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Abstract: An Intrusion Detection System (IDS) is a tool used primarily for security monitoring, which
is one of the security strategies for Supervisory Control and Data Acquisition (SCADA) systems.
Distributed Network Protocol version 3 (DNP3) is the predominant SCADA protocol in the energy
sector. In this paper, we have developed an effective and flexible IDS for DNP3 networks, observing
that most critical operations in DNP3 systems are utilized based on the function codes in DNP3
application messages, and that exploitation of those function codes enables attackers to manipulate
the system operation. Our proposed anomaly-detection method deals with possible attacks that
can bypass any rule-based deep packet inspection once attackers take over servers in the system.
First, we generated datasets that reflected DNP3 traffic characteristics observed in real-world power
grid substations for a reasonably long time. Next, we extracted input features that consisted of the
occurrences of function codes per TCP connection, along with TCP characteristics. We then used
an unsupervised deep learning model (Autoencoder) to learn the normal behavior of DNP3 traffic
based on function code patterns. We called our approach FC-AE-IDS (Function Code Autoencoder
IDS). The evaluation of the proposed method was carried out on three different datasets, to prove
its accuracy and effectiveness. To evaluate the effectiveness of our proposed method, we performed
various experiments that resulted in more than 95% detection accuracy for all considered attack
scenarios that are mentioned in this study. We compared our approach to an IDS that is based on
traditional features, to show the effectiveness of our approach.

Keywords: Intrusion Detection System (IDS); anomaly-detection; Distributed Network Protocol
(DNP3); function code; Supervisory Control and Data Acquisition (SCADA); autoencoder;
cybersecurity; machine learning

1. Introduction

A Supervisory Control and Data Acquisition (SCADA) system—an archetypal form of
industrial control systems (ICS)—is a process control system that interconnects, monitors,
and controls remotely dispersed physical processes. Nations’ critical infrastructures, such
as power grids, water treatment, gas pipelines, and the like—where safe and reliable
operations are of primary concern—rely on the SCADA system. Any cyberattacks on
SCADA systems that could cause severe disruption of their reliable operations would
wreak devastating economic and societal or, at worst, national security damage. For this
reason, cyber security defense mechanisms on SCADA—broadly ICS systems—have been
extensively studied and proposed in academic and industrial communities, as well as
international standard organizations [1].

Security monitoring in the form of Intrusion Detection Systems (IDS) is one of the
viable strategies for SCADA cyber security [2,3]. In particular, predictable patterns of traffic
flow and characteristics between fixed nodes in the SCADA system make the IDS solution
more attractive compared to typical IT systems. The nuts and bolts of IDS solutions are to
discern the normal behavior of target traffic, which is often called “profile”, based on which
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abnormal behavior can be identified. Hong, et al. [4], surveyed various IDS approaches
for the SCADA/ICS system, and classified them into four categories. As [4] noted, a large
part of the proposed IDS solution sought to find “rules” that traffic flows in the system
manifest, based on the network configuration or the communication protocols deployed
and adopted in the target system. A few approaches have endeavored to find rules, going
deep down into field device behaviors [5]. Recently, with its success and popularity, deep
learning (DL) has drawn much attention from researchers as a promising tool to find the
profile of target system traffic behavior [6-10]. The benefit of DL approaches is that they can
capture normal behavior by learning target traffic behavior, consequently enhancing the
effectiveness of detection performance, and possibly responding to new variants of attacks.

There were two challenges when we adopted DL techniques to develop IDS for the
SCADA system. The first challenge was the limitation of training datasets. DL models
should be based on learning from a large scale of SCADA network traffic, so as to be
sufficiently reliable and capable of reflecting real operations in the system. Gomez, et al. [11],
(p. 177462, Table 1) give the summary and comparison of the datasets that have been used
in anomaly-detection studies for ICS, as well as traditional networks. ICS-related datasets
cover the domains of water treatment, water distribution, gas pipeline, and power grid [12].
These datasets derive from testbeds or simulation, which makes them difficult to regard as
reflecting real and reliable traffic characteristics of actual SCADA /ICS systems. In some
cases, traffic data generated from real power substations are used [13]. However, the
datasets of real systems are rarely open to the public, due to the still-immature status of DL
research in this field, compared to other mature areas such as image or speech recognition.
The limitation of datasets leads to the difficulty of conducting a proper and comparable
evaluation of DL models in the same environment, not to mention the generalization issue,
i.e., how selected features and models can be applied to similar environments. The use
of the balance dataset was another issue. Depending on an unbalanced dataset, which
contains very few abnormal instances, is likely to cause overfitting, consequently degrading
the model’s performance drastically.

