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Abstract: Ecological management zoning plays a significant role in optimizing resource utilization,
improving ecosystem service function, and promoting coordinated regional development. Taking
Hexi Corridor as a representative region of the Mountain–Oasis–Desert composite system in arid
regions of Asia, this study analyzed the spatial and temporal evolution of ecosystem service values
and explored the influencing mechanism based on the optimal parameters-based geographical
detector model. We have comprehensively divided ecological management zones and proposed
corresponding control strategies. The results show that (1) the Hexi Corridor is characterized by
regional differentiation, which is composed of three systems: The southern mountain system, central
oasis system, and northern desert system. The mountain system is mainly composed of forestland
and grassland, the oasis system is mainly composed of cropland, and the desert system is mainly
composed of unused land. The conversion of land use mainly involves the conversion of unused land
to cropland and grassland, while grassland is mainly converted to cropland. (2) The ecosystem service
value of the Hexi Corridor increased significantly and demonstrated agglomeration characteristics in
space. The highest value areas are mainly distributed in the southern mountain, with higher value and
medium areas mainly distributed in the central oasis, and the lowest value areas are mainly located
in the northern desert. (3) Socio-economic factors greatly influence the spatial differentiation of
ecosystem service values in the Hexi Corridor, with natural environmental factors having less impact.
Additionally, the internal interaction of natural environmental factors is the most significant. (4) The
Hexi Corridor is divided into three ecological management zones: Ecological function protection
zone, ecological and agricultural coordinated development zone, and ecological and urbanization
coordinated development zone. This research has important reference value for global ecological
management in arid regions.

Keywords: typical systems; ecosystem service value; ecological management; arid region; Hexi Corridor

1. Introduction

Ecosystems provide numerous beneficial services to human society, including regula-
tion of water resources, soil conservation, carbon storage, and maintenance of biodiversity.
In arid regions, these services are particularly significant because they are directly related
to the region’s water resource security, environmental stability, and the quality of resi-
dents’ livelihoods [1,2]. Since the beginning of the Anthropocene, human activities have
increasingly interfered with the environment, thereby affecting ecosystem composition and
system function [3]. With the impact of climate change and human activities, the ecosystem
service value of arid areas has undergone changes. These changes may result in the increase
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or decrease of certain ecosystem services, affecting the ecological balance and economic
development of the region. Particularly with the continuous advancement of urbanization
and industrialization, scientific and reasonable ecological management interventions in eco-
logically important but environmentally fragile areas have become increasingly urgent [4].
In order to address the changes in the ecosystem of arid areas, it is necessary to develop
effective ecological management plans. These plans should aim to maintain or restore
the provision of ecosystem services while considering the needs of economic and social
development. From the perspective of ecosystem service functions, assessing the value of
ecosystem services, clarifying the value evolution and spatial characteristics of different
services, and then conducting comprehensive zoning and guiding the implementation of
policies are crucial steps in ecological management.

Currently, there are three main methods for ecosystem service valuation. The first
method is the energy value assessment, which calculates the energy value conversion
rate of different forms of matter and energy, using solar energy as the common unit, to
assess the ecosystem services [5,6]. The second method is the value quantity assessment,
which quantitatively assesses the services provided by ecosystems using monetary values
and presents the assessment results in monetary quantities [7,8]. The third is the physical
quality assessment, which mainly utilizes models such as InVEST and SoLVES to simulate
the quality of ecosystem services based on data inputs and parameter settings and then
quantitatively assesses the strength of ecosystem service provision [9,10]. Among those
methods, the value quantity assessment method has the advantages of simple measurement,
a more comprehensive assessment of ecosystem service functions, and greater applicability
to ecosystem service valuation at larger scales, making it widely used.

