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Abstract: Facial motion representation learning has become an exciting research topic, since biometric
technologies are becoming more common in our daily lives. One of its applications is identity
verification. After recording a dynamic facial motion video for enrollment, the user needs to show a
matched facial appearance and make a facial motion the same as the enrollment for authentication.
Some recent research papers have discussed the benefits of this new biometric technology and
reported promising results for both static and dynamic facial motion verification tasks. Our work
extends the existing approaches and introduces compound facial actions, which contain more than
one dominant facial action in one utterance. We propose a new self-supervised pretraining method
called contrastive subclips that improves the model performance with these more complex and secure
facial motions. The experimental results show that the contrastive subclips method improves upon
the baseline approaches, and the model performance for test data can reach 89.7% average precision.

Keywords: facial motion; representation learning; self-supervised learning; biometrics

1. Introduction

Biometric identification technologies like face recognition [1] and fingerprint recog-
nition [2] are becoming increasingly prevalent in our daily lives. These methods utilize
users’ inherent biological characteristics, making the authentication process easier and more
secure than traditional password verification approaches. However, spoofing a biometric
identification system using 3D molds or pictures with distinct textures [3] is still possible.
Some recent research studies [4,5] have introduced a new concept that uses facial motion
as a passcode while confirming the user’s regular facial appearance. The corresponding
solutions increase the security of identification procedures by requiring the candidates to
present the exact biometric trait together with a correct enrolled facial motion.

This new technology’s implementation requires only a regular complementary metal
oxide semiconductor (CMOS) image sensor and a single-board computer. It can be easily
integrated with many existing face recognition systems without adding new sensors. When
the user presents their facial action, the main program captures a sequence of consecutive
frames, like a live photo, runs a face detection function over all frames, and saves the
sequence of face regions in memory. Then, a deep neural network backend runs inference
code to generate descriptions of facial appearance and facial motion. Finally, the decision
function compares these descriptions with the recorded ones to reject or grant access to
the system. Previous work [4,5] has proven that deep neural network models can generate
accurate representations for predefined facial expressions or one-off freestyle facial motions.
In this work, we studied compound facial actions, which contain more than one significant
facial action in one utterance. The advances in this topic can help increase the complexity
of password space and security of the authentication system.

Similar to the previous work, we aim to train a deep neural network model that can
take a sequence of facial regions as input and generate an embedding vector to represent
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the input facial motion. The network design includes a convolutional neural network
(CNN) based image feature extractor, a transformer-based sequence encoder, and a linear
layer running dimension reduction and computing the final embedding vector as shown in
Figure 1.

Sequence of face regions

CNN

Sequence of spatial features

Sequence 
encoder Facial motion summary

Figure 1. Network architecture. The CNN part uses MobileFaceNet [6] as the backbone and is pre-
trained for the facial landmark detection task ahead. The sequence encoder contains two transformer
layers and one max-pooling layer (applied to the time axis). The final output of this network is a 1D
vector representing the facial motion information in the input sequence.

Because this research focuses on using customized facial motions for identity verifica-
tion, the clips containing the same subject with the same motion are used to form positive
pairs. Clips containing different subjects regardless of the facial motion and the same
subject but different facial motions are used to form negative pairs. Our training goal is
to increase the embedding similarity for positive clip pairs and lower the similarity for
negative clip pairs. In this case, we can compute the pairwise contrastive loss to train the
model. This simple strategy works well when all video samples in the dataset contain only
one significant facial action. However, it is much harder for the sequence encoder in the
network to locate the significant frame or frames for videos with two or more facial actions
in a particular order than for those with just one significant facial action. For more secure
authentication that requires more complex facial motions containing multiple significant
facial actions in one video clip, the model performance using this simple strategy is limited.

