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Abstract: We designed a Network Exfiltration Detection System (NEDS) to detect data exfiltration
as occurring in ransomware attacks. The NEDS operates on aggregated metadata, which is more
privacy-friendly and allows analysis of large volumes of high-speed network traffic. The NEDS
aggregates metadata from multiple, sequential sessions between pairs of hosts in a network, which
captures exfiltration by both stateful and stateless protocols. The aggregated metadata include
averages per session of both packet count, request entropy, duration, and payload size, as well as
the average time between sequential sessions and the amount of aggregated sessions. The NEDS
applies a number of autoencoder models with unsupervised learning to detect anomalies, where
each autoencoder model targets different protocols. We trained the autoencoder models with real-life
data collected at network sensors in the National Detection Network as operated by the National
Cyber Security Centre in the Netherlands, and configured the detection threshold by varying the
false positive rate. We evaluated the detection performance by injecting exfiltration over different
channels, including DNS tunnels and uploads to FTP servers, web servers, and cloud storage.
Our experimental results show that aggregation significantly increases detection performance of
exfiltration that happens over longer time, most notably, DNS tunnels. Our NEDS can be applied
to detect exfiltration either in near-real-time data analysis with limited false positive rates, or in
captured data to aid in post-incident analysis.

Keywords: network intrusion detection; data exfiltration; autoencoder; anomaly detection

1. Introduction

Ransomware is an ongoing and increasing problem worldwide. Additionally, in
the Netherlands, the use of ransomware is considered a national security risk, since it
threatens the continuity of vital processes, the leaking and/or publication of confidential
or sensitive information, and the deterioration of cyberspace integrity [1]. Next to the
encryption of files, ransomware attacks are used increasingly with double or even triple
extortion, when cybercriminals steal data and threaten to publish these if the affected
organisation or its customers, suppliers, or partners do not pay a ransom [1]. Due to the
strong financial incentive, cybercriminals are motivated to continuously improve their
methods and techniques.

In this paper, we focus on the detection of data exfiltration as occurring in ransomware
attacks, where data are stolen covertly [2]. With good cybersecurity practices becoming
more prevalent, the threat of data exfiltration is becoming even greater than the threat
of data encryption, since organisations with effective backup systems may recover from
encrypted data rather quickly while the theft of data can hardly be undone and it is difficult
to impossible to prevent stolen data from being spread or sold on the internet. Data
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exfiltration enables cybercriminals to exercise more leverage on their victims by threatening
to publish or sell stolen data to interested parties. Hence, there is a pressing need to quickly
detect and stop data exfiltration by live analysis, and to identify by post-incident analysis
what data have been stolen and through which ways.

To increase cybersecurity, including resilience against ransomware threats, the Na-
tional Cyber Security Centre (NCSC) in the Netherlands has created the National Detection
Network (NDN), a platform for information sharing and automated detection. The NDN
receives intelligence from diverse sources and uses this to inform participating members
on cyber threats. The NDN also includes a large array of sensors that monitor network
traffic at central government organisations. Due to the large quantity of monitored traffic
data, automated filtering and analysis is required. The NCSC currently relies on threat
intelligence acquired from vendors as Indicators of Compromise (IOCs) for automated
detection of suspicious traffic. Although it is highly reliable, a limitation is that IOCs are
limited to known threats, while zero-day attacks may go unnoticed.

In this paper, we propose a detection system for data exfiltration that relies on anomaly
detection to detect known attacks and potentially also zero-day attacks. We leverage that
the NDN provides a unique source of real-life network data that are readily available,
and particularly that the NDN provides aggregated network data in the form of session
metadata. The contributions of this paper are as follows:

• We design and test a novel Network Exfiltration Detection System (NEDS) that can
detect instances of data exfiltration as occurring in ransomware attacks. The NEDS
analyses network traffic and can detect anomalies in this traffic without relying on
specific threat intelligence. The NEDS is composed of an ensemble of autoencoders,
where each autoencoder is targeted at one or multiple network protocols;

• A key novelty of our NEDS is that it operates on aggregated network metadata from
multiple, sequential sessions. This allows to detect data exfiltration that happens
over a longer period of time, by either stateless or stateful protocols. The usage of
aggregated metadata also allows to deal efficiently with large amounts of network
sessions. Hence, the NEDS can be applied in practical settings for either near real-time
analysis of live data or in post incident analysis of captured data;

• We train the NEDS using unsupervised learning with real-life data from the NDN
sensor platform (NSP) in the Netherlands. We evaluate the detection performance of
the NEDS for data exfiltration over different channels, including DNS tunnels and
uploads to FTP servers, web servers, and cloud storage. Our experimental results
demonstrate that the usage of aggregated metadata significantly increases detection
performance of exfiltration with limited false positive rates.

In the remainder of this paper, we first give background information on data exfiltra-
tion and autoencoders in Section 2. We discuss related work in Section 3. The design and
architecture of the NEDS are presented in Section 4. Our experimental setup to evaluate
the detection performance of the NEDS is described in Section 5. We present and discuss
our experimental results in Section 6. Section 7 concludes the paper, in which we also give
directions for future research.

2. Background

In this section, we provide background information on different types of data exfiltra-
tion and give a basic introduction to autoencoders.

2.1. Data Exfiltration

Data exfiltration is a security breach where data of an individual or organisation is
copied or moved without authorization. It typically includes transferring chunks of data
over a Command & Control (C2) channel or an alternative channel. The MITRE ATTA&CK
framework (https://attack.mitre.org (accessed on 1 November 2021)), an established knowl-
edge base of adversary tactics and techniques based on real-world observations, lists nine
exfiltration techniques for getting data out of a target network: automated exfiltration

https://attack.mitre.org
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(T1020), data transfer size limits (T1030), exfiltration over alternative protocol (T1048),
exfiltration over C2 channel (T1041), exfiltration over other network medium (T1011), ex-
filtration over physical medium (T1029), exfiltration over web service (T1567), scheduled
transfer (T1029), and transfer data to cloud account (T1537). Typically, multiple of these
techniques are applied together during ransomware attacks. In this paper, we consider all
of these techniques, except exfiltration over other network medium (T1011) and physical
medium (T1029). We consider exfiltration through different channels, including DNS
tunnels and uploads to FTP servers, web servers, and cloud storage.