Ecological management zoning aims to demarcate distinct management areas by con-
sidering the ecological characteristics and needs of a region, thereby enabling targeted
protection of the ecological environment [11,12]. Current research in ecological manage-
ment zoning is largely informed by two distinct perspectives. The first involves zoning
based on different research objects, which encompasses various study types, such as wet-
lands [13,14], protected areas [15,16], agricultural land [17,18], etc. The second perspective
entails zoning based on different research contents, partitioning from the vantage point of
hotspot topics, including ecosystem service supply and demand [19,20], ecosystem service
clusters [21], ecosystem service value and ecological risk assessment [22,23], etc. Zoning
scales are varied, typically spanning regional, provincial, county, and type units. Predom-
inantly, existing research in ecological management zoning concentrates on significant
watersheds and economically advanced regions [24,25] but pays less attention to areas
with harsh climatic and environmental conditions and lagging economic development,
particularly the typical Mountain–Oasis–Desert composite system in arid regions. In partic-
ular, fewer studies have been conducted on the typical Mountain–Oasis–Desert composite
system in arid regions. Notably, these typical systems in arid regions are subject to the
dual constraints of a fragile ecological environment and lagging economic progress [26].
Therefore, the study of ecological management zones can potentially exacerbate the inte-
grated development of these systems, leading to the optimal allocation of resources and
maximization of overall benefits. The Mountain–Oasis–Desert composite system is a typical
ecologically fragile area in an arid region. As a typical area, the Hexi Corridor is not only
an important part of the ancient Silk Road but also an important implementation area of
the “Belt and Road” construction. This study aims to explore the temporal and spatial
evolution characteristics of ecosystem service value in the Hexi Corridor from 1980 to 2020.
It focuses on identifying key areas where ecosystem service value has been gained or lost,
as well as addressing the main ecological issues by proposing corresponding ecological
management strategies. The study consists of four main components: (1) Constructing
an evaluation model for ecosystem service value in the Hexi Corridor; (2) analyzing the
temporal and spatial evolution characteristics of land use in the Hexi Corridor from 1980 to
2020; (3) examining the temporal and spatial evolution of ecosystem service value in the
Hexi Corridor during the same period; (4) identifying and dividing ecological management
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areas, and offering targeted ecological management strategies. The findings of this study
possess ample representation from both a research perspective and the typicality of selected
cases, enabling their use as vital references for ecological management and control in arid
regions worldwide.

2. Materials and Methods
2.1. Typical System Models and Ecological Vulnerability in Arid Areas

The Hexi Corridor, located in the arid inland areas of western China, features a
typical arid and semi-arid climate and a fragile ecological environment. Due to the
unique geographical environment, a typical arid area ecosystem has developed, com-
prising two subsystems: Natural system and social system, each with different ecological
vulnerability mechanisms (Figure 1).
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Figure 1. Typical system model and ecological vulnerability diagram in arid areas. (a) represents a
natural system; (b) represents a social system.

The natural system has a typical ecological pattern of “Mountain–Oasis–Desert”, and
the distribution pattern of ecological vulnerability is shown in Figure 1a. High-altitude
mountainous areas exhibit reduced biodiversity with a single vegetation type, resulting
in high ecological vulnerability. The oasis area, with significantly low levels of overall
ecological vulnerability, comprises a densely populated area featuring activities such as
farmland cultivation and afforestation, which significantly improve the local ecosystem.
The desert area is mainly influenced by natural ecological processes, and though vegetation
is scarce, the desert regions exhibit relatively stable conditions with moderate ecological
vulnerability in comparison to high-altitude mountainous and oasis areas. The social system
has a typical spatial pattern of “urban area–rural area–natural area”, and the distribution
pattern of ecological vulnerability is shown in Figure 1b. The terrain in this area is relatively
flat, and the ecological vulnerability is mainly affected by social and economic factors.
The urban fringe and urban–rural transition zone reflect the evolution process of urban
expansion and rural settlements, and the ecological vulnerability is relatively high due to
strong interference. Rural and natural areas exhibit few socio-economic activities, with
ecological vulnerability showing a gradient weakening feature from rural area to rural
natural transition zones, followed by natural areas.
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In conclusion, for achieving sustainable development of typical systems in arid regions,
human intervention in ecosystem management is crucial, particularly in areas such as
zoning management, classified policy implementation, and graded protection. Our research
work holds significant relevance in this regard.

2.2. Study Area

The Hexi Corridor is located to the west of the Yellow River in Gansu Province, between
37◦17′~42◦48′ N and 93◦23′~104◦12′ E, with a total administrative area of 2.71 × 105 km2,
and more than 54% of the unused land area, such as desert and the Gobi, with a very
fragile ecological environment [27,28] (Figure 2). By the end of 2021, the five cities in the
Hexi Corridor had a resident population of 4,369,700, with an urbanization rate of 59.76%.
The Hexi Corridor is located in the arid and semi-arid transition zone, with a dry climate,
low precipitation, scarce water resources, and high ecological sensitivity [29]. With the
accelerating urbanization process in recent years, the Hexi Corridor is facing new and
old ecological problems, and the tasks of desertification prevention and control, water
resources conservation and utilization, water conservation, and biodiversity protection
are arduous. The Hexi Corridor is not only an important part of the ancient Silk Road but
also an important implementation area of the “Belt and Road” construction, which is an
important link between China and Southeast Asia, Central Asia, and Europe in terms of
trade and cultural exchanges [30].
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2.3. Data Sources

The land-use data of the Hexi Corridor were obtained from the Resource and Environ-
ment Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn,
accessed on 5 January 2022), and the data of 1980, 2000, and 2020 from the China Multi-
Period Land Use Remote Sensing Monitoring dataset were selected [31]. The average grain
output was calculated from the total grain output and the sown area of grain crops, and the
statistical data were obtained from the Gansu Statistical Yearbook, Gansu Yearbook, Gansu
Development Yearbook, and the average grain price in 2020 was obtained from the State
Administration of Grain and Material Reserves (http://www.lswz.gov.cn, accessed on 5
December 2022). The average annual temperature, average annual precipitation, and eleva-
tion of the Hexi Corridor were obtained from the Center for Resource and Environmental
Science and Data of the Chinese Academy of Sciences (https://www.resdc.cn, accessed on
5 February 2022).

