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Simple Summary: Extracellular vesicles (EVs) are cell-derived structures that play a vital role
in intercellular communication and have potential as drug delivery platforms. Physiologically
based pharmacokinetic (PBPK) modeling can be employed to predict the behavior of EVs in the
body, including absorption, distribution, metabolism, and excretion. This information is crucial
for assessing the quality, safety, and efficacy of EV-based therapeutics. By integrating data on EV
characteristics and physiological processes, PBPK models can optimize drug delivery system design,
such as EV size and composition, administration route, and drug dosage. Future research may benefit
from computer-based modeling approaches in EV-based therapeutic development.

Abstract: Extracellular vesicles (EVs) are lipid membrane bound-cell-derived structures that are a
key player in intercellular communication and facilitate numerous cellular functions such as tumor
growth, metastasis, immunosuppression, and angiogenesis. They can be used as a drug delivery
platform because they can protect drugs from degradation and target specific cells or tissues. With
the advancement in the technologies and methods in EV research, EV-therapeutics are one of the
fast-growing domains in the human health sector. Therapeutic translation of EVs in clinics requires
assessing the quality, safety, and efficacy of the EVs, in which pharmacokinetics is very crucial. We
report here the application of physiologically based pharmacokinetic (PBPK) modeling as a principal
tool for the prediction of absorption, distribution, metabolism, and excretion of EVs. To create a PBPK
model of EVs, researchers would need to gather data on the size, shape, and composition of the EVs,
as well as the physiological processes that affect their behavior in the body. The PBPK model would
then be used to predict the pharmacokinetics of drugs delivered via EVs, such as the rate at which
the drug is absorbed and distributed throughout the body, the rate at which it is metabolized and
eliminated, and the maximum concentration of the drug in the body. This information can be used to
optimize the design of EV-based drug delivery systems, including the size and composition of the
EVs, the route of administration, and the dose of the drug. There has not been any dedicated review
article that describes the PBPK modeling of EV. This review provides an overview of the absorption,
distribution, metabolism, and excretion (ADME) phenomena of EVs. In addition, we will briefly
describe the different computer-based modeling approaches that may help in the future of EV-based
therapeutic research.

Keywords: extracellular vesicles; exosomes; nanoparticles; PBPK modeling; pharmacokinetics;
toxicity; drug delivery

1. Introduction

Extracellular Vesicles (EVs) are nonliving, small, membrane-bound vesicles that are
released by cells and play an important role in intercellular communication. They are
classified based on their size and biogenesis: Microvesicles (MVs), now also defined as
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large EVs (l-EVs) [1], are derived from the plasma membrane and range in size from
0.1 to 1 micrometer. Exosomes, now also defined as small EVs (s-EVs) [1] are derived from
endosomes and range in size from 30 to 100 nanometers [1]. In addition, EVs bigger than
1 micrometer were released following apoptosis (i.e., Apoptotic Bodies) or by cancer cells
(namely oncosomes) [2,3]. EVs are present in all body fluids, including blood, urine, saliva,
and cerebrospinal fluid, and carry a diverse range of biomolecules, such as lipids, proteins,
and nucleic acids [4]. The biogenesis of EVs is a complex process that varies depending
on the cell type and the physiological or pathological context. In general, the biogenesis
of EVs involves the formation of a multivesicular body (MVB) within the cell, which then
fuses with the plasma membrane, releasing the vesicles into the extracellular space [4]. The
biogenesis of EVs is described in detail in later sections.

EVs play a role in a wide range of physiological and pathological processes, including
cell growth, differentiation, and death, as well as in the development and progression
of various diseases [5,6]. They are also being investigated as potential diagnostic and
therapeutic tools [7]. The mechanisms of intercellular communication mediated by EVs are
not fully understood, but it is thought that the transfer of biomolecules such as proteins,
lipids and nucleic acids between cells plays a critical role [1]. This transfer of biomolecules
can alter the gene expression and protein expression of the recipient cell, leading to changes
in cell behavior, such as proliferation, differentiation, or apoptosis [1].

In a disease context, EVs were found to be involved in cancer progression and metas-
tasis, as they can transfer oncogenic proteins and genetic material to surrounding cells,
thereby promoting the growth and spread of cancer [8]. EVs are also being explored as
a means of delivering drugs and genetic material to specific cells and tissues, as they
have the ability to target specific cell types and tissues and can protect the payload from
degradation by the body’s immune system [9]. Due to their ability to carry a diverse range
of biomolecules, EVs are also being investigated as potential diagnostic tools, as they can
be used to monitor disease progression and as a source of biomarkers for early detection
of diseases [10]. It is important to note that EV research is still in its early stages, and
more research is needed to fully understand the mechanisms and potential applications of
these vesicles.

To explore the use of EVs as a treatment option, a detailed understanding of their
pharmacokinetics is essential. This can be achieved through the application of physiolog-
ically based pharmacokinetic (PBPK) modeling, which can provide information on the
absorption, distribution, metabolism, and excretion (ADME) of EVs. This review is the first
of its kind in that it describes the detailed application of PBPK modeling in EV research.
This manuscript is structured in a way that allows for a thorough understanding of both
EVs and PBPK modeling. Initially, the review will discuss the details of EVs, including their
structure, biogenesis, composition, and related technologies used in EV research. The later
part of the manuscript will focus on the ADME properties of EVs and provide a detailed
description of PBPK modeling and its application in EV research.

2. Extracellular Vesicles: A Brief Sketch

When first discovered, EVs were thought to be simply a mechanism for cells to clear
away debris by expelling unwanted materials into the extracellular space [11]. However,
in recent years, as research has progressed and technology has advanced, it has become
clear that these nanosized particles possess a wide range of properties that were previously
undiscovered. These particles, which are released by most cells, contain a variety of
molecular signals in the form of proteins, mRNA, miRNA, DNA, and lipids [1,8]. These
signals play a crucial role in various cellular functions throughout the human body.

EV research was initially undervalued, as reflected in the limited number of publica-
tions from 2003 to 2012. However, as techniques for isolating and characterizing EVs have
improved, research on EVs has gained more attention, as evidenced by the large increase
(around 10 times) in publications on EVs in the current decade (2013–2022) (Figure 1). This
trend is expected to continue to grow exponentially in coming years. PBPK modeling is
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not a new approach and has been used in literature since 1970, but there is still a lack of
literature on the application of PBPK modeling in EV research in the past decade, with only
one literature found in the past ten years [12]. The article by Modh et al. (2021) [10] is not a
dedicated PBPK study, but rather a search output in PubMed based on specific keywords.
It focuses on the in vitro to in vivo correlation within a compartmental model, which is one
application of PBPK modeling.
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This highlights (Figure 1) the potential for PBPK modeling to greatly enhance EV
research. The number of publications on EVs alone is much greater than the number
of publications on EVs in combination with PBPK modeling. Three different key terms,
i.e., PBPK, Extracellular Vesicles, and Extracellular Vesicles + PBPK, were searched in
PubMed to retrieve the number of publications during the mentioned time frame with no
filters applied.

As EVs contain informational materials in the form of nucleic acids, proteins, and
metabolites produced by host cells, researchers have leveraged this property of EVs to
investigate disease biomarkers and therapeutics. Studies have demonstrated the great
potential of EVs as a cell therapy in preclinical and clinical settings [13–15]. In order to fully
harness the safety and efficacy properties of EVs on a large scale, it is important to have
a detailed understanding of their pharmacokinetics. PBPK modeling is a tool commonly
used by drug developers, which is composed of mathematical equations and can predict
the pharmacokinetics of drugs or chemical entities [16]. The application of PBPK modeling
to EVs will be discussed in later sections.