In DNS tunneling, an attacker registers a domain name and configures a server that is
under their control as the authoritative name server for this domain name. After installing
malware on a victim’s host, the malware can send DNS requests for resolving the domain
name and embed additional information in the DNS packets. The DNS protocol ensures
these packets end up at the authoritative name server that is under control of the attacker,
where the attacker can retrieve the embedded information. Data can be embedded in
multiple record types in DNS packets. DNS tunnels are rarely blocked by firewalls, as most
networks require DNS, which increases the chance that data exfiltration would be successful.
Depending on the type of tunnel and rate of transfer, DNS tunnels can be very hard to
detect [3].

2.2. Autoencoders

An autoencoder is a specific type of artificial neural network that is typically composed
of two parts, as shown in Figure 1: an encoder, which encodes the input x into an internal
representation z = e(x), and a decoder, which tries to reconstruct the original input from
the internal representation and outputs x′ = d(z). The internal representation z typically is
smaller than the original input x. The output x′ should resemble the input x as closely as
possible. During training, the autoencoder tries to minimize the loss ||x− x′||2.

Figure 1. Autoencoder architecture.

An autoencoder with unsupervised learning can be applied in anomaly detection.
The autoencoder is trained first using a training dataset that does not contain anomalies.
The trained autoencoder can next be fed with a test dataset and detect anomalies by
considering that the autoencoder will perform worse at reconstructing inputs that are
different from the inputs that it has been trained on [4].

3. Related Work

There is a vast amount of scientific literature on data exfiltration, which is closely
related to the broader fields of detecting malicious or anomalous network traffic by means
of data-driven and behavior-driven approaches and traffic classification [5].

In this section, we discuss prior work in these fields, with a focus on data exfiltration.
In Section 3.1, we briefly outline how network data have been used, and in Section 3.2—
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what methods have been applied. In Section 3.3, we detail how our work relates to
prior work.

3.1. Traffic Inspection

A common method for detecting malicious or anomalous traffic is by inspecting
the traffic contents. Examples are Deep Packet Inspection (DPI) [6], tracking file system
access operations on data piped from database to files [7], or signature-based detection [8].
However, detecting data exfiltration through content inspection can be challenging due
to high computing cost, and is even impossible when exfiltrated traffic is encrypted or
engineered to look similar to normal network traffic [5].

Fawcett [9] addressed the detection of encrypted data exfiltration by considering
the Shannon entropy of outgoing network traffic. The presence of encrypted traffic on
what are normally unencrypted channels can be a strong indicator of data exfiltration.
However, computing entropy over network traffic incurs a computing cost, and a minimum
payload size of 256 bytes is required to confidently identify encrypted traffic using entropy.
He et al. [10] recorded and counted communication events to model normal behavior and
to determine whether traffic is encrypted.

Some studies considered aggregated data for detecting data exfiltration. Nadler et al. [11]
and Haghighat et al. [12] used a sliding window approach for detecting DNS tunnels.
Mirsky et al. [13] proposed an efficient method to accumulate packets and keep track of av-
erages. Kemp et al. [14] used netflow data, while Najafabadi et al. [15] and Nadler et al. [11]
aggregated flows over a longer time to expose low-throughput traffic.

3.2. Methods

Researchers have explored numerous methods to detect anomalies in network traffic
or data exfiltration. These methods range from automated methods applying wavelet
analysis [16] to graph theory [17], basic machine learning [14,18], and deep learning [12].
Clustering [13,19–23] and autoencoders [4,13,24–28] are popular methods, since they can
detect patterns in data using unsupervised learning and hence do not require labelled
training data.

Clustering has been widely applied for network anomaly detection [19,20]. With clus-
tering, anomalous data typically appear as outliers that have higher distance to centroids
of clusters or form smaller clusters. Münz et al. [21] applied K-means clustering using the
numbers of packets, bytes, and source-destination ports as features. Liu et al. [20] com-
bined K-means clustering with Principal Component Analysis (PCA) for dimensionality
reduction. Pagliari et al. [22] used bi-clustering combined with Support Vector Machine
(SVM). Mao et al. [29] proposed a clustering-based feature selection mechanism, and also
Radhakrishnan et al. [23] and Mirsky et al. [13] applied clustering as a pre-processing step
to reduce the number of dimensions and to eliminate redundant features.

Autoencoders generally can handle high-dimensional data better than traditional
clustering algorithms such as K-means. Autoencoders can also be applied to compress
input data before feeding them into a clustering algorithm. Nixon et al. [24] evaluated the
use of autoencoders for real-time anomaly detection in network traffic. Xu et al. [25] built a
five-layer architecture with autoencoders and a data pre-processing step to remove outliers.
Chen et al. [26] proposed an architecture with an ensemble layer of autoencoders in which
each autoencoder receives a part of the dataset during training while randomly dropping
connections in each autoencoder. Mirsky et al. [13] also applied an autoencoder ensemble
in which each autoencoder uses a different set of related features. Chen et al. [4] built a con-
volutional autoencoder for network traffic anomaly detection that uses a two-dimensional
data representation which requires less training time. Nguyen et al. [27] considered varia-
tional autoencoders that are more robust against noisy data and improve the explainability
of results. Wu et al. [28] experimented with multiple types of autoencoders, including basic,
variational, deep, and sparse autoencoder to detect DNS tunnels, and obtained best results
with basic autoencoders.
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3.3. Rationale

In this paper, we combine multiple concepts from related work as discussed above,
such as using aggregated data and an ensemble of autoencoders, but we made notable
modifications and extensions.