The second challenge was how to simulate attacks. Lee and Hong [14,15] explain
the attack vectors and attack trees of recent sophisticated cyberattacks that have actually
targeted SCADA /ICS systems. These attacks exploit the vulnerability of software systems,
and take over the control of hosts, whether they are servers or device controllers. In this
way, the attackers—using the compromised hosts—issue malicious commands to field
devices, causing malfunction of the system. In such an attack scenario, it is almost useless to
confirm the validity of transmitted messages by checking whether the messages observe the
rules or syntax defined by the communication protocols. Currently, standard organizations
have proposed SCADA security protocols, which guarantee the authenticity and integrity
of communication messages exchanged between hosts in the system [16,17]. However,
these schemes have limitations, because attackers can generate malicious messages, still
avoiding validity checks. The anomaly- or intrusion-detection system in SCADA should
confront new variant attacks which are novel and unknown, in the sense that they can
avoid any deep packet inspection based on rules derived from protocols, configurations, or
any others deployed in the system.

In this paper, we focused on the SCADA substation based on Distributed Network
Protocol version 3 (DNP3). DNP3 is one of the most widely used communication protocols
in the power grid SCADA network. The DNP3 application layer specifies the message
exchange between a control center and field devices. The function codes in the application
message control the operation of the field devices. For this reason, the DNP3 application
layer is the part most vulnerable to any possible attacks, and the manipulation of the
function codes could constitute the most plausible and fatal attacks in DNP3 systems.
Previously, some researchers have focused on function code vulnerability in DNP3 [18].
However, they did not deal with the issues relating to function codes comprehensively,
and their solution was confined to syntactical analysis of packet contents, such as CRC and
checksum. In this study, we focused on possible attacks by interlopers able to manipulate
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the function codes of the message. We generated DNP3 application traffic, and formulated
various datasets that reflected the traffic characteristics of DNP3 application messages,
which were observed in real-life substations for a long time period [19-21]. Based on the
datasets generated in this way, we used the occurrences of each function code per TCP
connection as input features.

We considered the anomaly-detection method to deal with possible attack scenarios
where attackers could manipulate DNP3 application messages at will. For this purpose,
we applied the unsupervised deep learning model to detect anomalies. The autoencoder
network is one of the most commonly used as an unsupervised DL model for intrusion-
detection [22-24]. Recently the Generative Adversarial Network (GAN) was also widely
applied for this purpose [25,26]. In this paper, we adopted an autoencoder network that
had a simple internal architecture, since it could reconstruct input features sufficiently to
meet the intended purpose of this study [24]. To summarize, our contributions in this paper
are as follows:

e A framework to generate datasets that represent real-world traffic in power grid
substations, based on [19], by using modified OpenDNP3;

e A method to generate attack datasets, such that the adversarial (injection, dropping or
modification) traffic is embedded within the background traffic by using a combination
of malicious attacks when a host is hijacked;

e  We employed an extractor by which DNP3 instances were processed, to pull out data
features that represented the behavior of the DNP3 network, discovering important
feature representations;

e  We employed an AE-IDS model to discover important feature representations from
the training data, and generated a model to detect normal and abnormal behaviors.
Cooperation between the proposed model and IDS deep learning models was evalu-
ated by our own dataset, which we created using the OpenDNP3 library, which could
reflect the real network traffic;

e  Finally, analysis of accuracy, F1, precision, and recall values for the detection of
intrusion into our model FC-AE-IDS (Function Code Autoencoder IDS), compared
to an IDS model based on the traditional input features, to show the effectiveness of
our model.

The rest of this paper is organized as follows: Section 2 describes the background of
the DNP3 protocol; in Section 3, we explain the traffic characteristics of the dataset that
we generated in this study, the input features, and the autoencoder model; in Section 4,
we present how to generate datasets, and an analysis and performance evaluation of the
proposed method; finally, we discuss our conclusion and future work in Section 5.