3. Structure and Composition of EVs

EVs are composed of a lipid bilayer enclosing inner lumen encasing bioactive molecules
derived from donor cells [17]. The lipid bilayer of EVs is composed of a variety of lipids,
including phospholipids, sphingolipids, and cholesterol (Figure 2). The phospholipid
components of the EV membrane are similar to those of the plasma membrane from which
they are derived, but the lipid composition of the EV membrane may be different from
that of the parent cell [17]. The composition of EVs can vary depending on the cell type
and the conditions under which they are produced. For example, exosomes derived from
cancer cells may have a different composition compared to exosomes derived from healthy
cells [17]. The intraluminal vesicles of EVs contain a variety of biomolecules, including
protein, nucleic acid, lipids, and metabolites.
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Proteins: EVs contain a wide variety of proteins, including enzymes, signaling
molecules, structural proteins, and cytoskeletal proteins. The protein content of EVs
can vary depending on the cell type and the conditions under which they are produced [18].
In addition, there are various transmembrane proteins (such as CD9, CD63 and CD81) and
various kinds of receptor proteins that are also present on the EV surface [19–21]. Nucleic
acids: EVs contain small amounts of RNA, including mRNA, miRNA, and long non-coding
RNA [22]. The RNA content of EVs can vary depending on the cell type and the conditions
under which they are produced. Metabolites: EVs contain small amounts of metabolites,
such as sugars and amino acids [22].

The content of EVs can also include various other biomolecules such as signaling
molecules. These biomolecules are involved in a wide range of physiological and patholog-
ical processes, including cell growth, differentiation, and death, as well as in the develop-
ment and progression of various diseases [17].

4. Biogenesis of EV

The biogenesis of EVs refers to the process by which these vesicles are formed and
released from cells. There are two main classes of EVs, MVs and exosomes, which are
distinguished by their size, origin, and biogenesis [19]. MVs are formed by the shedding of
plasma membrane fragments and can be released from cells through various mechanisms
such as exocytosis and ectosomes [19]. They are formed by the outward budding of the
plasma membrane, which results in the formation of small vesicles ranging in size from
0.1 to 1 micrometer. Exosomes originate from the endosomal system, emerging as intralu-
minal vesicles (ILVs) within multivesicular bodies (MVBs) [19].

The biogenesis of EV is a complex process that involves multiple steps and the par-
ticipation of different components. One of the key players in the biogenesis of exosomes
is the endosomal sorting complex required for transport (ESCRT) machinery, which is
composed of several other proteins including HSP 90, ALIX, and TSG 101 [19,23]. HSP
90 is a chaperone protein that is responsible for the folding and stability of other proteins,
and plays a role in the biogenesis of exosomes by interacting with the ESCRT machinery.
As mentioned earlier, the ESCRT complex is a group of proteins that are responsible for
sorting and packaging cargos, including proteins and lipids, into vesicles for transport
to different cellular locations [24]. The ESCRT machinery is composed of four main sub-
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complexes: ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III [23]. These subcomplexes work
together to recognize, recruit and sort cargos into intraluminal vesicles (ILVs) in the endo-
somal compartment. ESCRT-0 is responsible for recognizing and recruiting the cargos to be
sorted, ESCRT-I is responsible for the formation of the ILVs, ESCRT-II is responsible for the
scission of the ILVs from the endosome and ESCRT-III is responsible for the final fission
of the vesicles from the plasma membrane, releasing the exosomes into the extracellular
space [19]. Further, ALIX is involved in the formation of intraluminal vesicles (ILVs) within
the endosomal compartment, and plays a role in the biogenesis of exosomes by interacting
with the ESCRT-III subcomplex [19]. In addition, TSG 101 is also involved in the final
fission of the vesicles from the plasma membrane and plays a role in the biogenesis of
exosomes by interacting with the ESCRT-III subcomplex [19]. It is important to note that
not all exosomes are formed by the ESCRT-dependent mechanism. Exosomes can also be
formed by other mechanisms such as shedding of the plasma membrane and direct fusion
between the plasma membrane and endosomes [19].

5. Technology Advancement and EV Research

The advancement of technology plays a crucial role in the progress of life science
research. As technology improves, so too does our understanding and capabilities in
specific areas of life science. Research on EV relies heavily on technological advancements,
from the generation of EVs to their isolation and characterization. The development of
more advanced techniques for isolating and characterizing EVs has allowed for a greater
understanding of their properties and functions. For example, the development of new
methods for isolating EVs, such as ultracentrifugation, size-exclusion chromatography,
and affinity-based methods, has allowed for the isolation of EVs with greater purity and
yield [25]. This has enabled researchers to study the specific biomolecules and signaling
pathways that are associated with EVs.

Isolation methods: There are a variety of methods used to isolate EV from biological
fluids, such as blood, urine, and cerebrospinal fluid. Each method has its own advantages
and limitations, and the choice of isolation method will depend on the specific character-
istics of the sample and the research question being investigated. Some of the commonly
used isolation methods include:

Ultracentrifugation: This method is still considered as a gold standard for EV isolation.
It involves centrifuging a biological sample at high speeds (100,000× g) to separate EVs
from other components in the sample based on their size and density [20,26]. This method
is widely used due to its simplicity, high yield, and purity of the isolated EVs [26]. However,
it has some limitations, such as the need for large volumes of starting material and the
potential for loss of some EV subpopulations [20]. It also requires highly trained personnel
to handle the ultracentrifugation.

Size-exclusion chromatography (SEC): This method separates EVs based on their size
by passing a biological sample through a column filled with beads of a specific size [20]. One
of the most common SEC available commercially is a qEV column from Izon Biosciences [27].
These columns have beads with a defined pore size that only allows the passage of particles
smaller than that pore size [28,29]. This method is widely used due to its high yield and
purity of the isolated EVs. However, it has some limitations, such as the need for large
volumes of starting material and high cost.

Affinity-based methods: This method uses specific binding molecules, such as antibod-
ies, to selectively isolate EVs from a biological sample [30]. This method is widely used due
to its high specificity and selectivity in isolating EVs [30]. However, it has some limitations,
such as the need for large volumes of starting material, high cost, and the potential for loss
of some EV subpopulations.

PEG precipitation: Precipitation methods are utilized to isolate EVs by exploiting
their solubility characteristics. Addition of polyethylene glycol (PEG), with an average
molecular weight of 10 kDa, is commonly used to increase hydrophobic interactions among
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EVs and between EVs and other substances. Consequently, water is excluded, and EVs can
be pelleted after incubation and via a single low-speed centrifugation step [31].

Ultrafiltration: Ultrafiltration is a separation method based on molecular size and is
one of the simplest methods for exosome separation. Exosomes are obtained by removing
impurities through one or more filtering membranes with different pore sizes or the molecu-
lar weight cut off (MWCO). The pollutants larger than MWCO are quantitatively held back
by the filtering membrane, while other components (exosomes) smaller than the MWCO
can pass through the filtering membrane structure along with the permeate. Depending
on the driving force, ultrafiltration can be classified as electric charge, centrifugation, and
pressure [32].