We apply the similar concept of data aggregation as introduced by Mirsky et al. [13],
but we apply this on the level of sessions rather than packets. We apply aggregation for
a similar goal, as introduced by Nadler et al. [11], but we aggregate all network traffic
rather than DNS traffic only. We adopt the approach of only looking at outgoing data and
include the concept of entropy into our feature list to take unexpected encrypted content
into account, in a similar way as proposed by Fawcett [9], but we also consider additional
features of the aggregated metadata. During aggregation, we apply a similar decay function
from damped incremental statistics as the one introduced by Mirsky et al. [13], but we only
have to keep track of a single value per feature, resulting in a linear time complexity.

Instead of a fairly complex setup, we use a basic autoencoder based on the work
by Wu et al. [28]. We apply an ensemble layer of basic autoencoders, as introduced by
Mirsky et al. [13] and Chen et al. [4], but instead of clustering parts of the dataset or features
per autoencoder, we assign each autoencoder to a different application-level network
protocol with the goal of preventing protocols with larger dimensions from overshadowing
smaller protocols.

4. NEDS Design

In this section, we present the design of our NEDS.

4.1. Architecture

The architecture of our NEDS consists of three components: data collection, data
aggregation, and anomaly detection. As shown in Figure 2, the data collector receives
metadata from the sensors in the NPS that are based on the RSA NetWitness platform
(www.netwitness.com (accessed on 1 August 2021)). Next, the data aggregator combines
metadata on sessions, which enables detection of low-throughput communication. We
store the aggregated data to create a dataset that can be used to train the autoencoders in
the anomaly detector. Storing the data allows us to easily reuse data, for instance when
updating or extending the anomaly detector. After training, the trained autoencoders can
be used to evaluate live or previously captured network data. When running the anomaly
detector, it tries to reconstruct the input data, which will not succeed if the data differ
significantly from the data that they were trained on, which can reveal data exfiltration.

Figure 2. NEDS architecture.

4.2. Session Metadata

The NSP sensors store both raw packet captures in PCAP-files and session metadata.
A network session is defined as one or two related stream(s) of traffic with a requester
and, usually, a responder. For instance: a DNS session consists of a single DNS request
and/or DNS response; a UDP session consists of packets assembled from the same source
and destination IP address/port pairs within preconfigured limits, such as the session size
or a timeout period since the last packet in the session; a TCP session consists of packets

www.netwitness.com
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assembled from the same source and destination IP address/port pairs and TCP flags
within preconfigured limits.

The RSA Netwitness platform provides rich session metadata that contain fields
such as:

• Hosts: the two hosts that are communicating in the session.
• Session size: the total amount of bytes transmitted both ways.
• Lifetime: the total number of seconds the connection was alive.
• Timestamp: the time at which the connection was initiated.
• Payload: the total amount of bytes successfully transmitted both ways.
• Total transmitted bytes of request and response: the total amount of bytes that were

transmitted, including dropped packets.
• Direction of traffic: indicates whether traffic is inbound, lateral, or outbound.
• Packet count of session: total packet count of session.
• Transport level protocol: TCP or UDP.
• Service: DNS, HTTP, etc.
• Destination organisation: indicates whether the destination is linked to an organisation.
• Entropy of request and response payload: entropy of transmitted bytes.

Although metadata in the session format do not contain the content of packets as in
PCAP-files, it offers several advantages. Storing metadata requires far less storage space,
and therefore can be stored for longer periods. The metadata provide aggregated data that
can be used more easily for analysis of large volumes of high-speed network traffic, and it
is also more privacy-friendly. Our NEDS, therefore, operates on session metadata. Since
we focus on the detection of data exfiltration, we only consider traffic that is part of the
outbound connection and we discard incoming and lateral traffic.

4.3. Aggregated Session Metadata

We introduce data aggregation for detecting data exfiltration effectively. Exfiltration
may occur in high-throughput communication, which can be identified by unexpected
sessions with spikes in traffic volume, but it can also occur in low-throughput commu-
nication that is spread over multiple sessions. Session metadata already aggregates data
at the level of individual sessions, which is effective for detecting communication over
stateful protocols such as TCP, but not for protocols such as UDP or DNS that result in
short sessions. Furthermore, sessions that grow too long or too big will be split. Hence,
data exfiltration patterns may not appear in individual sessions, but instead are spread
over multiple sessions, which is, for instance, the case with DNS tunnelling. We therefore
aggregate session metadata from multiple, sequential sessions.

We aggregate session metadata based on aggregation keys, which identifies the two
hosts that are communicating over multiple, sequential sessions. An aggregation key
combines the source IP address, destination IP address, and protocol. Figure 3 shows
an example with four hosts. Session 1 and 2 are between the same two hosts and are
aggregated; session 3 and 4 are between different hosts and hence are not aggregated.

Our aggregated metadata contains averages of features that relate to sessions under
the same aggregation key. We considered the following six features:

1. Average packet count per session: This feature represents the average number of
packets per session. It aggregates the packet count metadata field. If a malicious actor
is actively exfiltrating data, this feature value may possibly be higher than normal.
However, this can also be due to a non-malicious actor uploading information to an
external host. For some protocols where the number of packets is usually small and
consistent, such as DNS, this feature can highlight anomalous behaviour.

2. Average request entropy per session: This feature represents the average entropy of
the payloads in outgoing packets per session. It aggregates the entropy.req metadata
field. Since our main objective is to detect exfiltration, we only consider outgoing
traffic and we ignore response entropy and total entropy. Entropy roughly resembles
the amount of information the payload contains. A high request entropy may indicate
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exfiltration, as more data are being moved. A high request entropy can also be an
indicator of encrypted traffic, which an attacker may use when tunnelling over an
usually unencrypted protocol [10].

3. Average session duration: This feature represents the average duration (i.e., lifetime)
of a session in seconds. It aggregates the lifetime metadata field. The duration of
a session combined with other features can be indicative of anomalous behaviour.
For instance, sessions with DNS tunnelling have a much longer duration compared
with normal DNS traffic.

