the anodic peak potential (0.49 V) was very close to cathodic peak
potential (0.53 V). A good electrochemical performance was demonstrated by the fact that
the corresponding peaks and curves overlapped well during the subsequent scan.
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Figure 11. (a) Cyclic voltammetry curves, (b) Nyquist plots of the Ge composite, (c) equivalent circuit,
and (d) the relationship between phase and frequency.

As shown in Figure 11b, the electrochemical impedance spectroscopy (EIS) measure-
ments confirmed the electrical conductivity of the Ge composite film [77]. The electrochem-
ical impedance measurements were performed at an AC voltage of 5 mV amplitude in the
100 KHz to 0.001 Hz range. A semicircle and a straight short sloping line made up the
EIS spectra. The semicircle at the high-frequency region might result from the formation
of the SEI. The straight short sloping line at low frequency was mainly related to the
lithium diffusion impedance. The straight diffusion tail suggested that the Ge composite
film facilitated the diffusion and transport of lithium-ions between the electrode and the
electrolyte, reducing the lithium-ion diffusion resistance. The equivalent circuit is demon-
strated in Figure 11c, where C represents the capacitance, Re is the electrolyte resistance,
Rct represents the charge transfer resistance, Zw represents the Warburg impedance, Rf
represents the resistance of the surface film and contact, and Q represents the constant
phase angle element. The values of Rct and Rf were about 330 and 40 ohm, respectively.
The nickel layer covered the whole surface of the anode material, which made it difficult
for the electrolytes to wet the electrode material. Additionally, the Ge was a semiconductor,
which had lower electronic conductivity compared with that of the good conductor. In
the prepared Ge composite film, both the graphite film and nickel film had good electrical
conductivity, enhancing the electrical conductivity of the entire electrode. As shown in
Figure 11d, it had a protruding peak in the high frequency region, which was related to the
first semicircle in the Nyquist plots. In the medium frequency region, this peak probably
resulted from the interfacial charge transfer impedance. The lithium-ion diffusion usually
corresponded to the low frequency.

4. Conclusions

In conclusion, a top-down method of high deposition-rate magnetron sputtering was
used to prepare the Ge hybrid film in a single step. The pyramid-patterned Ge composite
film anode delivered an initial discharge and charge capacity of 1180.7 and 949.3 mAh g−1,
respectively, which was tested at a current density of 200 mA g−1. The reversible average
capacity was over 580 mAh g−1 after 280 cycles. It also had good rate capability. The Ge
composite returned to its reversible capacity of 1163.1 mAh g−1 at a current density of
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50 mA g−1. For LIBs, this work demonstrates a physical approach to improve the specific
capacity and cycle life of pure Ge.
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