2.4. Models for Valuing Ecosystem Services

The value equivalent represents the value of ecosystem service per unit area of land.
In this study, the value equivalent is expressed in “CNY *yuan/hm2”. This study mainly
refers to the national ecosystem service value equivalent calculated by Xie et al. [32]. Due
to regional differences, it is necessary to select the appropriate correction factors to revise
the national ecosystem service value equivalent. The revised results are applicable to the
study area. Referencing related research, net primary productivity (NPP) of vegetation,
precipitation (PRE), and vegetation cover (FVC) are credible factors for revising the ecosys-
tem service value equivalent. In the natural state, the value of ecosystem services per unit
area is 1/7 of the existing economic value of food provision per unit area [33]. In 1980,
2000, and 2020, the average grain yield in the Hexi Corridor was 3.22 × 104 kg/hm2. Using
the average grain price of CNY 2.25 yuan/kg in 2020 as the unified calculation standard,
and based on the research by Xie Gaodi et al. [32], the unit area ecosystem service value
equivalent can be calculated to obtain the ecosystem service equivalent (E) for the Hexi
Corridor region as CNY 1.03 × 104 yuan/hm2 (Table 1).

ESVt =
n

∑
i=1

m

∑
j=1

Ai·Eij·Rjk (1)

Rjk =

(
NPPk

NPPmean
+

PREk
PREmean

+
FVCk

FVCmean

)
/3 (2)

where ESVt represents the value of ecosystem services in each county; n and m denote
land use categories and ecosystem service function categories, respectively. Ai is the
area of ecosystem type i in the grid; Eij is the unit value of ecosystem service function of
ecosystem type j in ecosystem type i. Rjk is the correction factor of ecosystem service value
equivalent. NPPk, PREk, and FVCk are the factor means of the research units, respectively.
The NPPmean, PREmean, and FVCmean denote the overall factor mean, respectively.

https://www.resdc.cn
http://www.lswz.gov.cn
https://www.resdc.cn
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Table 1. The equivalent value of ecosystem service per unit area in Hexi Corridor (×104 yuan/hm2).

Ecosystem Classification Supply Service Regulating Service Support Service Cultural
Service

Primary
Classification

Secondary
Classification

Food
Production

Production of
Material

Water
Supply

Gas
Regulation

Climate
Regulation

Purify the
Environment

Hydrological
Regulation

Soil
Conservation

Maintain
Oxygen

Circulation

Biodiversity
Conservation

Provide
Aesthetic

Landscape

Cropland Dry field 1.03 0.49 0.02 0.82 0.44 0.12 0.33 1.25 0.15 0.16 0.07
Paddy field 1.66 0.11 −3.20 1.35 0.69 0.21 3.31 0.01 0.23 0.26 0.11

Forestland
Theropen-
cedrymion 0.38 0.86 0.45 2.86 8.56 2.42 4.27 3.48 0.27 3.16 1.39

Shrub 0.23 0.52 0.27 1.72 5.15 1.56 4.08 2.09 0.16 1.91 0.84
Grassland Grassland 0.12 0.17 0.10 0.62 1.63 0.54 1.19 0.75 0.06 0.68 0.30

Water
River system 0.97 0.28 10.09 0.94 2.79 6.75 124.43 1.13 0.09 3.10 2.30
Glacier Snow

cover 0.00 0.00 2.63 0.22 0.66 0.19 8.68 0.00 0.00 0.01 0.11

Wetland Wetland 0.62 0.61 3.15 2.31 4.38 4.38 29.49 2.81 0.22 9.58 5.76

Unused land
Desert 0.01 0.04 0.02 0.13 0.12 0.38 0.26 0.16 0.01 0.15 0.06

Bare land 0.00 0.00 0.00 0.02 0.00 0.12 0.04 0.02 0.00 0.02 0.01
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2.5. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is a commonly employed method to unveil spatial
dependence and heterogeneity among research objects [34]. In this study, Global Moran’s
I was used to determine whether there was spatial autocorrelation of ecosystem service
values in the Hexi Corridor. Subsequently, Local Moran’s I was used to clarify the spatial
clustering and distribution characteristics of high or low values. The calculation formula is
as follows:

I =
n∑n

k=1 ∑n
l=1 Wkl(xk − x)(xl − x)

∑n
k=1 ∑n

l=1 Wkl∑
n
k=1(xk − x)2 (3)

Ik =
n(xk − x)∑n

l=1 Wkl(xl − x)2

∑n
k=1(xk − x)2 (4)

Z(I) =
I − E(I)√

Var(I)
(5)

where I and Ik represents the global Moran’s I and local Moran’s I, respectively, xk and
xl represents the evaluation results of ecosystem service value corresponding to research
units k and l, respectively, Wkl represents the measure of the relationship between the two.
Z(I) is used to test the significance level of spatial autocorrelation, and E(I) and Var(I) are
the corresponding expectations and variances.

