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Abstract: With the development of infrared technology, infrared dim and small target detection
plays a vital role in precision guidance applications. To address the problems of insufficient dataset
coverage and huge actual shooting costs in infrared dim and small target detection methods, this
paper proposes a method for generating infrared dim and small target sequence datasets based
on generative adversarial networks (GANs). Specifically, first, the improved deep convolutional
generative adversarial network (DCGAN) model is used to generate clear images of the infrared sky
background. Then, target–background sequence images are constructed using multi-scale feature
extraction and improved conditional generative adversarial networks. This method fully considers
the infrared characteristics of the target and the background, which can achieve effective expansion
of the image data and provide a test set for the infrared small target detection and recognition
algorithm. In addition, the classifier’s performance can be improved by expanding the training set,
which enhances the accuracy and effect of infrared dim and small target detection based on deep
learning. After experimental evaluation, the dataset generated by this method is similar to the real
infrared dataset, and the model detection accuracy can be improved after training with the latest
deep learning model.

Keywords: generating adversarial networks; infrared dim and small target sequence dataset generation;
infrared sky background

1. Introduction

Infrared images mainly rely on the detector to receive the thermal radiation of the
object itself for imaging. Compared with visible light images, infrared imaging conditions
are unaffected by light, weather changes and other conditions. The imaging system has a
more extended detection range and better penetration ability, so infrared imaging systems
are widely used in air defense, the military and other fields. However, collecting infrared
data using infrared imaging equipment is costly and time-consuming, and the lack of
infrared datasets seriously affects relevant studies based on infrared data.

The main traditional methods for infrared small target detection are filter-based
methods [1,2], human eye visual attention-based mechanisms [3–7] and low-rank-based
methods [8–14]. With the development of deep learning, infrared dim and small target
detection methods based on deep learning have been proposed in recent years. The deep
learning-based approach to infrared small target detection uses CNNs to implement feature
extraction operations, which allow for deeper semantic information to be obtained from the
image. Based on CNNs, Wang et al. [15] proposed a network that uses generative adversar-
ial networks to balance the miss detection rate and false alarm rate in image segmentation,
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where the network is trained by adversarial training of three sub-networks to finally achieve
the balance of miss detection rate and false alarm rate. Dai et al. [16] proposed the first
segmentation-based network, designing an asymmetric background modulation module to
aggregate shallow and deep features. Dai et al. [17] then further improved their network
by extending local contrast and designing a feature-cyclic transformation scheme to imple-
ment trainable local contrast measures. Li et al. [18] proposed a densely nested attention
network (DNANet) with a densely nested interaction module and a cascaded channel and
spatial attention module designed to implement the interaction between high-level and
low-level features as well as the adaptive enhancement of multi-level features, respectively.
Zhang et al. [19] proposed the Attention-Guided Pyramid Context Network (AGPCNet)
algorithm. Wang et al. [20] proposed a coarse-to-fine internal attention-aware network
(IAANet) that uses the semantic contextual information of all pixels within a local region to
classify each internal pixel.

The performance of these detection methods depends on their training sets. Due to the
insufficient training sets, some methods use cropping, rotation and scaling of the training
sets to expand the training sets, which do not fully reflect the real state of the target in the
actual scene and have a large amount of data redundancy. Therefore, the study of infrared
image generation methods to expand infrared dim and small target image data is of great
practical importance for developing infrared dim and small target detection technology.

According to the Society of Photo-Optical Instrumentation Engineers (SPIE) [21],
the size of a small target is usually considered to be no more than 9 × 9 pixels in a
256 × 256 image. The publicly available datasets are the miss detection vs. false alarm
(MDvsFA) [14] and the Single-frame Infrared Small Target (SIRST) [16]. The MDvsFA
contains 10,000 images, most of which are close-ups, and the targets are close together and
large. The SIRST contains 427 images, with a variety of scenes but too few. Due to the
sensitivity of military targets, it is difficult to obtain a sufficient number of publicly available
datasets to train the deep learning infrared dim and small target detection algorithm.
Therefore, expanding the infrared dataset solves the problem of an insufficient training set
for a deep learning-based infrared dim and small target detection algorithm.