2. Background to DNP3
2.1. DNP3 Protocol

DNP3 defines the rules according to which SCADA devices (outstations) and control
stations (master) communicate data and control commands [16]. Using the familiar power
grid parlance, the master is typically a central control center, and the outstation is a remote
terminal unit (RTU) or intelligent electronic device (IED).

DNP3 is a layered protocol, as shown in Figure 1. DNP3 application messages can be
delivered over serial links or the TCP/IP protocol. DNP3 consists of its own three layers
(functions). DNP transport (often called pseudo-transport) and data link layers involve
mostly fragmentation of application messages, along with some other functions such as
flow control or error control. They are designed for the purpose of communication over the
serial bus, which was the main communication environment in the old days. Currently,
most SCADA systems run over the TCP/IP network environment. When DNP3 operates
over TCP/IP, the master station acts as a TCP client connected to multiple outstations that
play the role of TCP servers.



Electronics 2022, 11, 2184 40f17

Object model DNP Data Object Library
Application DNP Application
DNP transport function
DNP data link function
Transport TCP/UDP
Internet Protocol
Network (IP)
IEEE 802.3
Data Link or others
Physical serial LAN

Figure 1. DNP3 protocol stack.

DNP3 application messages are classified into two categories: request and response
messages. The master requests data—such as binary inputs, analog inputs, count inputs,
and configuration data—by sending read request messages to outstations. The master also
issues control commands that close or trip a circuit breaker, or send some analog output
values to outstations. Not only do the outstations respond to the master’s request, but they
can also send messages autonomously when certain events happen, such as data point
changes (unsolicited response).

The function codes in the DNP3 application message, which is shown in Figure 2,
specify which operation should be performed on the outstations. The types of operation
are shown in Table 1. Using function codes, a master can perform all necessary operations
in order to monitor and control the outstations.

Ethernet P TCP DNP3
Application Header Data Section
Internal
Application | Function | Indications Object Object
Control Code LSB l MSB Header #1 R Header #2 LEZVR URC

Figure 2. DNP3 application message.
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Table 1. DNP3 function codes used in the study.

Code

Function Description

B~ W N~

5
7,8,9,10,11,12
13
15,16
17
20,21
23
129

Confirm Confirms the receipt of an application layer fragment.
Read Requests the specified object from an outstation.
Write Stores specified object in an outstation.

Select Selects output points but does not produce any action.

Operate Produces output actions based on the selected points.

Direct Operate Selects and operates the specified output.
Freeze and Clear Specified objects to freeze.
Cold Restart Performs the desired reset sequence.
Initialize Initializes the specified data to power up the initial values.
Stop Application Stops the specified application.

Enable/Disable Unsolicited Enables/Disables spontaneous reporting of the specified data object.

Time The value to adjust time in an outstation.
Response Response to a request message.

2.2. DNP3 Attacks

DNP3 attacks can happen in all DNP layers [27-29]. An extensive summary of all
possible attacks in each layer is shown in [29]. This paper classifies most attacks into three
categories with 21 attack instances. Those attacks range from passive reconnaissance to
execution of malicious operations on field devices while masking their actions. Among
all possible threats, the deadliest form of attack is the one that corrupts internal devices,
causing abnormal status and consequent malfunction. In most recent ICS attack instances,
this kind of attack took place when intruders hijacked internal nodes by utilizing the
software vulnerability of the system. In those cases, the attackers were able to possess
the system privilege to modify or fabricate DNP3 messages, eventually disrupting the
system operation at will. In terms of manipulating DNP3 application messages, the DNP3
application layer is the most vulnerable part. In particular, as most critical operations in
DNP3 systems can be performed based on function codes, exploitation of the function
codes opens the gate to manipulation of the system operation.