Characterization methods: Additionally, the advancement of imaging technologies,
such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM),
has allowed for the visualization of EVs at higher resolutions, providing insights into their
structure and biogenesis [33]. The advancements in the field of genomics and proteomics
have also played a critical role in EV research, by allowing the characterization of the molec-
ular composition of EVs at a large scale [18,34]. This has led to the identification of new
biomarkers and therapeutic targets for various diseases. In addition to the imaging technol-
ogy development, biophysical methods also play an important role in the characterization
of EV. Some of them are Western blot analysis, zeta sizer, nanoparticle tracking analysis
(NTA), Tunable Resistive Pulse Sensing (TRPS), fluorescence-activated cell sorting (FACS),
and Dynamic Light Scattering (DLS). The major methods for isolating and characterizing
EVs are illustrated in Figure 3.
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Furthermore, new technologies were developed in the field of nanotechnology, which
allows for the manipulation of EVs for therapeutic applications, such as targeted drug
delivery, by modifying the surface of EVs [35]. In recent years, advancements in modeling
software and the integration of machine learning and artificial intelligence have greatly
impacted the field of drug discovery research by revolutionizing the way it is conducted,
especially in disease therapeutics [36,37].
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5.1. Extracellular Vesicles and Liposomes—Similarities and Differences

The interest in lipid-based drug delivery systems has grown in recent years, with
researchers exploring new ways to improve drug delivery. Although the use of EVs as
a drug delivery system is still an emerging field, liposomes are widely studied and well-
established as a drug delivery system [38,39]. Given the similarities in physiochemical
properties between EVs and liposomes, studying liposomes can provide valuable insights
into the potential applications of EVs in drug delivery [40]. In this section, we will compare
the similarities and differences between liposomes and EVs (Figure 4), highlighting the key
takeaways from each field that are relevant to pharmacokinetics [40].
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EV and liposomes are both spherical, bilayer structures composed of lipids, but there
are some important differences between them (Figure 4).

Origin: EVs are naturally occurring structures that are released by cells into the
extracellular space [41], while liposomes are artificially created in the laboratory [42].
Composition: EVs are composed of lipids, proteins, and nucleic acids that are derived from
the host cells, while liposomes are composed of synthetic lipids that are not derived from
host cells [40]. Biogenesis: EVs are formed via the endosomal-sorting complex required for
transport (ESCRT) machinery [23], while liposomes are formed via the process of hydration
and sonication of lipids [42]. Function: EVs are shown to play a role in intercellular
communication [1], while liposomes are primarily used as drug delivery vehicles [39].

In our context we would be more interested in the similarities in the pharmacoki-
netics between Liposome and EVs. Some of the similarities include: (1) Size: Both EVs
and liposomes have similar sizes, ranging from 20 to 1000 nanometers. This small size
allows them to evade detection by the immune system and to penetrate deep tissues [40].
(2) Surface markers: Both EVs and liposomes can be engineered to express surface markers
that allow for their targeting to specific cell types or tissues [40]. (3) Long circulation
time: Both EVs and liposomes have a long circulation time in the bloodstream, allowing
them to reach distant sites in the body. (4) Biocompatibility: Both EVs and liposomes
are biocompatible, meaning that they do not cause adverse reactions in the body [40].
(5) Drug encapsulation: Both EVs and liposomes can encapsulate drugs, protecting them
from degradation and increasing their circulation time [38,43]. (6) Both can be used as a
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vehicle for cell-free therapeutics and gene therapies. (7) Once taken up the cells, they both
follow the endocytic pathway and release their payload [40].

Currently there are no review articles that specifically focus on the pharmacokinetics
modeling of EVs. However, liposomes are extensively studied in this regard, and their
similarities in structure and the endocytic pathway make them a valuable resource for
understanding the pharmacokinetics of EVs. In this manuscript, we will use the knowledge
gained from studying liposomes to better understand the potential applications of EVs in
drug delivery.

5.2. Extracellular Vesicles and Nanoparticles: PBPK Modeling

Our approach involves leveraging the insights and modeling strategies obtained
from prior investigations of nanoparticles and pharmacokinetic modeling to ascertain
their potential transferability to the realm of EVs. Dr. Lin has performed a pioneer study
by developing a PBPK model of gold nanoparticles in rats [44]. He further compared
the model development approach between the traditional and new route specific data.
He discovered that the traditional approach of PBPK modeling for small molecules can-
not be compared with nanoparticles due to different physiochemical characteristics and
metabolic behavior [44]. Hence, multi-route PBPK models for nanoparticles should be
developed using route specific data. For PBPK parameterization and optimization, Dr.
Lin utilized a Bayesian approach with Markov chain Monte Carlo (MCMC) simulation for
the nanoparticles, and later converted to a web-based interface using the Shiny package
of R [44]. He further employed quantitative structure–activity relationships (QSAR) and
implemented multivariate linear regression models to establish robust predictions for key
biodistribution parameters pertaining to specific routes of administration [44]. The results
demonstrated that, irrespective of the administration route, the primary determinants
governing endocytic/phagocytic uptake rates were identified as the size and surface area of
the gold nanoparticles. Furthermore, the Zeta potential emerged as a significant parameter
in accurately estimating the exocytic release rates after intravenous (IV) administration [44].
This study can provide a foundation to develop a PBPK for EVs.

6. EVs in Clinical Research

Recent advancements in technology for EV isolation and characterization have led
to an increase in the use of EVs in clinical trials [45]. EVs were shown to have potential
as a therapy for various diseases, with studies showing the use of mesenchymal stem cell
(MSC)-derived EVs in regenerative medicine are a suitable model for experimental and
clinical trials [46]. In clinical trials, the application of EVs is typically categorized into five
different areas, with approximately 50% of trials focusing on the use of EVs as biomarkers,
and the remaining 50% investigating the use of EVs in therapy, cancer vaccines, drug
delivery, and analysis [47]. Here, we have listed some important clinical trials related to
EVs that are either completed or ongoing, divided into three different disease conditions:
cancer, coronavirus, and cardiovascular diseases, as shown in Supplementary Table S1.

7. ADME of EVs

The ADME processes are critical in determining the disposition of a pharmaceutical
entity within an organism. Despite the growing interest in EVs as a potential drug delivery
system, the metabolism of EVs has not been extensively studied. In this review, we will
consider EVs (loaded with the active pharmaceutical compound) as a single entity and will
discuss the absorption, distribution, and excretion parameters.

7.1. Absorption

The most important principle in pharmacokinetics theory is drug absorption, which
refers to the transportation of unmetabolized drugs from the site of administration to the
body’s circulatory system [48]. Absorption is a crucial parameter in pharmacokinetics, as it
determines how a drug or pharmaceutical formulation moves from the site of administra-
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tion to its site of action. Although research on the pharmacokinetics of EVs is limited, recent
studies have provided insights into how EVs are absorbed by cells and tissues [49]. Upon
contact with target cell membranes, EVs transfer signals that regulate various biological
events [50]. In this process, cell membrane-mediated transport plays a crucial role in the
transport of EVs and their contents to target cells [51]. EVs are released from cells into
surrounding body fluids, and their absorption or uptake is mediated by multiple factors,
which can be either receptor-dependent or receptor-independent. It is possible that EVs
can be internalized by more than one mechanism in the same cells [52]. The absorption or
internalization of EVs at the cellular level takes place through various mechanisms, which
are detailed below.