The three main models based on image generation are PixelRNN [22], Variational
Auto Encoder (VAE) [23], and generative adversarial networks (GANs) [24]. Among them,
GANs can extract target features by unsupervised learning, and their strong generalization
ability in generative models has developed various improved models [25–28]. From the
current research status, the research object of data generation using GANs is still mainly
visible images. The research methods in the field of infrared image generation focus on
visible light images rather than infrared images. There are fewer studies on generative
processing through infrared images, and even fewer studies on the generation of infrared
dim and small target data. For example, Uddin M.S. et al. proposed a method for converting
optical video to infrared video [29], the basic idea of which is to use attention-generating
adversarial networks to focus on target regions by converting a large number of available
labeled visible videos to infrared video.

The above methods of generating infrared datasets generate a large area of the target
and are single targets. In clustered combat systems, targets usually appear as a group,
and thus the need for multi-target tracking is increasingly prominent. Moreover, relying
on generative adversarial networks alone suffers from the limitation of not being able to
simulate the parameter changes in the target motion process. In order to solve the scarcity
of training data, this paper proposes a method to generate an infrared dim and small target
dataset, and the generated dataset improves the accuracy and effect of infrared dim and
small target detection based on deep learning. In addition, this dataset can provide dataset
support for infrared dim and small target detection.
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2. Related Principles
2.1. Infrared Background Generation Based on an Improved Deep Convolutional Generative
Adversarial Network
2.1.1. Deep Convolutional Generative Adversarial Networks

Deep convolutional generative adversarial networks (DCGANs) [30] were first pro-
posed to combine convolutional neural networks (CNNs) with GANs to improve the
unsupervised learning of generative networks by exploiting the powerful feature extraction
capability of convolutional networks. A DCGAN consists of two parts, the generator and
the discriminator, which continuously learn and improve through zero-sum games and
eventually generate data that can be falsified into something that does not exist. The gener-
ator is given a noisy input and then generates new sample data by learning the real data’s
mathematical distribution and feature information. The DCGAN’s structure is shown in
Figure 1.
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Figure 1. Network structure of DCGAN.

The DCGAN adopts a full convolutional structure based on a GAN to further improve
the feature extraction capability of the network. Using the pooling layer for downsampling
will lose part of the image information, so the pooling layer in the network is replaced by
step convolution. The generator network consists of five deconvolutional layers, using a
deconvolution layer with a convolution kernel of 4 × 4 and a step size of 2, followed by
batch normalization (BN). The ReLU activation function is used for all layers except for the
last layer, which uses the Tanh activation function. The discriminator network is basically
symmetric with the generator network, consisting of five convolutional layers that use
a convolutional layer with a convolution kernel of 4 × 4 and a step size of 2. It uses the
LeakyReLU activation function, and the last layer is the Sigmoid function.

2.1.2. ISD-DCGAN Networks

The DCGAN model can perform well in the texture detail of visible light images, and
for infrared sky images, its colors do not need to be as rich as those of visible light images.
The image size generated by a DCGAN is only up to 64 × 64, and larger sizes will have the
problem of gradient disappearance. Therefore, this paper proposes the Infrared sky dataset
DCGAN (ISD-DCGAN) model by modifying the model based on the original DCGAN,
which can significantly improve the stability of model training and obtain high-quality
generated images. The ISD-DCGAN differs in the following ways:
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(1) The DCGAN generator and discriminator structure is improved by using the
ResNet residual module to solve the problem of poor quality of the generated images due
to the deepening of the network and the increase in image size. In Figure 1, the DCGAN
model has fewer layers, and the generated image size is only 64 × 64, which cannot meet
the demand, so the image size needs to be further expanded. In this paper, we add two
layers of the convolutional network to the original DCGAN structure, and the improved
network can generate infrared sky images of size 256 × 256, so that it meets the definition
of SPIE for infrared dim and small target images. If the number of network layers is directly
increased, to a certain extent, more representative image features can be extracted, and
the feature expression capability of the network can be improved. However, due to the
backpropagation mechanism of the convolutional neural network, the network deepens
to increase the number of parameters. If the parameters are extremely large or small,
it will lead to the problem of gradient explosion or gradient disappearance during the
backpropagation process, and the final result will be the poor quality of the generated
images as well as the unstable generation ability of the network. Therefore, the DCGAN is
improved by introducing a residual module to deepen the network. The residual module
replaces the step-size convolution in the generative and discriminative networks. The
residual network can better solve the above problems caused by the deepening of the
network layers. Better image generation results are achieved in the case of deeper networks
than when directly stacking network layers. It ensures higher-quality images even when
the network structure and the number of layers are adjusted. At the same time, introducing
the residual network can reduce the number of parameters in the network and further
optimize the complexity of the network structure.