Table 2 shows a summary of the most feasible attacks utilizing function codes. Pa-
per [19] explains possible scenarios of attacks that utilize the function codes. The “Write’
function code, which is used for storing data in the outstation, can be misused to overflow
or corrupt an outstation’s memory. ‘Freeze” and ‘Clear’ function codes are used for freezing
(holding) or clearing (removing) values in the buffer (or register) of an outstation. ‘Cold
Restart” and “Warm Restart’ codes perform complete or partial reset of all hardware and
software in the outstation, consequently shutting down and restarting outstations. The
‘Initialize” function code can misplace the application state as specified by the data in the
request message; it can therefore be misused for reinitializing an outstation with arbitrary
states. The ‘Stop’ code halts the running of the application specified by the data in the
request, thus making the outstation unresponsive to commands from the master. The ‘Un-
solicited Response’ code can be used to overflow an outstation’s buffer, possibly enabling
DoS attacks.

Table 2. DNP3 scenarios of attacks utilizing function codes.

Function

Attack Scenario

Write
Freeze/Clear
Cold Restart
Initialize
Stop
Unsolicited

An action could make an outstation’s memory corrupt or overflow.
An action could lead an outstation to malfunction and crash.

An action could shut down and restart an outstation, and also cause a Denial-of-Service (DoS) condition.

An action could cause an outstation to reinitialize itself and result in arbitrary states.
An action could make an outstation unresponsive to any master commands.
This makes an outstation overflow its buffer, enabling DoS.
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3. The Proposed Anomaly-Detection Method (FC-AE-IDS)
3.1. Traffic Characterization

The goal of our study was to discover the normal pattern or behavior of DNP applica-
tion layer traffic in the real SCADA system, and to detect any possible attacks based on this
observation. Thus, the first step of our approach was to generate DNP3 traffic that could
characterize normal patterns of DNP3 message exchange in the real-world DNP3 system
operation environment.

Irvene, et al. [19], (p. 53, Figure 7) showed traffic characterization of DNP3 application
layer data captured from live operating power substation networks for a reasonably long
time. The datasets shown in the paper were taken from four medium-voltage distribution
substations non-consecutively over the course of two-and-a-half years. Formby, et al. [20],
also investigated TCP characteristics based on the real traffic captured from real power grid
networks. Their observations mainly focused on the TCP behaviors of the DNP3 devices
that could be distinguished from those in the traditional network.

Initially, we generate DNP3 traffic, and obtained a normal dataset that preserved the
function codes frequency similar to what is shown in [19]. In addition to normal traffic
generation, we also generated DNP3 attack messages manipulating the DNP3 function
codes. The attacks were divided into six types: injection, dropping, modification, cold
code, initialized code, and stop code. The first three attack types were to inject new malign
messages, remove legitimate messages, and alter legitimate messages. The last three attack
types specially injected illegitimate messages with Cold Restart, Initialize Application, and
Stop Application function codes, with the intended actions explained in Table 2. Details of
the traffic generation are explained in the next section.

3.2. Input Features and Autoencoder Network

Feature extraction consists of feature construction and feature selection. The window-
based feature extraction technique is one way of selecting attribute vectors that reflect the
time-series nature of packet streams [30]. The window is a certain timeframe within which
constructed features are analyzed. The pattern or behavior within one single window
corresponds to one data instance in deep learning models. A difficulty of applying the
window-based feature extraction is determining the optimal size of the window.

In this paper, we took the approach of selecting features based on TCP connections, as
shown in Figure 3. We set up TCP connections, and observed the function codes frequency
on each connection. The idea behind this approach was that it could capture the behavior
of DNP3 application layer messages, along with TCP behavior [20]. A single connection
corresponded to one instance, which lasted one minute. The whole cycle per day consisted
of 1440 instances, which contained more than 100,000 DNP3 application messages. The
DNP3 input features extracted per instance are shown in Table 3. In addition, two TCP/IP
features, which measured the transferred bytes from destination to source, and the opposite,
were also included in the input features. Thus, if there was any increase or decrease in
function codes, it would trigger a change in these features. The other 12 DNP3 features
have records of how many DNP3 function codes were sent per instance.

We adopted an autoencoder network as an unsupervised learning model, which
consisted of an input layer, hidden encoder/decoder layers, and an output layer. The
autoencoder network architecture in the study, as shown in Figure 4, had an input layer of
14 nodes (features), three hidden layers, and an output layer consisting also of 14 nodes
that reconstructed the input features. The Rectified Linear Unit (ReLU) was used in the
hidden layer, and the sigmoid function was used at the output layer.
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DNP3 Traffic in a Day

[ Connection 1 ]

Connection 1440

[ Connection 2 ] [ Connection 3 } -----------

[ Features 1 ] [ Features 2 } --------

Features 14

Figure 3. Two-level feature extraction.