7.1.1. EV Absorption by Fusion

EV absorption by fusion is a widely studied and simple mechanism in which the EV
directly fuses with the target cell membrane [53]. This process, known as endocytosis-
independent uptake, is mediated by the presence of specific lipids or proteins on the EV
surface that are complementary to those found on the target cell membrane [53]. This
mechanism of EV uptake is relatively fast and efficient, allowing for the rapid transfer
of material from the EV to the target cell. Studies have shown that this mechanism of
EV absorption is mediated by the presence of specific lipids such as phosphatidylserine
and sphingomyelin on the EV surface, as well as by the presence of specific proteins such
as tetraspanins and integrins [54,55]. It is important to note that the mechanism of EV
absorption by fusion is still under investigation, and more research is needed to fully
understand the mechanisms that govern this process and its applications in different fields
such as drug delivery. However, studies have shown that this process is dependent on
lipid rafts and caveolar endocytosis, which can be inhibited using filipin III in human
endothelial cells [56]. Additionally, various proteins present on the outer surface of EVs,
such as tetraspanin, have been shown to play a role in the fusion process [57]. Tetraspanin
are not only present on the surface of EVs as markers, but also mediate various cellular
functions, such as T cell activation and fertilization in humans, specifically during the
fusion of oocyte and sperm [58].

7.1.2. Phagocytosis

Phagocytosis is a process by which cells, particularly immune cells such as macrophages
and dendritic cells, engulf and internalize larger particles, including pathogens and cel-
lular debris. This process can also occur for EVs, in which the EV attaches to the cell
membrane and is then engulfed by the cell through a process that involves the formation
of a phagosome [59]. This process is mediated by receptors on the cell surface, such as
scavenger receptors, integrins, and tetraspanins, which bind to specific molecules on the
EV surface [60]. Phagocytosis of EVs is facilitated by PI3K and actin protein, which are
involved in the formation of the phagosome and the internalization of the EV [61]. This
process is important for the immune response and can also be used by other cell types such
as cancer cells. It is important to note that, Phagocytosis is a dynamic process, which can
vary depending on the type of cell and the specific conditions of the environment [62]. For
example, the rate of phagocytosis can be affected by the presence of other particles, by the
presence of certain signaling molecules, and by changes in the cell’s environment.

7.1.3. Clathrin-Mediated Endocytosis

Clathrin-mediated endocytosis (CME) is a mechanism by which cells internalize
extracellular material, including EVs, through the formation of clathrin-coated pits on
the plasma membrane [61]. These coated pits are composed of a protein coat made up of
clathrin and other associated proteins, which surrounds the material to be internalized [63].
The process is mediated by receptors on the cell surface that bind to specific molecules on
the EV surface, such as tetraspanin, and then recruit clathrin to the site of internalization [61].
The clathrin coat then forms a pit that buds off from the plasma membrane and brings the
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EV into the cell. Inside the cell, the clathrin coat is removed and the EV is released into
the cytosol or directed to lysosomes for degradation [61]. This process is important for the
internalization of EVs and their cargo into the cell and is also involved in the internalization
of other membrane-bound vesicles and particles [61]. This mode of EV internalization is
mostly seen in tumor cells, cardiomyocytes, macrophages, and neural cells [61,64].

7.1.4. Caveolin-Mediated Endocytosis

Caveolin-mediated endocytosis is another mechanism by which EVs can be internal-
ized by cells. This mode of internalization is mediated by caveolin proteins, which are
integral membrane proteins found in the plasma membrane of many cell types [65]. Cave-
olae are small cave like structures (caveolae) formed by the invaginations of the plasma
membrane, which are rich in cholesterol and sphingolipids and provide the necessary
environment for caveolin-mediated endocytosis to occur [65]. Caveolae functions are
specialized platforms for endocytosis, where the caveolin proteins interact with specific
receptors on the surface of the EVs [61]. This interaction leads to the formation of a caveolar
vesicle, which is then pinched off from the plasma membrane and brought into the cell.
Once inside the cell, the caveolar vesicle is targeted to the endosome for further processing
or degradation [61]. This mode of internalization is commonly seen in endothelial cells [66],
smooth muscle cells [67], and fibroblasts [68]. Research has shown that deletion of CAV1
gene causes the reduction in EV uptake in epithelial cells [69].

7.1.5. Lipid-Raft Mediated

As the name suggests, this mode of EV transport requires the involvement of a lipid
raft. Lipid rafts are the complex assembly of proteins and lipids that float within the plasma
membrane and are mostly involved in signal transduction [70]. Lipid rafts mainly consist
of cholesterol, sphingolipid, and glycosylphosphatidylinositol (GPI)-anchored proteins [70].
EV uptakes are greatly reduced when a dendritic cell is pre-exposed to fumonisin B1 and
N-butyldeoxynojirimycin hydrochloride, which are known to reduce the sphingolipid
part in the lipid raft in the plasma membrane [51]. This highlights the crucial role of the
lipid microdomain of the exosomal membrane and its importance in EV-related regulatory
mechanisms [71].

7.1.6. Macropinocytosis

Macropinocytosis is a form of endocytosis characterized by the formation of ruffles and
cups in the plasma membrane [72]. During this process, the plasma membrane invaginates,
creating small vesicles that are internalized and enter the endocytic pathway. Unlike
phagocytosis, direct contact with the internalized material is not required. Macropinocytosis
is mediated by the proteins rac1, cholesterol and actin. Further, rac1 activity is dependent
on changes in osmotic pressure resulting from ion fluxes (Na+/H+/Ca2+) [73]. Studies
have found that macropinocytosis is a major mechanism for the transfer of EVs from
oligodendrocytes to microglia. Inhibiting the Na+/H+ ion flux was shown to decrease EV
uptake by microglial cells [74]. Additionally, the use of pharmacological inhibitors, such as
NSC23766 (an inhibitor of Rac1) and amiloride (which blocks Na+/H+ ion flux), was shown
to reduce EV uptake in microglial cells, further suggesting a role for macropinocytosis in
EV uptake [74].

The absorption of EVs in the systemic circulation is highly dependent on the route of
administration. We will briefly discuss oral and IV routes of EV administration, as they are
the most common.

7.1.7. Oral Exposure

Oral administration is the most preferable mode of drug administration in humans for
several reasons. Some of the most common reasons are that it does not directly damage
the skin, is not painful for prolonged therapy, can be self-administered, does not require
special skills to administer, is convent, and economical [75,76]. Absorption of EVs after
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oral exposure is an area of active research. The oral route is one of the simplest and least
invasive methods for administering drugs and therapies, but it also presents challenges
for EV-based therapies. One factor that affects the oral absorption of EVs is the size of
the vesicles. Oral delivery of sodium glycocholate-liposome showed better protection of
insulin against proteases, leading to improved bioavailability of insulin [77,78]. These
outcomes were dependent on the size of the particles [78]. As EV and liposomes have
comparable size and surface characteristics, similar behaviors could be expected when EVs
are administered orally. Smaller EVs have a higher chance of being absorbed through the
gut wall, while larger EVs may be trapped in the gut lumen and eliminated through feces.
Another factor that affects the oral absorption of EVs is the composition of the vesicles. The
lipid bilayer of EVs can protect the contents from degradation, but it can also reduce EVs
ability to penetrate the gut wall. The presence of proteases in the gut can also degrade
the EVs, reducing their effectiveness [78]. Finally, the efficiency of oral EV absorption can
be influenced by the gut microbiome, which can affect the composition and function of
the gut epithelium [79]. Despite these challenges, there is still a great deal of interest in
developing EV-based therapies that can be delivered orally, as this would provide a safe,
simple, and convenient way to deliver therapeutic agents to the patient. For example, oral
administration of bovine milk-derived EV could regulate the proteomics profile in the liver
tissues in mice [80]. Further, the same EV could reduce the colorectal and breast tumor
in mice [80]. Research in this area is ongoing, and it is hoped that the development of
new technologies and methods will enable the successful oral administration of EV-based
therapies in the future.