Although it is possible to improve the model performance by tuning the hyper-
parameters in a larger parameter space, this research explores approaches that lead to more
stable performance. Self-supervised learning (SSL) methods have shown their strengths in
computer vision tasks like image attribute estimation [7] and video analysis [8]. Unlike the
typical supervised learning approaches, SSL does not need labels or curated annotations.
It trains the model with unlabeled data in a supervised manner, as the supervision or
ground-truth comes from the data itself.

This idea was used in BERT [9] and yielded revolutionary advancements in the
language modeling area. They found that self-supervised pretraining on large amounts of
data and fine-tuning for a specific task that has limited data greatly improve results. For the
image domain, the self-generated labels could be new image views obtained by applying
random image transforms to an existing image in the dataset. Even though the dataset
used in this research contains labels, we are still interested in SSL’s ability to represent facial
motions as a pretext task. In this paper, we build our work on these advancements and
present an SSL method for the facial motion domain. Our main contributions are as follows:
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1. Propose a synthetic facial motion dataset containing compound facial actions;
2. Implement a self-supervised learning approach for facial motion representation learning;
3. Propose a new self-supervised method for facial video analysis, contrastive sub-

clips, which improves model performance and outperforms the plain self-supervised
pretraining approach.

2. Background

We need a video processing algorithm to parse the facial motion information contained
in a video clip. The most related research topic is human action recognition in videos. In the
past ten years, deep neural network approaches have dramatically improved video-based
computer vision tasks. In addition, many network architectures and learning schemes have
emerged to boost action recognition accuracy. These related technologies can help us solve
the issues in the facial motion analysis domain.

2.1. Deep Learning and Action Recognition

The major deep architectures for video processing include CNN–RNN [10,11] and
3D CNN [12–14]. They are both uplifted by the outstanding performance of CNNs in
image processing [15]. CNN–RNN uses the CNN layers to extract the high-level features
in each frame and feeds the generated sequence into stacked RNN cells. Then, it takes
the final state of the last cell to infer the output embedding by a linear layer. 3D CNN
architectures expand the 2D convolution kernels in established CNN to 3D kernels, and the
extra dimension is applied to the time axis. This approach makes it capable of capturing
motion information across multiple consecutive frames.

The state-of-the-art method for video-based action recognition is VideoMAE [8]. It
uses the vision transformer [16] as the backbone architecture with joint space–time self-
attention and employs cube embedding to create video tokens. VideoMAE is also an SSL
method, and it demonstrates a masked autoencoder adjusted for video model pretraining.
On four standard benchmark datasets of action recognition task, VideoMAE outperformed
other existing methods without using any additional data.

2.2. Video-Based Facial Expression Recognition

Another research topic that uses similar tools as our facial motion study is facial
expression recognition (FER). It is an essential task in affective computing. The regular
models can predict one of seven typical expressions using a face image or video clip. The
most recent advancements in this area also use deep neural networks. Fan et al. evaluated
both CNN–RNN and 3D CNN for video-based FER accuracy in [17]. They concluded that a
parallel hybrid network with these two architectures leads to impressive results. Some later
studies [18,19] further proved that the models using the CNN–RNN scheme are practical
spatial–temporal feature extractors. In addition, independent 3D CNN architecture and its
variants also performed competitively in video-based FER tasks [20,21].

While the datasets used in earlier years in the last decade contain a limited number of
videos, three new benchmark datasets [20,22,23] for this topic have emerged in the past
two years. They all include more than 10,000 samples collected in real-world scenes. This
progress pushes the boundaries of how we design models for video-based FER. Inspired
by the success of the transformer unit introduced in [24], Zhao et al. present a network
design employing transformer layers for spatial–temporal feature aggregation [25]. The
experiments on DFEW [20], one of the three new datasets, show that this new design
outperforms all previous architectures. Our model also includes transformer structures.
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2.3. Facial Motion and Identity Verification

Our work is not the first demonstration of using facial motion verification to enhance
the biometric identification system. In 2018, Yin et al. [4] proposed a method that evaluates
facial appearance and expression to verify the user’s identity. This work focused on static
facial images. Its facial expression branch takes one image as input and predicts one of
seven typical facial expressions. If the presented expression matches the enrolled template
and the user passes face verification, the decision function will output “pass”. The facial
expression classifier in this work employs a facial landmark detector and the kernel PCA
technique. As cutting-edge facial expression recognition methods use deep neural networks,
there is room for improvement.