2.6. The Optimal Parameters-Based Geographical Detector Model

Geo-detector is an effective method to detect spatial differentiation features and their
influence mechanisms, and it is widely used in many current studies [35]. Determining
the best spatial stratification of spatial data is the key application link of geographical
detectors. According to the q-value of geographical detection, the classification effect of
data discretization can be accurately evaluated. The classification effect is proportional to
the q-value. By using the GD package in R language and comprehensively using the natural
breakpoint classification, geometric interval classification, equal interval classification,
Quantile classification, and standard deviation classification, set the classification levels to
3~7, and finally select the spatial scale with the largest q-value as the analysis parameter of
the geographical detector [36,37]. The expression formula is as follows:

q = 1 − ∑L
h=1 Nhσ2

h

Nσ2 = 1 − SSW
SST

(6)

SSW = ∑L
h=1 Nhσ2

h , SST = Nσ2 (7)

where q value represents the explanatory power of the factor, and 0 ≤ q ≤ 1. When q = 1,
the explanatory power of the dependent variable is strongest; h represents the hierarchical
number of the explanatory variable and the dependent variable; Nh and σh represent the
number and variance of units in the h layer, N and σ2 represent the number of units and
variance of Y values in the entire region, respectively. SSW and SST represent the sum of
variance within the hierarchy and the total variance of the entire region, respectively.

3. Results
3.1. Land Use Patterns and Spatial and Temporal Evolution

The landscape type of the Hexi Corridor is characterized by a typical Mountain–Oasis–
Desert pattern, with the land use types being distributed from southwest to northeast,
showing the distribution characteristics of mountains dominated by forestland and grass-
land, oases dominated by cropland, and desert dominated by unused land (Figure 2).
During the study period, the areas of cropland, water, and construction land all showed a
growing trend, particularly construction land, which increased from 0.44% to 0.71% from
2000 to 2020. The areas of forestland and grassland showed a small fluctuating decrease,
and the area of unused land was continuously reduced, and the shrinkage was larger in
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2000–2020 than in 1980–2000. Since 2000, the urbanization process has been accelerated,
the range of human production and life has gradually expanded to the periphery, and the
unused land at the edge of the oasis has been developed (Figure 3). Although the area
of cropland and construction land in the Hexi Corridor has increased significantly, and
the area of unused land has shrunk significantly during the study period, the land use
structure has not changed substantially. The region is still dominated by unused land,
which accounts for about 67% of the total area.
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During the study period, the land use transition pattern of the Hexi Corridor showed
different characteristics during different study stages. From 1980 to 2000, the land use
transfer is mainly characterized by the transfer of grassland to unused land, followed by
the transfer of unused land to grassland (Table 2); from 2000 to 2020, the land use transfer is
mainly characterized by the transfer of unused land to arable land, followed by the transfer
of grassland (Table 3). Overall, land use in the Hexi Corridor shows a transfer pattern
dominated by the transfer of unused land to cropland and grassland, with grassland mainly
transferred to cropland (Table 4).

Table 2. Land use transfer matrix for the different land use types from 1980 to 2000 (km2).

Land Types

2000

Cropland Forestland Grassland Water Wetland Unused
Land

Construction
Land

Total Area
of Land

Lost

1980

Cropland 13,034.50 14.90 175.49 7.06 9.87 101.28 86.06 394.66
Forestland 19.87 7362.97 118.61 0.82 2.80 32.91 0.69 175.69
Grassland 361.88 121.66 52,713.54 7.68 15.69 769.14 9.75 1285.81

Water 9.59 0.87 6.39 1203.96 10.02 17.92 0.06 44.86
Wetland 47.98 2.04 17.56 20.90 2106.96 16.69 0.20 105.37

Unused land 330.57 32.36 631.39 24.32 24.28 167,109.60 12.04 1054.96
Construction land 34.05 0.60 2.55 0.03 0.20 2.29 968.87 39.72
Total area of land

added 803.93 172.43 951.99 60.81 62.86 940.24 108.80 3101.06
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Table 3. Land use transfer matrix for the different land use types from 2000 to 2020 (km2).