7.1.8. Intravenous Injections

IV administration of EV is an effective and efficient way to deliver therapeutic agents
to the body, as the drugs are directly introduced into the bloodstream [81]. In the case of
IV exposure of EVs, the entire dose of the therapeutic agents is rapidly absorbed into the
systemic circulation, allowing for quick and efficient distribution to target tissues. When
injected intravenously, EVs can cross the blood–brain barrier and successfully deliver the
cargo protein to the target site, which could serve as a potential therapeutic approach for
CNS disorders [82]. Exosomes can also serve as an attractive therapeutic tool for traumatic
brain injury by reducing inflammation when infused intravenously [83].

7.1.9. Other Routes

In addition of oral and IV, subcutaneous and intraperitoneal administration of EV
also leads to the fast systemic clearance and accumulation in the liver, lungs, spleen,
and gastrointestinal tract [84,85]. In addition, the inhalation route of EV exposure shows
therapeutic promise for pulmonary fibrosis and COVID-19 patients [86,87].

7.2. Distribution

The distribution of EVs in the human body depends on various factors, such as the
size, charge, and surface properties of the EVs, as well as the presence of specific receptors
on target cells. For example, when the surface protein of exosomes was modified using near
infrared fluorophore, the targeting properties and its biodistribution was improved with
less nonspecific uptake [88]. Further this surface modification also leads to the rapid renal
clearance and altered pharmacokinetics profile [88]. Once EVs enter systemic circulation,
they can be transported to various organs and tissues throughout the body. S-EVs are
able to pass through the endothelial barrier and enter the circulatory system, allowing
for distribution to various organs and tissues [89,90]. L-EVs may be restricted to the
microvasculature of specific organs and tissues [91]. In the bloodstream, EVs are known to
interact with cells, such as platelets, monocytes, and red blood cells, and can accumulate
in organs such as the liver, spleen, and lymph nodes [92]. In addition, EVs were found
to accumulate in certain disease states, such as cancer, where they may play a role in
the progression and spread of the disease. It is also known that the distribution of EVs
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is influenced by the presence of specific receptors on target cells, which can aid in their
targeting to specific organs and tissues [88].

While it is still not well understood about the distribution dynamics of EVs in the
human body, a combination of various techniques such as flow cytometry, nanoparticle
tracking analysis, and imaging can be used to determine the distribution of EVs in the body.
In the current context, PBPK modeling can be applied to predict the distribution of EVs in
the human body after administration. This includes factors such as the biodistribution of
EVs, their clearance from the body, and the pharmacokinetics of the informative materials
present within the EVs. PBPK modeling can also be used to predict the pharmacokinetics
of EVs in different patient populations and to evaluate the safety and efficacy of EV-
based therapies.

7.3. Clearance

Clearance is a combined term used for metabolism and excretion in this case, as there
may be no metabolism involved for exosome clearance. In the case of EVs, metabolism
refers to the changes in the physicochemical properties of the EV [93]. EVs are generally
metabolized via the endocytic pathway, which is the process by which cells internalize
molecules from the extracellular environment. The endocytic pathway can be divided into
several stages, including endocytosis, transport, and degradation. During endocytosis, the
EVs are taken up by the cell through mechanisms such as clathrin-mediated endocytosis or
caveolae-mediated endocytosis [94]. After endocytosis, the EV is transported to different
intracellular compartments, such as endosomes or lysosomes, where it is degraded [94].
The changes in the physical behavior of EVs, such as the dispersal of the cargo they are
carrying, can affect the ADME of the EV. For example, the size and shape of the EV, as well
as the composition of its cargo, can affect its ability to cross the cell membrane and enter
the cell. Additionally, the rate of endocytosis and the efficiency of the endocytic pathway
can also affect the metabolism of the EV.

Research conducted in mice found that when melanoma derived EVs were injected in-
travenously, the clearance of EVs from the systemic circulation was rapid with macrophages
from the liver, kidneys, and spleen being associated in the clearance [61]. This indicates
that macrophages from these organs play a critical role in the removal of EVs from cir-
culation [95]. Additionally, another study found that the mode of EV exposure, IV or
intratumoral, affects the EV’s clearance [61]. When EVs were delivered by IV injection,
the clearance of EVs from the systemic circulation was rapid. In contrast, when EVs were
delivered by intratumoral injection, EVs stayed in the tumors longer, indicating the dif-
ferent routes of administration of EVs can affect the EV’s clearance [61]. Overall, research
showed that macrophages play a crucial role in the clearance of EVs from the systemic
circulation. This highlights the importance of understanding the clearance mechanisms of
EVs, as it can have implications for the design of EV-based therapies and the interpretation
of EV-based diagnostics.

Another in vivo study revealed that exosomes, derived from B cells, have a plasma
half-life of around two minutes when administered IV [57]. This rapid clearance is likely
due to the action of macrophages and other immune cells, which are known to rapidly
clear EVs from the bloodstream. However, the study also found that even though the
exosomes were quickly cleared from the blood, they were still present in their reservoir
organ, the spleen, for two hours [57]. This suggests that exosomes may be taken up and
retained by certain organs or tissues, where they can continue to exert their effects. The
spleen is known to be a reservoir organ for exosomes, and it is also known that exosomes
can affect immune response. Similarly, in another study, it was found that after intranasal
administration, the exosomes were found in brain and intestine after three hours [57]. This
indicates that exosomes can cross the blood–brain barrier and the blood-intestinal barrier
and reach the brain and the gut. These findings highlight the complexity of the dynamics
of EV’s distribution and clearance in the body [57]. The rapid clearance of exosomes from
the bloodstream, combined with their ability to be taken up and retained by specific organs,
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suggest that the effects of exosomes may be both short-lived and long-lasting, depending
on the route of administration, the organ targeted and the nature of the exosomes. This
information is critical for the design of exosome-based therapies and for interpreting
exosome-based diagnostics. Like in an earlier study, we have calculated the half-life of
EVs using an in vitro system, which uses a mathematical model [29]. We did the uptake
study of fluorescent-labelled EV in a cell culture system and found the improved half-life
of EV derived from the Pkd1 (92.4 h) mutant cell as compared to the Pkd2 (17.3 h) mutant
cell [29]. Similar patterns were also observed in the Tsc2 (13.86 h)-derived EV and Tsc1
(4.62 h)-derived EV.

8. PBPK Modeling in EV Research

PBPK modeling is a mathematical and computational approach used to predict the
movement of drugs and chemicals within the body [16]. PBPK modeling is a type of
compartmental pharmacokinetic model that is considered one of the most realistic models
among all the compartmental models [96,97]. It is based on the physiological and bio-
chemical properties of the body, such as blood flow, organ size, and enzyme activity and
uses mathematical equations to simulate the movement of drugs and chemicals within the
body [16].