4. Average session payload size: This feature represents the average total session pay-
load size in bytes. It aggregates the payload metadata field. Note that the average
session payload size might be small even in long sessions due to packet drops. A high
payload size may indicate that a lot of data is being transported, and hence this feature
can potentially detect naïve data exfiltration. However, the feature will not reveal a
smart adversary who uploads data in low quantities over longer time periods.

5. Average time between sequential sessions: This feature represents the average time
between sessions in seconds. It aggregates the differences between timestamp metadata
fields. It is potentially useful for identifying automated behaviour, since a user will
likely not generate many hundreds of DNS or HTTP requests per second.

6. Weight: This feature represents the total amount of sessions aggregated under the key.
This feature is used for computing the averages of the features above. It also indicates
the difference between a single large session and multiple smaller sessions. A single
session which contains a large payload will have a weight of 1, while 100 sessions
transporting a total payload that is 100 times as big will have an identical average
payload size but a greater weight value.

Figure 3. Data aggregation example.

Our NEDS retrieves the relevant metadata fields through the REST API of the sensor
environment at regular time intervals, using the following query:

select entropy.req, sessionid, lifetime, time, service, ip.src.hash, ip.dst.hash, ipv6.src.hash,
ipv6.dst.hash, packets, payload.req
where direction = ‘outbound’ and time = “-”
We implemented aggregation using the decay function from the damped incremental

statistics framework as described by Mirsky et al. [13], with a few simplifications as listed
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in Algorithm 1. We query the sensor platform to retrieve session metadata for the outbound
traffic in a certain time interval (which is stored in sessions). For each of the retrieved
sessions, we derive the key k from the source and destination IP addresses and the protocol.
We aggregate the packet count PC, the duration D, the payload size P, and the entropy
EQ of sessions that have the same key. We aggregate data by accumulating metadata of
sessions that have the same key, using the damped window model in which older values are
exponentially decreased over time. We apply decay function 2−λ·di f , where λ is the decay
factor that determines how quickly values decay and di f is the time difference between
the current session and the previous session. We store the updated aggregated metadata
aggregate[k], as well as the average time between sequential sessions (average_time[k]) and
the total amount of session (weight[k]) under key k, in the storage system.

The time complexity of Algorithm 1 is O(1). We retrieve session metadata from the
sensor environment by querying its REST API at regular time intervals (outer while-loop),
and we process the metadata for each session sequentially (inner for-loop).

Algorithm 1 Querying and aggregation.

1: while (current_time < end_time) do
2: sessions← query(current_time− interval, current_time)
3: for (session in sessions) do
4: k← < session.srcIP, session.dstIP, session.service >
5: v← < session.PC, session.D, session.P, session.EQ >
6: di f ← session.timestamp− aggregate[k].timestamp
7: aggregate[k]← aggregate[k] · 2−λ·di f + v
8: store < aggregate[k], average_time[k], weigth[k] >
9: end for

10: current_time← current_time + interval
11: end while

4.4. Storage

We store aggregated data in order to create a dataset that can be used to train the
anomaly detector (see Figure 2). We apply a database system to handle large amounts
of data without performance issues. We used Redis (redis.io) to implement our database
structure because of the flat structure of our data and the requirement for fast read (and
write). Since our anomaly detector applies separate autoencoders for different application-
level protocols, we split the aggregated data based on the application-level protocol. We
create separated databases in the Redis instance for each application-level protocol, with an
additional database to store the state of the aggregation algorithm.

The time and space complexity for querying the REST API of the sensor environment
and storing the retrieved session metadata is O(1). Our database implementation uses an
in-memory, key-based storage model. For each unique key, a new unique key–value pair is
created, and hence, the required space grows linearly with the amount of unique keys.

4.5. Anomaly Detector
4.5.1. Architecture

The anomaly detector is composed of an ensemble layer with multiple autoencoders
and a Threshold Checker, as illustrated by the example in Figure 4. In the ensemble layer,
a separate autoencoder is used for each application-level protocol (or multiple similar
protocols). The anomaly detector receives a feature vector x of dimension k = 6 with
aggregated session metadata, as described in Section 4.3. The feature vector is fed only to
the autoencoder that matches the protocol as indicated by the aggregation key.

Each autoencoder is trained with the aggregated network data for the corresponding
protocol. Depending on the use case, the user can configure how many autoencoders,
and for which protocols, are included in the anomaly detector. Not all protocols appear
on every sensor, primarily due to the way they are deployed in the network. We select
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the protocols that are actually present, and assign each of them to an autoencoder. In case
of protocols for which not enough traffic is present to reliably train an autoencoder, we
combine these protocols.

As shown by Mirsky et al. [13], the complexity of executing a single autoencoder is
O(k2). As the number of the autoencoders can be configured by the user, the complexity of
the anomaly detector scales linearly with this amount.

Figure 4. Anomaly detector architecture.

4.5.2. Autoencoder Model

We apply the autoencoder model in the anomaly detector instead of other machine-
learning or deep-learning models for multiple reasons. Since we only have unlabelled
data available for training, we rely on unsupervised learning. An autoencoder model is in
principle well-suited to detect anomalies. The key idea behind this is that an autoencoder
model that has been trained with normal traffic will do well at reconstructing normal traffic
but poorly at reconstructing anomalies. We apply multiple autoencoders in parallel, instead
of one central autoencoder, since this has several benefits. Each autoencoder targets a sepa-
rate protocol, which allows us to use a relatively simple autoencoder model. The anomaly
detector can be scaled easily by adding autoencoders and the autoencoders can be trained
and run in parallel. This is hard to realize with other anomaly detection techniques such
as clustering. Furthermore, using compact autoencoders facilitates explainability and
diagnosis of decisions made by the anomaly detector.