Land Types

2020

Cropland Forestland Grassland Water Wetland Unused
Land

Construction
Land

Total Area
of Land

Lost

2000

Cropland 13,386.10 14.04 228.72 10.03 6.11 66.72 126.69 452.30
Forestland 93.90 7346.54 28.96 4.88 27.76 23.93 9.43 188.86
Grassland 777.60 68.79 52,017.44 38.75 11.15 663.47 88.23 1647.99

Water 10.90 0.35 11.17 1154.47 28.75 56.13 2.99 110.29
Wetland 42.79 0.60 74.27 55.37 1975.82 12.51 8.46 194.00

Unused land 1439.46 80.42 975.27 407.13 105.31 164,535.60 506.18 3513.77
Construction land 56.73 1.19 5.12 4.13 0.14 2.12 1008.24 69.43
Total area of land

added 2421.37 165.39 1323.51 520.29 179.21 824.89 741.99 6176.64

Table 4. Land use transfer matrix for the different land use types from 1980 to 2020 (km2).

Land Types

2020

Cropland Forestland Grassland Water Wetland Unused
Land

Construction
Land

Total Area
of Land

Lost

1980

Cropland 12,669.20 24.97 358.52 13.88 16.55 139.34 206.70 759.96
Forestland 112.62 7187.16 139.63 7.16 30.09 51.69 10.26 351.45
Grassland 1091.85 184.51 51,184.11 43.12 26.02 1373.41 97.92 2816.83

Water 18.93 1.08 12.61 1118.75 27.62 66.71 3.02 129.97
Wetland 89.10 2.60 89.38 62.54 1933.31 26.85 8.60 279.07

Unused land 1739.60 110.02 1550.24 425.42 121.22 163,709.80 517.88 4464.38
Construction land 86.18 1.53 7.26 3.76 0.25 3.77 905.84 102.75
Total area of land

added 3138.28 324.71 2157.63 555.89 221.75 1661.76 844.38 8904.39

3.2. Spatial and Temporal Characteristics of the Value of Ecosystem Services

In terms of temporal changes, the value of ecosystem services as a whole showed an
increasing trend from 1980 to 2020 (Table 5). It was found that of the four ecosystem services
in the Hexi Corridor, in order of value volume, they were regulating service, supporting
service, supply service, and cultural service. During the study period, the value volume
of supply service increased the most, with a growth rate of 7.09%, and the value volume
of cultural service changed the least. The results of ecosystem service value assessment
were graded and presented spatially using the natural breakpoint method (Figure 4). In
terms of spatial pattern, the distribution of ecosystem service values in the Hexi Corridor is
characterized by geographical differentiation, generally showing a distribution pattern of
high in the south and low in the north, with the high-value area mainly distributed in the
southern mountains, the higher and medium-value areas mainly distributed in the central
oasis, and the low value mainly distributed in the northern desert.

Table 5. Change of ecosystem service value in Hexi Corridor from 1980 to 2020.

Types of Ecosystem Service
Ecosystem Service Value (×108 yuan) Change Rate (%)

1980 2000 2020 1980–2000 2000–2020 1980–2020

Supply Service 750.05 865.05 803.21 15.33 −7.15 7.09
Regulating Service 6424.47 7025.66 6683.32 9.36 −4.87 4.03

Support Service 2196.05 2452.81 2229.54 11.69 −9.10 1.53
Cultural Service 483.59 528.85 487.95 9.36 −7.73 0.90

Total 9854.15 10,872.36 10,204.01 10.33 −6.15 3.55
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3.3. Changes in the Value of Ecosystem Service Functions in Different Land Types

From 1980 to 2020, the functional structure of ecosystem service of different land
use types remained relatively stable. Different land use types provided different primary
ecosystem services, and the value of ecosystem service would be gained or lost as the area
of different land use types changed (Figure 5). In terms of the ecosystem service structure
of different land types, cropland was dominated by service supply service, with regulating
and supporting service second only to service supply service; forestland, grassland, water,
wetland, and unused land were all dominated by regulating service, while forestland,
grassland, and unused land have a relatively high proportion of supporting service. In
terms of the value of ecosystem service generated by different land types, cropland has the
largest soil conservation function, followed by food production function and gas regulation
function; forestland and grassland have the largest climate regulation function, followed by
hydrological regulation function and soil conservation function; water and wetland have
the largest hydrological regulation function, and a comparison of the value of other service
functions of the two can be found that the provisioning capacity of wetlands is much larger
than the service provisioning capacity of water. A comparison of the value of other service
functions between the two revealed that the supply capacity of other service functions of
wetlands was much greater than that of water.
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3.4. Changes in the Hierarchy of Ecosystem Service Values and Transfer Patterns

During the study period, the conversion patterns between different levels of ecosystem
service values were different (Figure 6). From 1980 to 2000, the ecosystem service value
grades in the study area were mainly dominated by the transfer of lower to medium and
higher, followed by the transfer of lowest to lower, and the grades of ecosystem service



Systems 2024, 12, 166 11 of 18

value obviously increased. From 2000 to 2020, the area with high levels of ecosystem service
value gradually narrowed, and the area with low levels gradually increased. Overall, from
1980 to 2020, the ecosystem service value grades in the study area mainly shifted from
lowest to lower, followed by transitions from lower to medium. During the study period,
there was an increasing trend in the area of regions with medium and higher ecosystem
service value grades.
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3.5. Characterization of Spatial Clustering of Ecosystem Service Values