(2) The Wasserstein distance is used as a new loss function to enhance the training
stability of the network. The loss function of the DCGAN is essentially to make the Jensen
Shannon (JS) [31] scatter between Pdata and Pg as small as possible, but there is a high
probability that the two distributions of Pdata and Pg do not overlap at all. For any two
distributions that do not overlap and are sufficiently distant, the JS scatter between them is
constant at log 2, causing the gradient to vanish, at which point it is impossible for Pg to
move in the direction of Pdata during the training, and the discriminator cannot be trained.
Therefore, the Wasserstein distance [32] is introduced as a loss function in this paper, and
the Wasserstein distance achieves a long-range response even when the two distributions
do not overlap. The loss function constructed by the Wasserstein distance is introduced to
transform the original binary classification task of the discriminant network in the DCGAN
into a regression task. Therefore, the last layer of the sigmoid function needs to be removed
from the network. The final network structure of the ISD-DCGAN is shown in Figure 2.

In the generator, the DCGAN utilizes multiple deconvolution layers for image genera-
tion, while the residual module of the ISD-DCGAN replaces the deconvolution with two
convolution operations with a 3 × 3 convolution kernel and a step size of 1. Each residual
unit achieves feature image enlargement in the residual operation by adding up-sampling.
The non-residual edges are simply feature maps enlarged using a deconvolution layer
with a convolution kernel of 1 × 1 and a step size of 2 to maintain the same output size as
the residual block. After transforming the one-dimensional noise into a 4 × 4 image, the
generating network performs seven consecutive feature map enlargements of the residual
module. Finally, a 3 × 3 convolution kernel is performed once to transform the number of
channels, and a 256 × 256 image is generated using the Tanh activation function. In the
discriminator, the modified residual module performs the convolution operation using a
convolution layer with a convolution kernel of 3 × 3 and a step size of 1. Then the feature
image reduction is performed by downsampling, and the non-residual edges are reduced
using step-size convolution. Finally, the residual edges are stacked with the non-residual
edges for output. The discriminative network first performs one step-size convolution,
then six residual modules for feature reduction, and finally expands the features into one-
dimensional output discriminative results by full connectivity. The improved DCGAN can
improve the stability of model training and obtain high-quality generated images.
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2.2. Target–Background Image Sequence Construction Based on Improved Conditional Generative
Adversarial Networks

Due to the large variability in the main features of the scene and the target, the scene
image and the target image need to be generated separately based on two different genera-
tion models. After the target and scene images have been generated separately, the target
and scene images need to be combined to obtain a reasonable target–background image.
The target images generated by the target generation model are of a single scale, whereas
in a practical scene, as the motion parameters of the target change, the spatial position and
dimensions of the target in the viewing scene will change accordingly. Therefore, the target–
background image cannot be directly synthesized in a simple and straightforward manner.

To address the above challenges, this paper proposes a target–background image
synthesis model based on an improved conditional generative adversarial network, which
combines constraint parameters such as the spatial location and size of the target to achieve
a reasonable synthesis of target–background images. To improve the quality of the target–
background image generation, a multi-scale feature fusion mechanism and an attention
mechanism are incorporated, resulting in a higher fidelity of the generated image.

As shown in Figure 3, target–background image synthesis is achieved by an improved
conditional generative adversarial network. As the objects in the target and background
images vary in size and shape and their positions are mostly non-fixed, using only a single
scale is likely to lose some feature information and affect the detection effect. To address
this problem, a multi-scale feature module is designed in this paper, using convolutional
kernels of different scales to obtain different ranges of perceptual fields so as to obtain
more comprehensive target and scene feature information and strengthen the adaptability
of the network to multiple scales. At the same time, an attention mechanism is added
to the feature extraction to enable the model to extract more meaningful image features.
A multi-scale bidirectional fusion target–background image generator and discriminator
is implemented.