PBPK models consist of various compartments, which are indicative of different tissues
or organs, interconnected by a central compartment often referred to as blood [98]. These
compartments are linked by various physiological and biochemical parameters, such as
organ volume, partition coefficient, blood flow, and clearance, to predict the drug’s tissue
and blood concentration over time [98]. PBPK models are particularly useful for predicting
the ADME parameters from one species to another, making it a powerful tool for drug
development and toxicology studies [98,99].

PBPK modeling has been used extensively in the field of drug development to predict
the PK of drugs and to guide the design of clinical trials [100]. However, in recent years,
PBPK modeling was also applied to the study of EV [101]. This is because EVs have similar
ADME processes as drugs, and PBPK models can be used to predict the PK of EVs and
to understand the factors that influence their distribution and clearance in the body [93].
PBPK modeling has been used to study the PK of a wide range of drugs and chemicals,
and the use of PBPK modeling has expanded to various areas like environmental health,
toxicology, and pharmacology [102]. PBPK modeling could be used to study the PK of EVs,
specifically exosomes, by considering the size, shape, and composition of the exosomes and
the physiological properties of the organs and tissues where they are distributed. These
models can help to predict the distribution and clearance of exosomes in the body and to
understand the factors that influence their PK.

As EVs and liposomes share many characteristics, there are some studies related to
PBPK modeling and liposome-mediated drug delivery. This research shows that PBPK
modeling can be useful in understanding the distribution and clearance of EVs in the body
and can help to guide the design of EV-based therapies and diagnostic approaches [103].

8.1. Type of Data Needed to Make a Successful PBPK Model

The application of PBPK modeling to predict the disposition of EVs is a relatively
novel pursuit, and current methodologies for leveraging the available data are largely
opportunistic. The fundamental objective of employing such modeling techniques is to
extract profound insights from existing experimental data, facilitating the comprehensive
characterization and quantification of the various processes governing EV disposition
within the body.

In our previous publication [29], we exemplified the utility of PBPK modeling by uti-
lizing data from an in vitro system to construct a mathematical model. This model aimed
to elucidate the influence of individual gene deletions on EV production and trafficking
dynamics. By conceptualizing a dynamic pool of EVs amenable to uptake, binding, and
clearance across wild type and mutant cell lines, we mathematically represented the fluores-
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cence time course data obtained. This modeling endeavor enabled us to derive quantitative
parameter estimates governing processes such as uptake, binding, and clearance. These
estimations, in turn, facilitated the calculation of EV half-lives in distinct cell lines. This
case underscores how fluorescence time course data, conventionally providing qualitative
insights, can be harnessed via mathematical modeling to yield quantitative understanding
of EV disposition.

Similar strategies can be extended to in vivo contexts, where fluorescence intensity
data is gathered from diverse tissues and organs. Furthermore, invaluable datasets, such
as EV permeability across various membranes, EV partitioning within organs, and the
influence of EV size and morphology on disposition, can bolster the successful application
of PBPK modeling techniques in EV research. As the field advances, it is anticipated that
both conventional and innovative methodologies will contribute to the acquisition of such
data. PBPK modeling is poised to serve as a foundational framework for amalgamating
diverse data types, culminating in meaningful predictions regarding EV pharmacokinetics.

8.2. PBPK Model Validation Criteria

It should be noted that there can never be a true model for any biological system and
that all models involve a certain degree of reasonable approximation or simplification,
as achieving an exact representation is inherently challenging. Consequently, it is not
uncommon within the realm of modeling that multiple models can equally well elucidate a
given system or phenomenon. In such instances, the principle of parsimony comes into
play, asserting that unnecessary complexities should be avoided, and preference should be
provided to models featuring fewer assumptions and parameters. Models, therefore, are
tailored to their intended purposes and are assessed based on their specific objectives.

In the assessment of a physiologically based pharmacokinetic (PBPK) model, several
metrics for goodness-of-fit are commonly employed. This includes generating plots that
juxtapose predicted outcomes against observed data and calculating statistical measures
like the coefficient of determination (R2) through linear regression analysis, as well as the
mean average prediction error (MAPE).

MAPE (%) =
1
N

N

∑
i=1

∣∣∣Cobs,i − Cpred,i

∣∣∣
Cobs,i

× 100

For any given PBPK model, a MAPE value below 10% is indicative of an outstanding
prediction. If the MAPE falls between 10% and 20%, the prediction is considered favorable,
while exceeding 50% is generally deemed unacceptable. Hence, statistical parameters, such
as MAPE, serve as valuable tools for the evaluation of the PBPK model’s performance
within the domain of extracellular vesicle EV research.

9. PBPK Modeling and Simulation of Extracellular Vesicles Mediated Drug Delivery

EVs are a naturally released container that can be utilized as a drug delivery system.
As they are produced in the human body, they could reduce the opsonization. Generally,
pharmacokinetic models, such as a PBPK model, are built on three approaches; (i) ‘top
down’ approach (ii) ‘bottom up’ approach and (iii) ‘middle out’ approach [104]. ‘Top down’
approach is based on observed experimental data, mainly empirical, with the scope of
utilization narrowed down to the range of the input data. ‘Bottom up’ approach is based
on our broader understanding of the human body and its mechanisms; it can utilize the
in vitro data as input data. [104,105]. ‘Middle out’ approach combines the ‘bottom up’ and
‘top down’ approaches [106]; it allows the utilization of available in vivo data to calculate
unknown or uncertain parameters. In this way, the parameters with unknown values are
optimized by fitting the unknown model parameters against the experimental data, as was
performed in PBPK models for some of the nanoparticles [107]. The PBPK modeling frame-
work provides a structured method for extending findings from experiments involving
drug-loaded EVs in mice to anticipate and steer human pharmacokinetics (Figure 5). This
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contributes to the translation of early-stage research into practical clinical implementations.
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We have postulated a general whole body PBPK model based on a bottom-up approach
and mechanism-based model for tumor reported in a paper by He et al. [103]. This model
structure has the potential to elucidate the disposition of EV and its cargo in biological
systems. Our hypothesized PBPK model could be used to investigate the effects of drug
related and physiological factors on the disposition of EVs in biological systems. As of now,
PBPK models are very commonly used in the small molecule drug development.

9.1. Whole Body PBPK Model

In the context of EVs, the goal of a whole-body PBPK model is to simulate the fate of
EVs and the biological effects they produce after administration. The model incorporates
various physiological and biochemical parameters of the body, including blood flow, organ
volume, and the activity of metabolic enzymes. The model is based on the principles of
mass balance, which states that the amount of substance in a particular compartment at
any given time is equal to the amount of substance that has entered that compartment,
minus the amount that exited [109]. The whole-body PBPK model for EVs would include
compartments for each body tissue and organ, as well as a compartment for the target of
concern such as tumors [110]. The model would also account for the size and number of
EVs, as well as their rate of uptake and elimination from each compartment. This model
can be used to predict the pharmacokinetics of EVs in various species and to compare the
pharmacokinetics between different administration routes (e.g., IV vs. oral), and study the
impact of various factors, such as age, gender, and disease state, on the pharmacokinetics
of EVs [109].