We use a relatively simple autoencoder model, implemented with the PyTorch library.
All autoencoders consist of: an encoder, containing a linear layer with six neurons and a
ReLu layer; a bottleneck layer of two neurons; and a decoder, containing a linear layer with
six neurons and a sigmoid layer. The difference between the input x and the reconstructed
output y of the autoencoder model (i.e., the reconstruction error) is computed by the Mean
Squared Error function [13]:

RMSE(x, y) =

√
Σk

i=1(xi − yi)2

k
(1)

During training, we used the Adam optimizer with a learning rate of 0.001, a weight
decay of 0.000001, and a batch size of 32. Furthermore, we shuffled the input order each
epoch. We did not use dropout. We experimented with changing the number of neurons in
the bottleneck layer. Although this drastically changes the reconstruction error, it only has
a minor impact on the actual classification performance of the anomaly detector.
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4.5.3. Threshold Checker

The reconstruction error of the autoencoder is compared to a threshold in the Threshold
Checker. We configured a separate threshold for each autoencoder. If the error is higher
than the threshold, the session is classified as an anomaly. In order to find an appropriate
threshold, we first determine a desired false positive rate. The training dataset is used
to find a threshold value that results in the specified max amount of false positives by
applying a quantile function on the output of the model.

4.6. Normalization

Using separate autoencoders per application-level protocol does not only create a
scalable architecture, but also simplifies normalization. When using only a single autoen-
coder, all feature values would be normalized within the same range, independent of the
protocol. Since the traffic characteristics are heavily dependent on the protocol, different
protocols will carry a different weight within the model. For example, an average HTTPS
session will transport much more data than an average DNS session. After normalization,
this will cause all DNS session payload values to lie close together, which decreases the
distance between anomalous and benign sessions. To solve this, we normalize all sessions
per protocol and train separate autoencoders.

It is important to normalize the data appropriately. If the data are not normalized, it
is likely that certain features will have larger ranges than other features, causing them to
overshadow the other features during training [13]. In our case, it is important to normalize
in such a way that outliers are not destroyed or mitigated, as those are exactly the data
points we wish to detect. We use min-max normalization in order to keep the distribution
of the data intact. In min-max normalization, all values are mapped to a range of 0–1 based
on their minimum and maximum observed values. If x represents the value, than the
normalized representation x′ is computed as follows [30]:

x′ =
x−min(X)

max(X)−min(X)
(2)

The min and max values are collected during aggregation. When the querying and
aggregation are completed for constructing the training dataset, the entire dataset is nor-
malized. While the anomaly detector is running and new data are arriving, the min and
max values are no longer updated and data are normalized as they come in.

4.7. Deployment

Our NEDS can either be installed at a network sensor, or on a separate server which
can communicate with multiple sensors. The latter option allows simple scaling, using the
REST API to retrieve data from multiple sensors, and easily selecting particular sensors.
A potential upside of placing the NEDS at a sensor is that the data do not have to be
retrieved over HTTP/S, and can instead by retrieved directly from the sensor database.

The NPS includes a diverse range of sensors with different configurations at numerous
organisations. Organisations may have more than one location where traffic exits their
network, and organisations are free to place sensors wherever they prefer. It is, therefore,
well possible that the sensors give only a partial view of the outgoing internet traffic for an
organisation. It can be a limiting factor for training the anomaly detector if the gathered
data do not represent all of the traffic that takes place. For our experiments, we selected a
sensor that captures a wide range of internet traffic.

Furthermore, many organisations employ a firewall-and-proxy setup, where the sensor
can be placed in front or behind, as shown in Figure 5. Placing it on the inside provides
network information on specific workstations. Alternatively, placing it on the outside
is more effective for detecting occurrences of Indicators of Compromise, but traffic will
appear to be originating from the proxy which obscures workstation information.
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Figure 5. Network topology.

5. Experimental Setup

This section describes the setup used in our experiments. We discuss the infrastructure,
the training dataset, the test dataset used for evaluation, and the detection criteria.

5.1. Infrastructure

We installed the NEDS on a separate server and connected it to one of the sensors in the
NPS that monitors real-life traffic. The sensor is located in front of a proxy, on the inside of
a network (see Figure 5). This means that we can observe the actual source and destination
IP addresses embedded in the packets, which yields better results when aggregating.

As explained in Section 4.3, we query the REST API of the sensor at regular intervals.
In principle, we want to keep this time interval small, in order to allow near-time operation
of the trained anomaly detector. In our experiment, we used an interval of 2 min.

The REST API offers a size parameter to limit the maximum amount of sessions that
are returned for a query. In principle, selecting a smaller size value implies that a smaller
time interval between queries is required. We experimented with different values of the size
parameter. We found that for a size smaller than 100, the interval between queries becomes
too short and the sensor is overloaded. Additionally, for a size greater than 100,000, the
sensor is overloaded and timeouts. We observed that changing the size between 100 and
100,000 had very little effect on the overall retrieval speed. We settled on using a size
of 10,000.

We noticed that in the network that is monitored by the sensor, the traffic differs
considerably depending on both the time of the day and the day of the week. For example,
we observed much more traffic during office hours than at night, with peaks in the morning
and dips around lunch time, and much less traffic on Wednesdays. When retrieving at
most 10,000 sessions per interval of 2 min, we cannot capture all traffic in busy periods.
Hence, in fact, we sample the traffic: each sample contains a sequence of at most 10,000
consecutive sessions, while additional sessions that occur in the 2 min interval are missed.
Nevertheless, by observing traffic over a longer period, we still gain a representative view
of the traffic.

As explained in Section 4.3 (Algorithm 1), we apply a damped window model for
aggregating metadata with decay factor λ. We use a decay factor of 0.01, which results in a
time window for aggregation of about 1 min [13].

5.2. Training Dataset

We gathered the training dataset over a period of 24 h with a query interval of 2 min,
from 8:00 a.m. (UTC+2) on Thursday 14 April to 8:00 a.m. on Friday 15 April 2022. In total,
627,797 sessions were collected. Figure 6 shows the distribution of the feature values in
the captured traffic. The Service figure shows that the vast majority are DNS sessions,
while the other ones are mainly HTTPS sessions and some sessions with SSH, HTTP, and
other protocols. The Weight figure shows that the majority of the sessions are rather short,
and hence not aggregated under a key, which implies that the communication between
most pairs of hosts is infrequent or spread over time (implying that aggregation decays
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to 0). Additionally, the Duration and Packet count figures indicate that the majority of the
sessions are rather short.