Conditional generative adversarial networks are expanded into conditional models
by adding constraints to the original generative adversarial network. This is achieved by
conditioning the model on additional information, which in turn constrains and guides
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the image generation process. The improved generator uses a U-net structure in which
the convolutional layer acts as the encoder and the deconvolutional layer as the decoder.
In the encoder section, each node to the next undergoes a sequence of a convolutional
layer, a normalization layer and an LReLU activation layer. For the decoder part, the
input and corresponding decoder mirror layers are stitched before each convolutional
layer, with each node to the next undergoing a sequence of a deconvolutional layer, a batch
normalization layer and a ReLU activation layer. A jump-join technique is introduced in the
encoder–decoder section, whereby the input of each deconvolution layer is the output of
the previous layer plus the output of a layer symmetrically convolved with that layer, thus
ensuring that the encoder information is constantly rememorized at decoder time, allowing
the generated image to retain as much of the original image information as possible.
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3. Method

In order to expand the infrared small target dataset, this paper proposes a method
for generating infrared dim and small target sequence datasets, including the following
steps: (1) Generating an infrared sky background. (2) Creating an infrared small target
model. (3) Constructing a target–background image sequence. (4) Generating dataset labels.
The flow chart of the infrared dim and small target sequence dataset generation method is
shown in Figure 4.
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3.1. Generating an Infrared Sky Background

The ISD-DCGAN network trains the real infrared sky background images to generate
256 × 256 infrared sky background images. The training set of the network consists of
512 real infrared sky backgrounds with a learning rate of 0.0001 and a batch size of 64. The
number of iterations of the generator and discriminator training is 1000 epochs. The loss
function converges after 1000 rounds of training, but the effect does not improve. Figure 5
shows the process of generating images for the ISD-DCGAN.
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3.2. Creating an Infrared Small Target Model

In this paper, 3ds Max software is used for model building, and the model types are
aircraft and missiles. The modeling process uses the missile as an example. Firstly, the
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shape proportion, structure and appearance material of the required construction model
are analyzed, and the model is modeled separately using 3ds Max tools according to the
1:1 ratio. The model is shown in Figure 6a. Texture drawing technology is then used to
better show the details of the model with minimal resource consumption. Finally, the
model is rendered to ensure that the target and flight effects are realistic.
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To achieve a more realistic effect, this paper adds the effect of temperature on the
model’s infrared radiation intensity. Based on the information about the surface material
in the field of view, we calculate the radiation of the heat source on the inner surface at a
unit distance and then calculate the radiation of each pixel using the depth information in
the camera. Finally, the grayscale increment of the material under the influence of the heat
source is calculated and saved to the texture. The ComputerShader performs the second
calculation of the texture in Unity3D, and the grayscale of the heat transfer from the area
radiated by the heat source to the surrounding textures is calculated. The heat source effect
obtained is shown in Figure 6b.

3.3. Constructing a Target–Background Image Sequence and Generating Datasets

By improving the conditional generative adversarial network model, multi-scale
feature extraction and fusion are performed on the input target and scene images, thus
obtaining more comprehensive target and scene feature information and enhancing the
network’s adaptability to multiple scales and its ability to extract image features. Combin-
ing auxiliary constraint parameters such as the target spatial location and the size in the
generative adversarial network enables the synthesis of target–background images. The
introduction of a jump-join technique in the encoder–decoder part allows the generated
image to retain as much information as possible about the original image.

3.4. Generating Dataset Labels

Dataset labels are used to manually label the data that need to be identified and
discriminated. Deep neural networks learn the features of these labels and eventually
achieve the function of autonomous recognition. The current method of labeling infrared
dim and small target datasets is to find the dim and small target, then manually label the
target area using the LabelImg dataset labeling tool, and finally set the rest of the area to a
black background.

4. Experiments

In this section, we present the experimental results and then introduce the evaluation
metrics of the dataset. The experimental hardware included an Intel Core i9-10920X
CPU@3.50GHz and an NVIDIA GeForce RTX 3090, and the experimental software included
PyCharm 2.3, 3dMax 2020, Unity3d 2019.1.9 and LabelImg.
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4.1. Experimental Results

We generated a dataset of infrared dim and small target sequences based on gener-
ative adversarial networks. Six synthetic infrared images were generated by varying the
parameters of target, noise and wavelength, resulting in 20,000 datasets and 20,000 labels.
In Table 1, column (a) indicates single-target and multi-target images in near-infrared light
(NIR); column (b) indicates single-target and multi-target images in NIR with added noise;
column (c) indicates single-target and multi-target images in far-infrared light (FIR); and
column (d) indicates dataset labels.