9.2. Simplified PBPK Model

This is also commonly referred to as a minimal PBPK model. It includes only the
essential compartments that govern absorption, metabolism, and excretion processes (gut,
liver, and kidneys) [111]. A simplified PBPK model of EVs could be a useful tool for
understanding the pharmacokinetics of these nanosized biological carriers in various
biological systems. A simplified PBPK model is divided into compartments which represent
the various physiological systems in the body, such as the blood, liver, and kidneys [112].
These compartments are interconnected by pathways that describe the exchange of EVs
between different compartments [111]. The inputs to the model include the dose of EVs, the
route of administration, and the size and composition of the EVs. The model then predicts
the uptake, distribution, and elimination of EVs in each compartment. The predictions can
be compared to experimental data to validate the model and to provide insights into the
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pharmacokinetics of EVs. The predictions can also be used to predict the pharmacological
effects of EVs and to evaluate the safety and efficacy of new EV-based therapies. The
principle of mass balance holds true for the simplified (minimal) PBPK model as well.

10. PBPK Modeling Software

In recent years, the use of EVs in therapeutics has gained significant interest, and as a
result, pharmacokinetic (PK) modeling has become an important tool for understanding
the distribution and clearance of EVs in the body. As the number of publications using
PBPK modeling for EVs has increased, the availability of different modeling platforms has
also grown. The different software platforms for PBPK modeling are available either as
open source or closed source. These software platforms are mainly designed for different
applications based on the user’s needs and the complexity of the pharmacokinetic analysis.
For example, some platforms are more suitable for non-compartmental analysis, while
others are meant for complex or multi-compartmental analysis. Here are some of the most
widely used PBPK modeling platforms in the pharmaceutical industry and academia. In
addition, we have also included a brief comparison between different modeling software
in Supplementary Table S2.

10.1. GastroPlus

GastroPlus is a PBPK modeling software that is widely used in the pharmaceutical in-
dustry to predict the pharmacokinetics (PK) of drugs in various species, including humans,
rats, dogs, and monkeys [113,114]. It can also simulate the PK of drugs after various routes
of administration, such as oral, intravenous, transdermal, and inhalation [114]. GastroPlus
is a closed source software and it’s developed by SimulationsPlus company. GastroPlus is
highly recommended for the Insilco assessment for gastrointestinal absorption model [115].
In other words, GastroPlus is particularly useful for simulating the PK of drugs that are
metabolized by the liver and gut, as it uses detailed models of these organs to predict the
drug’s PK [116]. It can also consider factors such as food effects, inter-individual variability,
and drug–drug interactions [117].

In addition to its use in drug development, GastroPlus can also be used to model the
PK of liposomes and other drug delivery systems, including EV. The software can take into
account the size, shape, and composition of the EVs, as well as the physiological properties
of the organs and tissues where they are distributed. This allows for the simulation of the
distribution and clearance of EVs in the body, and the prediction of the factors that influence
their PK. GastroPlus is a user-friendly software that allows for the creation of customized
PBPK models and the simulation of various scenarios. The software also has a graphical
user interface that allows for the visualization of the results and the comparison of different
scenarios. GastroPlus was also used in several studies to model the PK of exosomes.

Although no studies have specifically used GastroPlus to predict the ADME of EVs, a
recent study has used GastroPlus in combination with in silico prediction analysis to model
the pharmacokinetics of liposome-mediated drug delivery [118]. Given the similarities
between liposomes and EVs in terms of their physical properties, it is possible to utilize
GastroPlus for EV pharmacokinetic modeling. For example, a study by Hussain et al. inves-
tigated the transdermal delivery of rifampicin via elastic liposomes in rats and performed a
parameter sensitivity assessment (PSA) using GastroPlus. The PSA helped the researchers
to investigate important parameters such as drug dissolution, absorption, and availability
to the portal vein [118]. These factors can be influenced by other physicochemical properties
of rifampicin such as shape, size, or density of particles. The PSA analysis revealed that
drug dissolution did not depend on the particles’ physical properties. They also performed
a comparative PK analysis of rifampicin in gel form or oral suspension using GastroPlus
simulation software [118].
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10.2. Simcyp

The Simcyp Simulator is a widely used PBPK modeling platform in the pharmaceu-
tical industry and academia, particularly for small drug molecules, generic drugs, new
formulations, and biologics [119]. It is preloaded with various population libraries to
meet the different needs of users. The Simcyp Simulator is particularly useful for creating
multicompartmental PBPK models, which can accurately describe the ADME of drugs
in different body tissues [97,120]. This allows for the simulation of the distribution and
clearance of drugs in the body, and the prediction of the factors that influence their PK.

EVs are found in various bodily fluids such as urine, blood plasma, saliva, and
milk. They have great potential to be used as novel biomarkers in liquid biopsy. These
EVs are often rich in protein and RNA, which reflect the characteristics of their parent
cells. One recent study has demonstrated the applicability of the Simcyp Simulator to
use EVs as a liquid biopsy. The study found that EVs shed from the liver into human
plasma can be used as a pharmacological test to monitor the expression levels of different
enzymes and transporters in the liver [121]. The study used the Simcyp Simulator for
in silico trials to select the appropriate dose using EV-based liquid biopsy. The authors
first utilized multi-omic data to create a link between plasma exosomes and liver tissue
expression [121]. They then performed drug trials using Simcyp to simulate the impact
of the liquid biopsy input on dose selection. Three CYP3A substrates were evaluated:
alprazolam (low hepatic clearance), midazolam (medium clearance), and ibrutinib (high
clearance) [121]. The compound files were selected from the Simcyp library. This research
shows the potential of using the Simcyp Simulator for the prediction of ADME of EV-based
drugs using liquid biopsy. It is important to note that more research is needed to fully
understand the applicability of the Simcyp Simulator in EV research; however, this study
suggests that it may be useful in predicting the ADME of EV-based drugs and in liquid
biopsy applications.

10.3. PKSIM

PK-Sim® is another impressive tool for the multicompartmental whole body PBPK
modeling [122]. This is a freely available software with a user-friendly interface and is
loaded with all relevant parameter values related to common animal models and hu-
mans [122]. PK-Sim® has different strategies to build a model; it uses the block method to
develop a model. This platform is highly used in academia, industry, and regulatory agen-
cies. PK-Sim® is also compatible with users lacking modeling experience. PK-Sim® is also
compatible with the expert modeling tool MoBi®, which allows users to perform detailed
simulations. PK-Sim® has shown its applicability in several preclinical animal models and
various kinds of population such as pediatrics [123] and drug–drug interaction [124].

10.4. Berkeley Madonna

Berkeley Madonna is a relatively less expensive mathematical modeling software
that provides an easy and intuitive method to model systems of differential equations. It
has the potential to be used in various areas of research, including pharmacology and EV
research [125]. As of now, there have not been any published studies in PubMed that have
specifically used Berkeley Madonna for EV research. However, the software’s capability for
modeling dynamic systems, including pharmacokinetics and pharmacodynamics, makes it
a potentially valuable tool for EV research in the future [126].