During the study period, the ecosystem service value of the Hexi Corridor showed
obvious spatial high–high and low–low clustering characteristics (Figure 7). “High–high”
represents clusters of high-value ecosystem services, while “low–low” represents clusters
of low-value ecosystem services. The high–high type was mainly distributed in the south-
ern Qilian Mountains area, involving Sunan County, Shandan County, Tianzhu Tibetan
Autonomous County, etc., in terms of the spatial distribution of land use. These counties
have a wider distribution of forestland and grassland within their boundaries, less impact
from human activities, and a relatively adequate supply of ecosystem service, so the value
of ecosystem service is higher, and the high–high clustering feature is formed spatially.
With the passage of time, the scope of the high–high agglomeration area gradually expands,
indicating that the ecological environment in the region has continued to improve dur-
ing the study period, and the ecological inputs made by the local government and other
stakeholders have been rewarded, and ecological degradation and other problems have
been effectively managed. The low–low type is mainly located in the western and northern
desert areas, including Subei County, Dunhuang City, Akse County, etc. These counties
have a large area of ecosystem service, and the value of ecosystem service is high. A large
area within these counties is unused land, such as desert, with a single land use type, fragile
ecosystems, and weak ecosystem service provisioning capacity, which is a low-value area
for ecosystem service value on a regional scale, thus forming the low–low agglomeration
feature. At the same time, this agglomeration feature shows a small spatial expansion trend,
which, to a certain extent, can illustrate the ecological problems, such as the intensification
of desertification in the region. Regions without obvious agglomeration characteristics are
mainly distributed in the central and eastern parts of the region, where human activities
are frequent, particularly with the increasing area of arable land; the interaction between
human activities and the ecological environment is stronger, and this mutual game process
strengthens the spatial heterogeneity of the supply and demand of ecosystem service so
that the value of ecosystem service does not form the spatial characteristics of high-value
agglomeration or low–low agglomeration.
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3.6. Ecological Management Zoning

The Hexi Corridor has an important ecological status, and scientific ecological manage-
ment zoning is an important foundation for promoting ecological environmental protection
and the harmonious development of humans and nature. By dividing different ecological
management areas, targeted protection measures can be formulated, and the relationship
between economic development and environmental protection can be balanced to promote
sustainable development. This study combines the spatial agglomeration characteristics
of regional land use patterns and the ecosystem service value to propose an ecological
zoning plan with counties as the basic unit. The Hexi Corridor is divided into an ecological
function protection zone, areas for coordinated development of ecology and agriculture,
and areas for coordinated development of ecology and urban areas (Figure 8). The I
ecological function protection zone is mainly in areas with high ecosystem service value
and high concentration, mainly distributed in the northwestern part of the Hexi Corridor
and the northern foothills of the Qilian Mountains in the south, including Sunan County,
Tianzhu Tibetan Autonomous Prefecture, Dunhuang City, Akesai County, Subei County,
and Minqin County, etc., which is an important support for the construction of a north-
western ecological security barrier in the Hexi Corridor. The ecosystem service values
of the II ecological and agriculture coordinated development zone and the III ecological
and urbanization coordinated development zone do not have obvious spatial clustering
characteristics, and the two are interspersed along the oasis area in the central part of the
Hexi Corridor. The II ecology–agriculture coordinated development area includes Guazhou
County, Gaotai County, Jinta County, Yongchang County, Yumen City, Shandan County,
and Gulang County, which are the main agricultural product production areas in the Hexi
Corridor. The III ecology–urbanization coordinated development zone includes Minle
County, Jinchuan District, Ganzhou District, Linze County, Suzhou District, Jiayuguan
City, and Liangzhou District etc., which is the key area for urbanization construction and
development in the Hexi Corridor.

The ecological function protection zone focuses on protecting the ecological functions
and services of the ecosystem, with the main goal of preserving the integrity and biodi-
versity of the ecosystem. The ecological and agriculture coordinated development zone
emphasizes the effective integration of ecological environment and agricultural production,
promoting mutual support between sustainable agricultural development and environ-
mental protection. The ecological and urbanization coordinated development zone aims to
achieve harmonious integration of urbanization processes and the ecological environment,
promoting sustainable development of cities and environmental protection. This ecological
zoning plan aims to optimize land use patterns, maximize the utilization of ecosystem
services, and provide a scientifically reasonable ecological protection and development
plan for the Hexi Corridor region’s sustainable development.
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4. Discussion
4.1. Mechanisms Affecting the Value of Ecosystem Services in the Hexi Corridor

Ecosystem service value is affected by the combined effects of multiple factors [38,39].
Ecosystem service value was extracted from the center point of the grid as the dependent
variable, with six indicator factors serving as independent variables: annual average
temperature (X1), average annual precipitation (X2), elevation (X3), population density
(X4), GDP density (X5), and construction land index (X6) as independent variables, and
explored the influence mechanism of ecosystem service value in the Hexi Corridor through
the factor contribution rate and two-factor interaction quantitative analysis.