Figure 6. Feature distribution in the training dataset.

Figure 7 shows the feature distribution for DNS, HTTPS, HTTP, SSH, SMTP and other
protocols. The Weight figures shows that SSH sessions are aggregated far more than other
sessions. This is most likely due to the average length of an open SSH connection causing
it to be split into multiple sessions. HTTPS and SSH traffic appears to have a higher
average entropy, which is due to the fact that payloads are encrypted. Another interesting
observation is that a considerable amount of the HTTP sessions, and HTTPS sessions to a
lesser extent, have a long duration.

5.3. Test Dataset

We presume that the traffic as observed by the sensor does not contain anomalies. Since
the NDN did not report suspicious activity, we can safely consider the traffic to be normal
traffic, although there is a slight chance that anomalies were not detected. We, therefore,
created a test dataset with normal traffic from querying the sensor data, and anomalous
traffic that we injected ourselves.

5.3.1. Normal Traffic

We gathered the normal traffic in the test set in an identical way as the training set,
but over a different and shorter time period. Data in the training set must not be reused
in the test set, and therefore, we captured traffic in different time periods. Network traffic
trends to change over longer time, to the extend that a model trained on data from more
than a month ago may perform considerably worse and has to be retrained with fresh data.
We queried normal traffic for the test set, again by using a 2 min time interval between
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queries, one week after the training dataset from 9:30 to 11:30 a.m. on Thursday 21 April
2022. In order to limit the size of the test set, we reduced the period to 2 h. We selected the
morning hours, when most traffic is generated. We collected metadata of 52,320 sessions.

Figure 7. Feature distribution per protocol.

5.3.2. Anomalous Traffic

We added anomalous traffic to the test set. We considered data exfiltration over
different channels: DNS tunnels and uploads to an FTP server, a web server, and to
cloud storage.

• DNS tunnel exfiltration: We exfiltrated data through DNS tunnels by using the
following malware: bondupdater, cobaltstrike, denis, dnspionage, ismdoor, pisloader-
01, pisloader-02, and udpos. The malware creates DNS tunnels that are used as C2
channels or to exfiltrate data. Malware such as ismdoor and iodine tunnels multiple
packets, while tunnels created by, for instance, pisloader-01 and pisloader-02 are
very small.

• FTP exfiltration: We exfiltrated data by uploading files to an FTP server. We set up an
FTP server on a virtual private server. The files are uploaded from another host.

• HTTP exfiltration: We exfiltrated data over HTTP with GET/POST requests. We set
up a simple upload server on a virtual private server. The files are uploaded from
another host.

• Cloud exfiltration: We exfiltrated data by uploading files to cloud storage, using the
Rclone utility (https://rclone.org (accessed on 1 December 2021)). We setup Rclone to
exfiltrate data to Google Drive.

We exfiltrated four types of files: a file containing a credit card number and files with
random data of 1 kB, 100 kB, and 10 MB in size.

https://rclone.org


Electronics 2023, 12, 2584 14 of 20

We performed the exfiltration and recorded the traffic generated in a PCAP-file with
Wireshark (on the host from which the exfiltration is performed). We removed packets from
the PCAP-file that were not related to the exfiltration. We next uploaded the PCAP-file to
a separate sensor, which generates the corresponding session metadata. The name of the
PCAP-file is stored as a key in a field of the metadata. We used this key to query the sensor
through the REST API. By using a separate sensor, we prevented anomalies from mixing
into the normal data in the training dataset and test dataset.

Table 1 shows the number of sessions that are included in the test dataset for each
of the data exfiltration channels. Table 2 summarizes the numbers of sessions that are
included in the training dataset and the test dataset.

Table 1. Numbers of sessions included in test dataset per exfiltration channel.

Channel Type Number of Sessions

DNS tunnel

bondupdater 30
cobaltstrike 285
denis 31
dnspionage 8
ismdoor 725
pisloader-01 13
pisloader-02 78
udpos 127

FTP exfiltration

credit card file 4
1 kB file 4
100 kB file 4
10 MB file 24

HTTP exfiltration

credit card file 1
1 kB file 1
100 kB file 1
10 MB file 1

Google Drive exfiltration

credit card file 1
1 kB file 1
100 kB file 1
10 MB file 3

Table 2. Numbers of sessions included in the training dataset and test dataset.

Dataset Traffic Type Number of Sessions

Training Normal 627,797

Test Normal 52,320
Data exfiltration 1343

5.4. Evaluation Criteria

The goal of the NEDS is twofold: We want to detect anomalies, in the form of data
exfiltration, as well as possible. At the same time, the number of false positives should be
minimal in order to make the system usable in practice. The first goal can be evaluated by
means of the true positive rate (TPR), also called sensitivity or recall, which measures what
number of all anomalies is detected. The second goal can be evaluated by means of the true
negative rate (TNR), also called specificity or selectivity, which measures what amount of
normal traffic is classified correctly [31].

TPR = sensitivity =
true positives

true positives + false negatives
(3)

TNR = specificity =
true negatives

true negatives + false positives
(4)
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An additional constraint is that the data are heavily unbalanced, since the amount
of normal traffic is many times larger than the amount of anomalous traffic. Hence,
the negative class is expected to be much larger than the positive class, which means that
the amount of false positives may overshadow the amount of true positives. The precision,
which measures the amount of true positives among all positive detections, is therefore not
useful in our case.

The detection performance of the NEDS is largely dependent on the thresholds of the
autoencoders in the anomaly detector. There is no objectively best value for these thresholds,
as it differs per use case. To obtain a fair representation of the detection performance, we
configure the anomaly detector with different thresholds resulting in a false positives rate
of 0.001, 0.010, and 0.050 during training.