11. ADME Mathematical Equations

In our previous study, we found that a mutation in Pkd1 or Tsc2 genes can alter the
EV production and trafficking in polycystic kidney disease [29]. We have also described
the ADME of EVs and the application of mathematical modeling in EV distribution [29].
In brief, we found that despite having a similar level of binding for the EVs derived from
Pkd1 or Pkd2 mutant cell lines, Pkd1-EVs were up-taken 14 times faster and cleared five
times slower than Pkd2-EVs. This suggests the involvement of the polycystin-1 gene in
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the rapid uptake and prolonged half-life. Similarly, EVs derived from Tsc2 mutant cells
were taken up at a two times higher rate than the EVs derived from Tsc1 mutant cells [29].
We have depicted the interaction between EVs and renal cells in Figure 6B. We posit here
that an EV depot facilitates the binding phenomenon, and the clearance of EVs is mediated
by lysosomes. We have also listed out mathematical equations for better understanding,
which follows the first order uptake and clearance of EVs [29]. Below is the example of
mathematical equations to describe the uptake and distribution of EVs in the blood and in
various tissues for a multicompartmental PBPK model.
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is followed for other tissues too.

Vi ×
dCi
dt

= Qi × (Ca − Ci/Ri) (1)

For all tissue except lung: Here Ci, Vi, Qi and Ri are the EVs concentration, volume, and
partition coefficient of the ith tissue respectively. Ca is the EVs concentration in the arterial
blood. The partition coefficient, Ri will be determined by calibrating the model using the
fluorescence intensity data.

Vlung ×
dClung

dt
= QB ×

(
Cv − Clung/Rlung

)
(2)

For lung tissue: Clung, Vlung, and Rlung are the EVs concentration, volume, and partition
coefficient respectively of the lung. QB is the total blood flow and Cv is the EV concentration
in the venous blood.

Vv ×
dCv

dt
= −(QB × Cv) + ∑n

i=1 Qi × Ci/Ri (3)

For venous blood: Vv is the venous blood volume and rest parameter are defined in
Equations (1) and (2).

Va ×
dCa

dt
=

(
QB ×

Clung

Rlung

)
− ∑n

i=1 Qi × Ca (4)
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For arterial blood: Va is the arterial blood volume and rest parameter are defined in
Equations (1) and (2).

12. PBPK Modeling Application for EV Therapeutics
12.1. End and Complicated Life Stage Prediction

PBPK modeling can be used for end and complex life stage prediction in various
applications, such as drug development and personalized medicine [97,99]. In drug devel-
opment, PBPK modeling can be used to predict the pharmacokinetics of drugs in different
age groups, including pediatric and elderly populations [127,128]. PBPK modeling can also
be used to predict the pharmacokinetics of drugs in special populations, such as pregnant
women [129] and individuals with liver [130] or kidney dysfunction [131].

In the context of EV therapeutics, PBPK modeling can be used to predict the end and
complicated life stages of EV in the body. This includes the uptake, distribution, metabolism,
and excretion of EV-based drugs [93]. The PBPK model can be used to simulate different
physiological scenarios, such as variations in body weight, age, and disease state, which
can affect the pharmacokinetics of EV-based drugs [132]. Exosomes (EV) have gained
significant interest in the field of personalized medicine due to their potential as a liquid
biopsy tool [133]. PBPK modeling can be used to predict the pharmacokinetics of drugs
loaded in EV in individual patients based on their unique characteristics, such as genomics,
proteomics, and metabolomics [99]. PBPK modeling can be helpful in optimizing dosing
strategies and to identify potential adverse drug reactions in individual patients [99]. The
PBPK model can predict the interactions between EV-based drugs and other drugs in the
body [134]. For example, it can be used to predict the impact of drug–drug interactions
on the pharmacokinetics of EV-based drugs. PBPK modeling can also be applied in the
context of end-of-life care, where it can be used to predict the pharmacokinetics of drugs in
patients with advanced cancer or other terminal illnesses [135]. This information can be
used to optimize dosing and minimize toxicity, improve patient quality of life, and to make
informed decisions about end-of-life care or even in postmortem cases [136,137].

12.2. IVIVE

In vitro–in vivo extrapolation (IVIVE) is a widely used approach in the pharmaceutical
industry to predict the pharmacokinetics (PK) of a drug in humans based on in vitro
data [138]. IVIVE is particularly important in the development of EV therapeutics as
there is still limited knowledge on the PK of these nanoscale particles in the human body.
PBPK modeling can be used in the context of IVIVE for EV therapeutics. PBPK models
can incorporate the physiologic, demographic, and genetic information of an individual
to predict the PK behavior of drugs in humans [138]. This information can be used to
improve the accuracy of PK predictions and support the development of personalized
medicine approaches for EV therapies [133]. PBPK modeling can be particularly useful for
EV therapeutics because EVs can be isolated from patient samples and used as a source
of in vitro data for PK predictions [9]. Additionally, the large size and heterogeneous
nature of EVs can be accounted for in PBPK models, making them a valuable tool for the
development of EV-based therapies.

12.3. Cancer Model

PBPK models have become increasingly important in the development of cancer
therapies as they help to predict the distribution and elimination of drugs in the human
body [135,139]. This information can be used to optimize drug dosing and to identify
potential toxicity issues early in the development process. PBPK modeling can also be
used in cancer research to simulate the pharmacokinetics of anticancer drugs and their
interactions with cancer cells [140]. One of the applications of PBPK modeling in the context
of EV therapeutics for cancer is the development of cancer models that can be used to
simulate the pharmacokinetics of cancer drugs and EVs in the human body [141]. These
models can take into account various physiological and pathological factors, such as cancer
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progression, co-morbidities, and drug interactions, that can affect the pharmacokinetics
of both drugs and EVs. By simulating the pharmacokinetics of drugs and EVs in cancer
models, PBPK modeling can provide valuable information on the optimal dosing and
administration of cancer therapies, as well as the potential toxicity and efficacy of these
treatments [142].

12.4. Route to Route and Species to Species Extrapolation

PBPK modeling for EV therapeutics can also be used for route-to-route and species-
to-species extrapolation. This involves the prediction of pharmacokinetic (PK) profiles of
EV therapeutics from one route of administration to another (e.g., oral to IV) [143] or from
one species to another (e.g., mouse to human) [144]. Route-to-route and species-to-species
extrapolation is an important aspect of PBPK modeling in the context of therapeutic EVs.
In the preclinical phase of drug development, drugs are usually tested in animal models,
and the PK data obtained from these animal studies are used to make predictions about
human PK [144]. The extrapolation of PK data from one species to another and from one
route of administration to another can be challenging, as the physiological processes that
govern drug PK can differ between species and between routes of administration. PBPK
models can help to address these challenges by considering the species- and route-specific
differences in the body’s physiological processes that govern PK drugs. By using PBPK
models, it is possible to predict the PK of therapeutic EVs in humans based on the PK
data obtained in animal studies, and to explore the impact of species- and route-specific
differences on the PK of therapeutic EVs.

13. Perspective and Future Direction

The use of PBPK models in EV research is still in its early stages, and there is a
need for more data and studies to further validate and refine the models. However,
PBPK modeling has the potential to play a significant role in the development of EV-based
therapies by providing valuable insights into the pharmacokinetics and pharmacodynamics
of EVs, which can help guide the design of clinical trials and support the regulatory
approval process. While preparing this manuscript, we have attempted to include all
relevant studies, but we would like to apologize to any authors whose work may have
been inadvertently omitted.

14. Conclusions

In conclusion, PBPK modeling is a promising tool for the study of EVs and their
therapeutic potential, and its application in this field is expected to grow in the future as
the need for a better understanding of the pharmacokinetics and pharmacodynamics of
EVs increases.
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