Our recent work [5] expands this method to verify freestyle facial actions, allowing
users to customize their facial motion passwords. It presented a deep neural network
model that can process video clips and generate a unified vector representing the facial
motion of a video clip. However, only video clips with one significant facial action were
investigated. This research work extends it to compound facial actions.

3. Methods

Impressive deep neural network models usually rely on large-volume datasets. This
section explains how we collected the data needed for experiments. Also, we discuss the
steps to train a baseline model using contrastive loss. Finally, we illustrate the contrastive
subclips used in pretraining.

3.1. Compound Facial Actions

The existing public benchmark datasets with facial motion analysis target facial expres-
sion recognition. They only include a handful of predefined facial expressions or emotions.
This inherent problem limits their usage for exploring the representations of random or
user-selected facial motions. Another big challenge in using these datasets for facial motion
analysis is the limited number of positive pairs (the same subject making the same facial
motion multiple times) for facial motion verification purposes. Therefore, this work uses
the original dataset from [5], which contains 59 subjects. All subjects in the dataset made
five customized facial motions, and each motion was repeated ten times. Although the
recorded user-selected facial motions are not restricted to predefined facial expressions,
they are still particular facial actions. One straightforward approach to expand the data
for our work is to collect new data with compound motions. Another easier option is to
create synthetic compound facial action clips using high-quality samples from the existing
datasets. We chose the second method in this work.

For concision, we use D1 to denote the original dataset containing samples with only
one significant facial action and D2 to represent the synthetic dataset with compound facial
actions. If we only look at the facial action intensity of frames in D1, there are two styles of
facial motion. One starts from the neutral face, reaches the apex, then releases and ends
in the neutral face. The other also starts from the neutral face but holds the apex until the
clip ends. At the forging stage, we work on each subject in D1 separately. For subject S
with N kinds of facial actions, denoted as {Ai | i ∈ [1 . . . N]}, we can make N2 different
permutations. They correspond to N2 types of two-way compound facial actions, denoted
as {Cij | i ∈ [1 . . . N], j ∈ [1 . . . N]}. For each Cij, we create k clips through random padding.
All k copies contain the primary motion pieces from clips with Ai and Aj in order, have a
random number of neutral frames from Ai padded at the beginning, and a random size
of neutral or apex frames from Aj padded at the end. Finally, for subject S, we obtain kN2

samples with N2 categories in D2. Figure 2 shows the clip examples in the final dataset.
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(a)

(b)

(c)

(d)
Figure 2. Clip examples in our compound facial action dataset. (a,d) have one type of facial action
uttered twice, while (b,c) both contain two kinds of facial actions. These clips represent four different
facial motions in our study.

3.2. Contrastive Learning

We built the baseline model using a contrastive learning scheme. For an input clip
pair, the network with tunable parameter set W can generate two embedding vectors, vi,W
and vi,W . The distance between vi,W and vi,W , denoted dW , is defined as

dW(i, j) = 1− cosθ = 1−
~vi,W · ~vj,W

‖ ~vi,W‖‖ ~vj,W‖
, (1)

which represents the cosine similarity of these two vectors. The definitive contrastive loss
has the form

Lc(i, j) = yi,jmax(dW(i, j)−mp, 0) + (1− yi,j)max(mn − dW(i, j), 0), (2)

where Lc(i, j) is a pairwise loss determined by the pair label and distance of two embedding
vectors computed by the neural network. All constructed pairs have both clips from the
same subject. When two clips show the same compound facial action, it is a positive pair,
and yi,j equals 1. The negative pair has clips containing different facial actions, and yi,j is 0.
The range of distances that can affect the loss are determined by mp and mn.