As mentioned, we consider all traffic in the training dataset to be normal, and hence,
we consider positive detections during training as false positives. It may, however, be the
case, albeit very rarely, that such positive detection indeed would be an actual anomaly
detection. However, due to the large size of the dataset, it is impossible to investigate all
false positives. In addition, the normal traffic may contain traffic that is non-malicious data
exfiltration, such as automated backups. In this case, data are being exfiltrated, but in a
controlled and intended manner. This may lead to false positives.

6. Experimental Results

In this section, we describe our experiments and discuss the results. We trained
the autoencoders in the anomaly detector using the training dataset and evaluated the
detection performance using the test dataset. In the experiments, we measured the detection
performance for different thresholds of the anomaly detector, by allowing false positive
rates of 0.001, 0.010, and 0.050 during training. We also evaluated the effect of using
non-aggregated versus aggregated session metadata.

6.1. Results

To evaluate the effect of aggregation, we first trained and evaluated the anomaly detec-
tor with non-aggregated data, and next with aggregated session metadata. Table 3 shows
results with non-aggregated data, and Table 4 with aggregated data, for data exfiltration
over DNS, HTTPS, and HTTP, for the different detection thresholds.

For exfiltration over DNS tunnels, we see that the use of aggregated session metadata
improves the TPR considerably. Without aggregation, the TPR is below 0.1878, while with
aggregation, the TPR is above 0.6974. Additionally, increasing the threshold FPR leads to
higher TPR. Even at a low threshold FPR of 0001, the TPR is 0.6974.

For exfiltration over HTTPS and HTTP, the usage of aggregated data has only marginal
effect when compared with usage of non-aggregated data. Additionally, increasing the
threshold FPR has hardly any effect. The only improvement is for HTTPS using aggregated
data for a threshold FPR of 0.050. The TPR for HTTP is 0.3000 in all cases, which is higher
than for HTTPS in nearly all cases.

Table 3. Results with non-aggregated session metadata for exfiltration over DNS, HTTPS, and HTTP.

Threshold FPR
DNS HTTPS HTTP

TPR TNR TPR TNR TPR TNR

0.001 0.0016 0.9990 0.0000 0.9990 0.3000 0.9983
0.010 0.0368 0.9955 0.1667 0.9899 0.3000 0.9896
0.050 0.1878 0.9500 0.1667 0.9502 0.3000 0.9844
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Table 4. Results with aggregated session metadata for exfiltration over DNS, HTTPS, and HTTP.

Threshold FPR
DNS HTTPS HTTP

TPR TNR TPR TNR TPR TNR

0.001 0.6974 0.9990 0.1667 0.9990 0.3000 0.9983
0.010 0.8386 0.9900 0.1667 0.9899 0.3000 0.9896
0.050 0.9087 0.9499 0.3333 0.9495 0.3000 0.9499

Table 5 shows the results for different exfiltration channels, for both non-aggregated
and aggregated data at different detection thresholds. Each row in the table shows the
fraction of sessions that has been detected out of all exfiltration sessions for the particular
channel. The use of aggregated data improves the detection considerably for most DNS
tunnels. The exceptions are bondupdater, dnspionage, and pisloader-01. For exfiltration
over FTP, the use of aggregated data leads to higher detection for larger file size. Exfiltration
over HTTP is detected in all cases, except for the very small credit card file, with both
non-aggregated and aggregated data. Exfiltration to Google Drive is only detected for the
10 MB file.

For DNS tunnels, increasing the threshold does not necessarily lead to more detection.
The detection improves for 5 of the 8 DNS tunnels. For FTP, HTTP and Google Drive,
increasing the threshold hardly improves detection, except for the 10 MB file. Even at small
FPR of 0.001, exfiltration can be detected.

Table 5. Results for different data exfiltration channels.

Exfiltration Channel Non-Aggregated Data Aggregated Data

Threshold FPR 0.001 0.010 0.050 0.001 0.010 0.050

DNS

bondupdater 0.000 0.000 0.033 0.000 0.000 0.000
cobaltstrike 0.000 0.000 0.067 0.519 0.828 0.888
denis 0.000 0.742 0.742 1.000 1.000 1.000
dnspionage 0.000 0.250 0.375 0.000 0.000 0.000
ismdoor 0.004 0.029 0.240 0.859 0.877 0.935
pisloader-01 0.000 0.077 1.000 0.000 0.000 0.000
pisloader-02 0.000 0.013 0.282 0.000 0.013 0.705
udpos 0.000 0.000 0.055 0.000 0.701 0.843

FTP

credit card 0.500 0.500 0.500 0.500 0.500 0.500
1 kB 0.500 0.500 0.500 0.500 0.500 0.500
100 kB 0.500 0.500 0.500 1.000 1.000 1.000
10 MB 0.083 0.125 0.125 0.125 0.458 1.000

HTTP

credit card 0.000 0.000 0.000 0.000 0.000 0.000
1 kB 1.000 1.000 1.000 1.000 1.000 1.000
100 kB 1.000 1.000 1.000 1.000 1.000 1.000
10 MB 1.000 1.000 1.000 1.000 1.000 1.000

Drive

credit card 0.000 0.000 0.000 0.000 0.000 0.000
1 kB 0.000 0.000 0.000 0.000 0.000 0.000
100 kB 0.000 0.000 0.000 0.000 0.000 0.000
10 MB 0.000 0.333 0.333 0.333 0.333 0.667

6.2. Discussion

We observe that aggregation considerably improves detection of exfiltration that is
spread over multiple sessions. This is most notable for DNS tunnels, where exfiltration
typically occurs over a longer time period. Results on others channels show that there is a
slight improvement when using aggregated data, which tends to increase with larger file
sizes of exfiltrated data. On these channels, exfiltration often occurs in a single session,
for which the use of aggregated data has no additional benefit. When file sizes become
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larger, the data transfer is spread over multiple sessions, and then aggregation starts to
pay off.