Table 3. List of DNP3 input features.

Feature

Function

DNP3 payload length
Read Counter
Write Counter
Select Counter

Operate Counter
Freeze Counter
Cold Restart Counter
En/Dis code Counter
Initialize Counter

Stop Application Counter

Record Time Counter
Response Counter

The total length of the DNP3 payload contained within the connection.
Count Read codes
Count Write codes
Count Select codes
Count Operate codes
Count Freeze codes
Count Cold Restart codes
Count Enable/Disable unsolicited
Count Initialize Application
Count Stop Application
Count Record Current Time
Count Response

Input Layer
A AN EEFFFFF ¥y

Encoder

(<4883

TOOIIOOEOOPOOPO OO
Output Layer

Figure 4. The autoencoder network structure.

4. Experiment
4.1. Dataset Generation

Dataset generation for the experiment utilized two Linux host systems; one operated
as a master, and the other operated as an outstation, both of them running OpenDNP3 [31].
We modified the OpenDNP3 library for data visualizations, in order to better observe
trends in the application layer function codes and packet sizes. The analysis was performed
by Wireshark [32]. The captured PCAP file from the DNP3 network was converted into
CSV by a program written in Python using the PyShark library, where we were able to
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choose specific fields from the DNP3 traffic. The screenshot of Figure 5 shows an example
of TCP and DNP3 packets in a connection by Wireshark. We also generated attack packets,
based on the assumption that an attacker had already gained access to the DNP3 master
to execute all possible attack scenarios. Four datasets of network traffic were generated
over the course of four days: normal dataset and three datasets mixed with attack packets.
Figure 6 shows the Pearson correlation between the 14 input features.

Frame 119: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) on interface -, id @
Ethernet II, Src: PcsCompu_73:d4:bd (08:00:27:73:d4:bd), Dst: PcsCompu_8d:35:08 (08:00:27:8d:35:08)
Internet Protocol Version 4, Src: 192.168.0.1, Dst: 192.168.0.2
Transmission Control Protocol, Src Port: 49723, Dst Port: 20000, Seq: 126, Ack: 148, Len: 24
Distributed Network Protocol 3.0
> Data Link Layer, Len: 17, From: 1, To: 10, DIR, PRM, Unconfirmed User Data
> Transport Control: ©xe4, Final, First(FIR, FIN, Sequence 36)
> Data Chunks
> [1 DNP 3.0 AL Fragment (11 bytes): #119(11)]
v Application Layer: (FIR, FIN, Sequence 5, Cold Restart)

> Application Control: oxc5, First, Final(FIR, FIN, Sequence 5)

Function Code: Cold Restart (@xed)

<

Figure 5. An example of DNP3/TCP packets captured using Wireshark.

-10
src-bytes - . : 0.0016 0025 -0.0023 012 0.027
dst-bytes - 0.0026 0051 0.0017 O 0.017

-08
tot-dnp3-payload-len - 0. ). 0049 ). 014 0041 0.018
read-count 0.53 0.53 53 0.53 0.51 | 0073
write-count 0 013 0019 0022 O 0.086
select-count -JEUIZETEVIVENS 53 ' 0 < 9 0039 - 0.044

freez-count SRl GRS 3 0.069 0.0087 0.045 -0.056

cold-restart-count -SCCYS 046 013 0 069 047  0.069 -0.068 0.058 0.073
resp-count - ). . 039 00087 | 047 - 0039 00041 O 0029 0.031

operate-count JRUUFENEIEN 3 1 0 0.069 9 0.044 0.056
record-time -RUNUIFEREUNV WY 53 0041 0.044 0.055

en-dis JRO¥S 002 0 1 003 0044

Initialize-data JRULFEENEUREANERE) £ > 0.045 0044 0044 003 0.047
stop-application JRUCFZAEEKIP3Y ) 011 < 0.056 0.056 0.055 -0.044 0.047 -

label JERUESY 029 2 022 023 023 023 019 025

src-bytes
dst-bytes
tot-dnp3-payload-len
read-count
virite-count
select-count
freez-count
cold-restart-count
resp-count
operate-count
record-time
en-dis
Initialize-data
stop-application

Figure 6. Correlation between input features.