Table 1. Generated dataset.

(a) NIR (b) NIR with Added
Noise (c) FIR (d) Dataset Labels

Single target
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Noise and wavelength can affect the accuracy of target detection methods, so it is
essential to simulate the inclusion of different parameters to train target detection models.
We can generate the desired infrared background image by generating an adversarial
network to make it more consistent with the actual scenario of the target detection process.

4.2. Experimental Evaluation
4.2.1. Comparison between DCGAN and ISD-DCGAN

In order to compare the effect of the model before and after improvement, we plot the
discriminator loss of the network in each epoch as a loss function to visualize the change
in the loss function during the training of the network. Figure 7 shows the change curves
of the discriminant network loss function during the training process before and after the
improvement in the network. The loss function of the network generator before improve-
ment decreases in the first 500 epochs and oscillates steadily between 0.5 and 1.5, but the
loss starts to oscillate significantly after 500 epochs. The discriminator loss function of the
improved ISD-DCGAN network structure is significantly weakened, decreases steadily
after 200 epochs and gradually tends to oscillate slightly around 0. From the loss function
curves of the training process, the training process of the improved network structure can
converge to stability. This indicates that both the generator and the discriminator have
finally reached a mutually constrained and balanced state, and the effect is better and more
stable than before the improvement.
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4.2.2. Structure Similarity Index Measure

In order to further verify the validity of the experimentally generated images, the
generated images are quantitatively analyzed using objective performance metrics. In
this paper, the objective evaluation index of the generated image is used as the Structure
Similarity Index Measure (SSIM) [33], which formula is:

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ] (1)

In Equation (1), α > 0, β > 0, γ > 0 denotes the brightness characteristics of
the original image and the simulated image; c(x, y) = (2σxσy + C2)/(σ2

x + σ2
y + C2) de-

notes the contrast characteristics of the original image and the simulated image; and
s(x, y) = (σxy +C3)/(σxσy +C3) denotes the similarity characteristics of the original image
and the simulated image. Among them, µx and µy represent the average gray values of the
original image and the simulated image, respectively, reflecting the luminance information.
σx and σy denote the variance of the gray value of the original and simulated images,
respectively, reflecting the contrast information. σxy denotes the correlation coefficient be-
tween the original image and the simulated image, reflecting the similarity of the structural
information. C1, C2 and C3 are small quantities greater than zero to prevent overflow of
the calculation result when the divisor is zero. During the training of the ISD-DCGAN, the
value of SSIM is calculated once every 10 epochs, and the final SSIM curve in the training
process is shown in Figure 8.

From the SSIM curve, we can know that the similarity structure with the original
image is about 0.34 because the training input is random noise at the beginning. After the
continuous game between the generator and the discriminator, the similarity gradually
increases and stabilizes at about 0.85. This indicates that the dataset generated in this paper
has a high structural similarity with the original image, which can ensure that the generated
infrared sky image meets the requirements and also increase the infrared sky background
image style. The higher the similarity, the closer it is to the real image. In deep learning, a
high-quality training set can improve the performance of the model classifier and help it
better detect the targets of real images.
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4.2.3. Comparative Analysis with Other Datasets

There are very few existing open datasets in infrared dim and small target detection,
and most of the traditional detection methods are evaluated on their internal datasets.
Only a few infrared small target datasets are published by CNN-based methods. The
first open one is the MDvsFA dataset. This dataset consists of 10,000 training images, a
significant portion of which are synthesized. Another dataset developed is the SIRST,
which has 427 images and is suitable for testing. Although these open datasets have greatly
contributed to the development of infrared dim and small target detection, they suffer
from limited data capacity and poor labeling. Figure 9 shows the MDvsFA, SIRST and
ISD-DCGAN datasets and their 3D plots. Row (a) represents the MDvsFA dataset, and
row (b) its 3D plot. Row (c) represents the ISD-DCGAN dataset, and row (d) its 3D plot.
Row (e) represents the SIRST dataset, and row (f) its 3D plot.