Our work builds upon prior work by Mirsky et al. [13] and Chen et al. [4], in which
anomaly detection also is addressed by using an ensemble of autoencoders. A direct
comparison of the detection performance is hindered by the usage of different datasets
in these works. We evaluated our NEDS using real-life data from the NDN in which
we injected data exfiltration. Mirsky et al. evaluated their detection system on a dataset
captured from a video surveillance network in which they injected attacks that affect
the availability and integrity of the video uplinks. Chen et al. evaluated their detection
system on the NSL-KDD dataset. The main difference between our work and prior work
is that we target our NEDS on practical application within the NDN, with an architecture
that is relatively simple and easily scalable. We leverage that the NDN provides real-life,
aggregated session metadata. When compared with prior work, our anomaly detector
is less complex, we apply data aggregation on the level of sessions rather than packets,
and instead of clustering parts of the dataset or features per autoencoder, we assign a
different application-level network protocol per autoencoder.

Using (aggregated) session metadata comes with the benefit that it is a more condensed
version of network data, compared with packet data, and it is also more privacy-friendly.
However, we lose the ability to inspect the content of packets.

In our experiments, we performed data exfiltration ourselves. We attempted to make
this as realistic as possible, and for DNS tunnelling, we even used existing malware.
However, data exfiltration may still look different in real life. Furthermore, we generated
data exfiltration on a single host in an environment that is not connected to the network at
which we observed the normal traffic. Hence, it is possible that the data exfiltration traffic
would look slightly different when generated directly in this network.

In the experiments, we actually demonstrated that we can detect known data exfiltra-
tions. In theory, our anomaly detector may also be able to detect still unknown zero-day
attacks, since the autoencoders flag any traffic that differs sufficiently from normal traffic
as an anomaly. However, it is by definition impossible to demonstrate this in practice.

We manually inspected how autoencoders reconstruct the session metadata. We
observed that the autoencoders are very effective. The session metadata of anomalies that
look similar to normal traffic are reconstructed well and hence remain below the threshold.
This may be improved by applying machine-learning concepts such as regularisation to
force the autoencoders to keep the complexity low while training, thereby increasing the
distance between normal and anomalous traffic.

Autoencoders have a significant practical benefit. They allow us to scale the NEDS
as we can easily add autoencoders and distribute incoming traffic over multiple servers
for running autoencoders in parallel. This is hard to realize with other anomaly detection
techniques such as clustering, as they often require a large amount of data to execute.

When considering actionability, i.e., the ability to respond to anomalies flagged by our
NEDS, the time difference between an anomaly occurring and its detection is important.
When detecting data exfiltration, the attackers can be assumed to be far along, since they
already had access to hosts on which they initiated the exfiltration, and potentially may
already have exfiltrated a large amount of data. Therefore, a fast response time is vital.
In our current implementation, aggregated data have to be retrieved in session format
from the sensor. Hence, first the sensor has to compute the session data from the packet
capture, and after that, the NEDS has to query and aggregate the data and run it through
the anomaly detector, which takes some time. Since fast reaction is crucial to stopping data
exfiltration before it is completed, the NEDS is most useful when running on live data and
taking automated action, such as closing ports or network connections to prevent further
data exfiltration.

An alternative useful scenario is to use the NEDS to find anomalies in historic data,
in order to search for breaches that have not been detected or to find breaches that are
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still ongoing. It could also be potentially useful to determine what data exactly have been
moved. This is a more useful scenario in practice for application of the current NEDS.

Another part of actionability is the information that the NEDS provides when it finds
an anomaly. The current implementation does not provide context to its finding. It would,
however, be interesting to determine which feature or features triggered the detection.
This type of information is highly valuable to an analyst when analysing and diagnosing
an anomaly.

7. Conclusions

We designed and implemented an intrusion detection system to effectively detect data
exfiltration in a real-world setting using only aggregated network session metadata. We
evaluated our NEDS against a realistic dataset that contains metadata on real-life normal
data and custom generated data exfiltration.

Our experimental results show that aggregation of session metadata is an effective
way to capture traffic between two unique hosts that happens over longer periods of time,
using either stateful or stateless protocols. Aggregation considerably increases detection
results for data exfiltration that is spread over multiple sessions, which, particularly, is the
case in DNS tunnelling.

The anomaly detector in the NEDS contains a set of autoencoders that can be trained
and run in parallel. This provides that the NEDS can be easily extended. The autoencoders
are trained using unsupervised learning, and hence, no labelled dataset is required. The de-
tection threshold is configured during training to reduce the false positive rate, which
avoids time-consuming analysis of false positives.

The NEDS can be applied to analyse network traffic in near real-time, however, a delay
is introduced since the sensors first have to capture network packets and compute session
metadata, which is next queried and aggregated by the NEDS before running it through the
anomaly detector. A more practical use case of the NEDS is to aid in post-incident analysis
of captured data.

In our future work, we intend to explore how the detection accuracy of the anomaly
detector can be improved, for instance, by considering other features and combining non-
aggregated and aggregated session metadata. In particular, we intend to further study
aspects of actionability, such as automated reacting upon anomaly detection, adding sup-
port for the diagnosis of anomalies, and adding an automated system to trigger retraining.
The NEDS is currently focusing on detection of data exfiltration. We also may explore
extending the NEDS for detecting other types of anomalies.
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AE Autoencoder
API Application Programming Interface
C2 Command & Control
DNS Domain Name System
DPI Deep Packet Inspection
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FPR False Positive Rate
FTP File Transfer Protocol
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IOC Indicator of Compromise
NCSC National Cyber Security Centre
NDN National Detection Network
NEDS Network Exfiltration Detection System
NSP NDN Sensor Platform
PCA Principal Component Analysis
REST Representational State Transfer
SMTP Simple Mail Transfer Protocol
SSH Secure Shell
SVM Support Vector Machine
TNR True Negative Rate
TPR True Positive Rate
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