Using the optimal parameters-based geographical detector model, the contribution of
six indicator factors to the spatial differentiation of ecosystem service values in the Hexi
Corridor was obtained. The q-value of each factor, in descending order, are as follows:
construction land index (X6) > population density (X4) > GDP density (X5) > average annual
precipitation (X2) > elevation (X3) > average annual temperature (X1) (Figure 9). Overall,
the influence of socio-economic factors on the spatial differentiation of ecosystem service
value (ESV) in the Hexi Corridor is much larger than that of natural environment factors.
The construction land index had the strongest effect on ESV with a q-value of 0.84799,
followed by population density and GDP density. Human activities change the surface
structure and the stability of the ecosystem, and the more concentrated the population is,
the more frequent the human activities, such as urban expansion and economic production,
and the more the ESV is disturbed. The average annual precipitation among the natural
environmental factors has a greater impact on ESV. The Hexi Corridor is in an arid and
semi-arid area with low annual average precipitation, while the area around the Qilian
Mountains in the south, with higher elevation terrain, traps a large amount of water vapor,
has more annual average precipitation and better vegetation production, so the ecosystem
service value shows a significant high and high clustering phenomenon in space.
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Based on the results of factor interaction detection, the internal interaction of natural
environmental factors had the most significant impact, followed by the interaction of
natural environmental factors with socio-economic factors, and the internal interaction of
socio-economic factors had the least significant impact. The interaction of mean annual
precipitation ∩ average annual temperature had the most significant effect on ESV, followed
by mean annual temperature ∩ elevation and mean annual precipitation ∩ elevation. The
effects of different factors and two-factor interactions on the ecosystem service value are
considerably variable. The Hexi Corridor itself is significantly affected by the natural
environment, and the effects of human activities on the ecosystem have a magnifying
effect. In order to maintain the stability of the regional ecological security pattern and
the sustainable development of ecosystem service provision, attention should be paid
to adopting multifaceted regulation means to avoid ecosystem degradation and loss of
ecosystem service value caused by overloading of human activities by changing and
optimizing land use.

4.2. Ecological Management Strategies

With the Tibetan Plateau at its back in the south and the northern sand belt in the north,
the Hexi Corridor has an important position in the national ecological security pattern.
The western development, the “One Belt, One Road” initiative, and the rural revitalization
strategy have brought great opportunities for the socio-economic development of the Hexi
Corridor, but the ecological risks and challenges brought by the economic development
have also arisen. In accordance with the principles of scientific management, zoning,
and hierarchical precision, this study divided the key functional zones for ecological
management into counties as the basic unit, taking into account the current state of land use
in the region as well as the spatial and temporal characteristics of the value of ecosystem
services (Figure 9). This approach is of immense importance for safeguarding the ecological
security of the Hexi Corridor and harmonizing the relationship between the demand for
socio-economic development and the supply of ecosystem services.

The I ecological function protection zone is mainly distributed in the southern Qilian
Mountains of the Hexi Corridor, including Sunan County, Tianzhu Tibetan Autonomous
Prefecture, Dunhuang City, Akse County, Subei County, Minqin County, etc. This region
boasts a diverse geomorphology, including primitive forests, grassland, snow-capped
mountains, and other rich ecological resources, as well as rich biodiversity. It serves as
the primary ecological function area of the Hexi Corridor. Management measures include:
(1) Enhancing the water conservation function in the southern part of the protected area by
implementing ecological restoration, such as vegetation restoration, soil restoration, and
water management, in damaged areas to improve the ecosystem’s service-providing ca-
pacity. (2) Adopting an ecological management mode that combines grasslands, irrigation,
and arboriculture, in accordance with the region’s arid soil and vegetation characteristics,
to strengthen windbreak and sand fixation abilities in the northern part of the area and
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prevent intensified desertification. (3) Strictly protecting biodiversity in the region, estab-
lishing and improving regulations for biodiversity conservation, and safeguarding animal
habitats. (4) Establishing an ecological monitoring and assessment system to promptly
identify and address issues through regular monitoring and assessment, ensuring effective
protection and management of the ecological functional areas.