In this paper, the generated infrared dim and small target sequence dataset is applied
to the infrared dim and small target detection method to verify the effectiveness of the gen-
erated dataset. Firstly, the MDvsFA dataset and the 10,000 images in this paper were used
to train in the Dense Nested Attention Network (DNANET), the Attention-Guided Pyramid
Context Network (AGPCNet) and the Interior Attention-Aware Network (IAANET). The
object detection accuracy was then tested on all datasets of the SIRST. Figure 10 shows a
plot of the detection results trained using the MDvsFA, and Figure 11 shows a plot of the
detection results trained using the ISD-DCGAN. Table 2 shows the detection accuracies of
the three detection methods after training on different datasets. The target detection rate Pd
and the false detection rate Fa for target detection are calculated as follows:

Pd =
Number of real targets detected

Actual target number
(2)

Fd =
Number of false targets detected

Actual target number
(3)

From the table and figures above, it can be seen that, firstly, different datasets train the
model to obtain different levels of precision, indicating that different quality datasets have
an influence on the detection model. Secondly, the dataset in this paper is more in line with
the real image. By comparing the precision of our dataset with the MDvsFA dataset after
different model training, the test results in the SIRST dataset show that our dataset has a
certain enhancement over the MDvsFA after training, which illustrates its effectiveness.
The enhancement brought by the dataset to the accuracy of the model can be visualized in
Figures 10 and 11.
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Table 2. Precision of the model after training on different datasets.

Model Data Set Pd Fd

IAANET MDvsFA 0.642 0.811
IAANET Ours 0.705 0.753

AGPCNET MDvsFA 0.593 0.282
AGPCNET Ours 0.634 0.244
DNANET MDvsFA 0.883 0.883
DNANET Ours 0.904 0.794
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5. Discussion

In recent years, deep learning-based infrared dim and small target detection algorithms
have been proposed by an increasing number of researchers. Due to the sensitivity of
military targets, it is difficult to obtain a sufficient number of publicly available datasets for
training deep learning-based infrared dim and small target detection algorithms. Currently,
the only publicly available datasets are the MDvsFA and the SIRST. Although these open-
source datasets have greatly contributed to the development of infrared dim and small
target detection, they suffer from limited data capacity, non-compliant targets and manual
annotation, and better methods of dataset expansion are needed. Datasets are generally
expanded by rotating, cropping and mirroring, which does not result in completely new
datasets, and manual annotation is problematic. To solve the problem of insufficient
infrared dim and small target datasets and better improve the accuracy and effectiveness
of infrared dim and small target detection based on deep learning, this paper proposes
a method for generating infrared dim and small target sequence datasets based on deep
convolutional generative adversarial networks to generate new data on the basis of the
original datasets.

In this paper, we have fully validated the effectiveness of this dataset through experi-
ments. Firstly, the impact of the improved network on the generated images is analyzed.
Secondly, the similarity metric of the generated images is analyzed. Finally, the impact of
training is compared between our dataset and other datasets through different model training.

In summary, the dataset in this paper enriches the infrared dim and small target
datasets and is useful for deep learning focused on small target models. We will expand
the dataset to include different scenarios in the future.

6. Conclusions

In this paper, a method for generating infrared dim and small target sequence datasets
based on deep convolutional adversarial networks is proposed. First, we improve the
deep convolutional generation adversarial network model to generate compliant infrared
sky background images. Then, the target with the generated infrared sky background
image is added to an improved conditional generation adversarial network to generate a
different dataset of infrared dim and small target sequences. After experimental analysis,
we conclude that: (1) The improved deep convolutional generation adversarial network
solves the problem of gradient disappearance due to increasing image size and improves
the quality of the generated images. (2) The datasets generated are valid and can be
applied to training infrared dim and small target detection models. (3) Compared with
the MDvsFA dataset, the precision of the dataset generated in this paper has improved
after training infrared dim and small target detection models in recent years. In summary,
this paper mainly investigates the method of generating infrared dim and small target
sequence datasets based on generative adversarial networks and provides a new method
for expanding infrared dim and small target datasets.
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