4.1.1. Normal Dataset

As explained in Section 3.1, we generated the packets that followed the traffic pattern
observed in a real-life substation operation. Figure 7 shows a breakdown of all the function
codes seen in the normal dataset. As shown in this figure, the majority of the function
codes were Read and Response; Stop, Restart, or Initialize function codes rarely took place.
The Write, Select/Operate, and Freeze/Clear function codes made up less than 5% of the
total application layer traffic.
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Figure 7. Function codes distributions of normal dataset.

4.1.2. Dataset D1

The attack packets were classified into six categories depending on the attack types, as
shown in Figure 8. As each name implies, the goal of the injection attack was to send new
illegitimate packets, and the goal of the removing attack was to delete legitimate packets.
The goal of the alter attack was to send packets with modified function codes. Among the
injections, when injected packets had ‘Cold’, ‘Initialize’, or ‘Stop” function codes, the attack
types were specified separately. These function codes can impact system availability, which
is considered the top priority security issue in the industrial control system. The D1 dataset
contained almost 5% attack packets and 95.4% normal packets. The chart in Figure 8 shows
the proportions of normal and abnormal packets of each attack type.

1%

m Normal M Injection mDropping = Alter MRestart MInitialize = Stop Application

Figure 8. Function codes distributions for dataset D1.
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4.1.3. Dataset D2

In dataset D2, we increased the attack percentage up to 25%, while the other 75%
maintained normal DNP?3 traffic. The increment in function codes was as follows: injection
function code at 5%; the drop and altering function codes were both at 6%; cold restart
code was around 4%; stop and initialize code was up to 2%. Figure 9 below shows the
proportions of DNP3 traffic in dataset D2.

H Normal M Injection M Dropping @« Alter MRestart MInitialize ™ Stop Application

Figure 9. Function code distributions for dataset D2.

4.1.4. Dataset D3

Dataset D3 was constructed on the assumption that almost half of all communications
were attack data. The other near-half of transmitted function codes were normal ones. The
percentages of attack data increased by double; the biggest increase was in injection attacks,
because more scope was presented for attackers to choose among all attack scenarios. The
increase in injection attacks reached 18% of the total traffic, while dropping, alter, and cold
attacks were just 8%, and initialize and stop attacks amounted to 4%, as shown in Figure 10.

m Normal = Injection = Dropping Alter mRestart = Initialize = Stop Application

Figure 10. Function code distributions for dataset D3.
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Figure 11 shows the distribution of attack types in datasets D1, D2, and D3. Dataset
D1 had: 1360 normal instances; 14 injection attack instances; 19 dropping and 16 altering
instances; 9 injected cold restart instances; and 11 initialized and stop application instances.
This gave a total of 1440 instances, and the attack percentage amounted to slightly over 5%
of the total traffic. Datasets D2 and D3 had 1079 and 722 normal instances, respectively,
together with 360 and 717 abnormal instances, which marked around 25% and 50% attack
rates for the total traffic. Figure 12 also shows the function codes frequency of four datasets.
It verifies that the datasets most closely followed the function codes frequency of the normal
dataset, which traced the traffic characteristics of DNP3 application layer data observed
from live operating power substation networks for a reasonably long time [19], (Figure 7).

=

D3

|
L

D2

_
|

D1

—

0 200 400 600 800 1000 1200 1400 1600

B Stop Application M Initialize W Restart & Alter B Dropping M Injection B Normal

Figure 11. Attack distributions of datasets D1, D2, D3.
mNormal mD1 mD2 D3

4.5

3.5

2.5
1.5
0.5 i i
0
O

DNP3 FUNCTION CODE DISTRIBUTIONS

NUMBER OF TIME SEEN
N

[N

Figure 12. Function codes distributions of Normal, D1, D2, D3.
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4.2. Performance Evaluation

The Keras programming environment, with TensorFlow at the backend, was used to
design the model. Designing an efficient deep learning model is a challenging task. First,
we carried out the hyperparameter optimization of the autoencoder model. The proposed
model was then trained by normal D1, D2, and D3 datasets.