The II ecological and agriculture coordinated development zone is predominantly
situated in a strip along the central part of the Hexi Corridor, including Guazhou County,
Gaotai County, Jinta County, Yongchang County, Yumen City, Shandan County, and Gulang
County, which are the main agricultural product production zones in the Hexi Corridor.
Control measures in the region mainly include: (1) Defining regional development goals
and directions, including identifying key areas and key industries for agricultural devel-
opment, formulating corresponding support policies and measures, and promoting the
coordinated development of agriculture and ecology. (2) Promoting the sustainable devel-
opment of agriculture, accelerating the transformation of agricultural production methods,
promoting sustainable agricultural models such as organic agriculture, eco-agriculture,
and recycled agriculture in accordance with local conditions, rationally and appropriately
exploiting and utilizing arable land, preventing the desertification of arable land, and
reducing the negative impact of agriculture on the environment. (3) Rationally planning
and managing agricultural resources, such as agricultural land, water resources, and agri-
cultural product markets. This involves optimizing the allocation of agricultural resources
through measures such as land remediation, water resource management, and the circula-
tion of agricultural products, as well as promoting the coordination of ecological protection
and agricultural development.

The III ecological and urbanization coordinated development zone is mainly located
in the oasis area in the central part of the Hexi Corridor, including Minle County, Jinchuan
District, Ganzhou District, Linze County, Suzhou District, Jiayuguan City, and Liangzhou
District, which is a key area for urbanization construction and development in the Hexi
Corridor. The control measures in this region mainly include: (1) Enhancing urban planning
and construction management, optimizing urban layout by highlighting characteristics,
controlling the scale and speed of urban construction, minimizing the impact on the ecolog-
ical environment, and protecting the urban ecosystem. (2) Strengthening environmental
supervision and law enforcement, strictly controlling environmental pollution and illegal
behaviors, and establishing and improving the system of rewards and penalties for eco-
logical and environmental protection in urbanization so as to promote the two-pronged
approach to the urbanization and the ecological civilization in the process of construction.
(3) Enhance citizens’ awareness of environmental protection and their ability to apply
environmental protection technologies through publicity activities and training courses so
as to promote the sustainable development of urbanization. (4) Rationally utilize resources,
promote the construction of a green and low-carbon city in accordance with local conditions
and develop an environmentally friendly economy so as to realize the coordination between
urban development and the ecological environment.

4.3. Limitations and Research Prospective

This study explores the spatiotemporal evolution and driving mechanisms of ecosys-
tem service value in arid regions and proposes ecological management zoning schemes,
but it still has certain limitations. Firstly, we accounted for the ecosystem service value of
the Hexi Corridor using relatively conventional research methods. When exploring driving
mechanisms, the selection of an influencing factor was very limited, which may introduce
uncertainty into the research results. Additionally, our study aims to provide a typical
case for ecosystem management in global arid regions, but a more universally applicable
zoning scheme has not yet been formed. The specific influencing factors in the process of
ecological management zoning remain to be further investigated.
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5. Conclusions

Taking the Hexi Corridor, a typical area of the Mountain–Oasis–Desert composite
system, as an example, this study quantitatively assessed the value of ecosystem services,
explored its temporal and spatial evolution patterns and characteristics, comprehensively
divided the ecological management zones of the Hexi Corridor, and put forward control
strategies. The overall conclusions are as follows:

(1) The Hexi Corridor exhibits pronounced geographic differentiation, and the transition
between land-use types is relatively drastic. From the point of view of geographical
differentiation, the Hexi Corridor is generally composed of three systems, namely, the
southern mountain system, the central oasis system, and the northern desert system.
The mountain system is dominated by forestland and grassland, the oasis system is
dominated by arable land, and the desert system is dominated by unused land. In
terms of land-use type conversion, the conversion of unused land to cropland and
grassland is dominant, with cropland having the largest area of conversion.

(2) The ecological environment of the Hexi Corridor showed a continuous improvement
during the study period. The ecosystem service value of the Hexi Corridor shows
an increasing trend with significant spatial clustering characteristics; high values are
mainly distributed in the southern mountains, high and medium values are mainly
distributed in the central oasis, and low values are mainly distributed in the northern
desert; the area of the area with medium ecosystem service value and above shows an
increasing trend during the study period.

(3) The natural environment factor at the regional scale is still the decisive factor influ-
encing the value of ecosystem services. From the single-factor detection results, the
influence of socio-economic factors on the spatial differentiation of ecosystem service
value in the Hexi Corridor is much larger than that of natural environmental factors,
in which the construction land index has the strongest influence on ESV with a q-value
of 0.84799, followed by population density and GDP density. From the results of
two-factor interaction detection, the internal interaction of the natural environment
factor was the most significant, followed by the interaction between the natural en-
vironment factor and the socio-economic factor, and the internal interaction of the
socio-economic factor was the smallest.

(4) There are significant spatial differences in the ecosystem structure and functions of the
Hexi Corridor, and ecological management zoning can effectively promote regional
sustainable development. The comprehensive analysis divides the Hexi Corridor into
three ecological management zones: I ecological function protection zone, II ecological
and agriculture coordinated development zone, and III ecological and urbanization
coordinated development zone.
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