The data generation and evaluation were carried out over three datasets, which were
captured over 3 days respectively. As mentioned in the previous sections, datasets D1, D2,
and D3 contained attack instances, which were dispersed randomly in the normal dataset.
Each attack was executed to last approximately 60 s (one instance). The modification
or injection attacks were configured using 1 to 10 DNP3 packets during one instance, to
provide a reasonable impact on DNP3 traffic. In this experiment, we calculated the Mean
Squared Error (MSE) for a normal dataset through the autoencoder network. The MSE was
evaluated by the following equation:

MSE(X/,x) = % Zﬁ:l (X'n — xn)2 1)

where x represented an actual output, and X’ represented a predicted output. The maximum
MSE of the normal traffic was used as a criterion to determine whether instances were
normal or abnormal.

Figure 13 shows the MSE of the normal and attack traffic of the three datasets, D1
through D3. In this figure, the y axis represents MSE, and the x axis is the instance. The
six graphs show how many errors were in the normal traffic, and how much deviation
happened in the attack traffic. Sporadic spikes in data traffic implied that they may have
deviated from normal patterns.

Figure 13a shows the MSE of dataset D1 without any attacks, which had a minimum
error of around 0.000938, an average MSE of around 0.001067, and a maximum MSE of
about 0.004550. Figure 13b shows the results of the attack packets in dataset D1. We can
see higher errors in this graph, as expected, having an average MSE of 0.096794 and a
maximum of around 0.303068. However, there were some instances of a minimum MSE
of 0.001329, which could be considered as normal traffic, depending on the threshold
values for classifying normal or abnormal. If we use the average MSE normal traffic, these
instances were above the threshold, resulting in being considered abnormal instances.
Figure 13c—f shows the results for datasets D2 and D3. As they had more attack instances,
they had more spikes in the attack data. Otherwise, they had similar patterns as that of
dataset D1, and we can apply the same interpretation to these datasets.

To validate our method, we compared the results with those obtained when the
model used the input features that the traditional IDS technique usually works with. We
extracted the input features—which were mostly related to TCP characteristics, which had
41 attributes as shown in [33], (p. 450, Table VI)—from the same datasets we generated.
We used those features for the AE-IDS model as an input layer consisting of 41 nodes, and
an output layer consisting of 41 nodes with some hidden layers. We then evaluated the
performance of the IDS that used traditional features (TCP features).

Figure 14a shows the MSE of dataset D1 without any attacks, which had a minimum
error of around 0.003211, an average MSE of around 0.008258, and a maximum MSE of
about 0.039162. Figure 14b shows the results of the attack on dataset D1. We can see higher
errors in this graph, as expected, having an average MSE of 0.062872 and a maximum of
around 0.173274. From the results, we can see from the MSE metric, even with a 5% attack,
that the traditional features do not give much information about DNP3 attacks. Figure 14c—f
shows the results for dataset D2 and D3. From the observation of these graphs, we can see
that the traditional features of AE-IDS have difficulties in distinguishing normal instances
from abnormal ones.



Electronics 2022, 11,2184 13 of 17

0.0045 030
0.0040 025 1
0.0035 020 1
0.0030
u 4 015 1
= 00025
0.0020 0101
00015 0.05 1
ooot0 | - . ' : : : : ' 0.00 1
0 200 400 600 80 1000 1200 1400 0 10 20 30 40 S0 e 70 8
Data Data
(a) (b)
0.005 0.30
0.004 0.25
020
0.003
w
g 2 015
0002 |
0.10
0001
0.05
0.000 0.00 -
0 200 400 600 800 1000 0 S0 100 150 200 250 300 350
Data
Data
(c) (d)
030
0004
025
0003 020
@ @ 015
= 0002 .
0.10
0001
005
0.000 0.00
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Data Data
(e) (f)

Figure 13. Results from FC-AE-IDS: (a) MSE of normal traffic for dataset D1; (b) MSE of attack traffic
for dataset D1; (c) MSE of normal traffic for dataset D2; (d) MSE of attack traffic for dataset D2;
(e) MSE of normal traffic for dataset D3; (f) MSE of attack traffic for dataset D3.

From a comparative perspective, to evaluate the effectiveness of our method, we com-
puted the following performance metrics for the three datasets: accuracy, recall, precision,
and F1. In these metrics, True Positive (TP) was the number of attacks classified correctly as
attacks; True Negative (TN) was the number of normal events rightly classified as normal;
False Positive (FP) was the number of normal events misclassified as attacks; and False
Negative (FN) was the number of attacks misclassified as normal.
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Figure 14. Results from the traditional AE-IDS: (a) MSE of normal traffic for dataset D1; (b) MSE
of attack traffic for dataset D1; (c) MSE of normal traffic for dataset D2; (d) MSE of attack traffic for
dataset D2; (e) MSE of normal traffic for dataset D3; (f) MSE of attack traffic for dataset D3.

TP + TN

Accuracy = TP + TN - EN J EP 2)
F1 score = 7 TP2: EII: TEN 3)
Recall = TP TN I:I—PFN 4
Precision = —TPTFP ®)

As shown in Table 4, the performance of FC-AE-IDS was better than the traditional
IDS (Trad-AE-IDS), which is based on 41 attributes as shown in [33]. In terms of accuracy,
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FC-AE-IDS accuracy was approximately 99% for dataset D1, while it was 97.57% and
95.35% for datasets D2 and D3. This meant that there was a 95-97% chance of detecting
any anomalous traffic inside the network. As can be seen, the Trad-AE-IDS accuracy of the
trained data was 97.71% of accuracy for the D1 dataset, which only had 5% of attacks, while
the recall and precision were 65% and 98%, respectively. The low recall rate meant that
the Trad-AE-IDS classifier had a high number of false negatives (undetected attacks). This
meant the model did not do well. The reason that precision was high was that the threshold
was previously set too high. That D2 and D3 results fell off, meant that the Trad-AE-IDS
features were not effective for those types of attacks. As a result, FC-AE-IDS features had
better classification capability than Trad-AE-IDS features. Furthermore, this result implied
that if the unsupervised learning model was used with imbalanced datasets like dataset
D1, it might lead to biased results. The results show that our approach was very effective
for various traffic with different attack ratios. In particular, the method produced a very
accurate detection rate even for dataset D1, which had very low attack instances.

Table 4. Comparison of performance between different algorithms for different datasets.

Algorithm Dataset Accuracy Recall Precision F1
D1 97.71 65.96 98.41 78.98
Trad-AE-IDS D2 84.72 29.35 98.91 45.27
D3 70.97 42.48 99.68 59.57
D1 99.03 86.08 95.77 90.67
FC-AE-IDS D2 97.57 91.39 99.09 95.50
D3 95.35 91.10 99.54 95.12

5. Conclusions

When an intruder hijacks internal nodes in the SCADA system by utilizing the soft-
ware vulnerability of the system servers, they can possess the system privilege to modify
or fabricate application messages, eventually disrupting the system operation at will.
These highly sophisticated attacks are the ones that commonly happened in the recent
SCADA/ICS attack incidents. One of the contributions of this paper is to address how to
cope with this kind of attack, which can avoid normal rule-based inspections derived from
deployed protocols and/or internal configurations. As most critical operations in DNP3
systems are performed based on the function codes, attackers exploit the function codes
and manipulate the system operation. The proposed anomaly-detection method uses the
function codes frequency per TCP connection as input features, along with the TCP charac-
teristics, to find normal behaviors of DNP3 traffic. The other novelty of this work is that we
made and generated several datasets that reflected DNP3 traffic characteristics that have
been observed in real-world power substations, according to [19]; and, after generating the
dataset, we were able to obtain the correct information about normal patterns of the DNP3
traffic. Therefore, the function code analysis could be weighted to help with classification.
Finally, we compared our model FC-AE-IDS to traditional IDS, and the proposed model
outperformed the traditional method in terms of accuracy, recall, and F1 score, proving its
efficiency for SCADA security. This gives more validity to the proposed method based on
function code analysis, showing that it is better for classification, rather than just depending
on the TCP connection features.

As further study, we may extend the input features to improve the effectiveness of
detection. We will also further explore how sparsity constraints are imposed on the au-
toencoder, and how sparse AE-IDS can be designed to further improve intrusion-detection
effectiveness. We may also extend the unsupervised model further, to ones like GAN, to
improve the model’s accuracy.
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