The data loading program grabs N positive and N negative pairs to form a mini-batch
in one feed-forward and back-propagation circle. Different pairs can come from different
subjects. The total loss of a mini-batch is

Lc
total =

1
2N ∑

i
Lc

i . (3)
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3.3. Contrastive Subclips

SSL methods do not need data annotations in the pretraining phase but depend
on data augmentation that creates virtual samples not presented in the dataset. The
regular augmentation operators in image study include random crop, color distortion, and
Gaussian blur. These operators enable the network to use more significant amounts of data.

In our facial motion study, we must apply the random crop operators carefully, as the
network input should contain the whole face region and resize the face to the same scale.
We can, nevertheless, use color distortion and Gaussian blur to generate new data instances.
With these image transformation methods, we can construct twin clips for any sample in the
dataset. The training goal is then to make the network yield identical embedding vectors
for twin clips but different vectors for clips made from different samples. Some recent
research [26,27] has studied this self-supervised contrastive learning problem and adopted
the InfoNCE loss function [28] for pretraining. We implemented our self-supervised
pretraining pipeline using InfoNCE as well.

We also noticed a specific characteristic of facial action clips. The noteworthy frames
usually appear in the middle of a full clip. If we randomly remove a subclip containing 50%
of the frames, the remaining discontinuous frames would probably lose all or partial facial
motion information in the original clip. This hypothesis is more assured with compound
facial action clips where subjects squeeze two facial actions into a fixed-length time window.
By stitching the remaining discontinuous frames, we can obtain a new clip that most likely
has different facial motions from the original clip. In a mini-batch of N samples, we can
create N more clips using this method. These 2N clips are considered distinct in our self-
supervised pretraining process. To our knowledge, such a method of combining subclips
for facial videos has not been implemented previously for this or similar tasks. We call this
novel self-supervised approach contrastive subclips and illustrate its usage in Figure 3.

+

T
T

T

T

A.

B.

A-1

A-2

B-1

B-2

Figure 3. The contrastive subclips. Subclip (A) is a random half-length crop of the original sequence,
and then we create subclip (B) by concatenating the remaining two pieces. T denotes a random instance
of the video transform operations containing color distortion, Gaussian blur, and temporal padding.
A-1 and A-2 are different subclips but express the same facial motion, and so are B-1 and B-2.

4. Results

After excluding one subject with invalid data, the training set contained 46 subjects,
and the validation set included 12. Accordingly, the subjects in the training set were not
included in the validation set. The total number of compound motion clips was 11,810.
Both pretraining and fine-tuning phases used a stochastic gradient descent (SGD) optimizer
with a momentum factor of 0.9 and a cosine annealing scheduler to adjust the learning
rate after each gradient update. However, the initial learning rate of fine-tuning phase was
one-tenth of that for pretraining.
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4.1. Baseline Approach

We obtained the baseline model by training the network from scratch. Besides the
hyper-parameters, it is necessary to find a good pair of margins, mp and mn, in Equation (2).
As no previous research studied the similarities between compound facial actions, we did
a grid search in {0.1, 0.2, 0.3, 0.5} to look for the best combination. Our program runs a
precision-recall (PR) analysis on all possible pairs assembled with clips in the test dataset
after each epoch. As shown in Figure 4, we drew the average precision (AP) curve (blue) to
indicate the model performance. AP is equivalent to the area under the PR curve, and a
more significant AP implies a more robust model. The results show that 0.2 (mp) and 0.3
(mn) lead to the highest AP, which is 0.859.

0.25
0.50
0.75

mp=0.1, mn=0.1 mp=0.1, mn=0.2 mp=0.1, mn=0.3 mp=0.1, mn=0.5 mp=0.2, mn=0.2

0 100

0.25
0.50
0.75

mp=0.2, mn=0.3

0 100

mp=0.2, mn=0.5

0 100

mp=0.3, mn=0.3

0 100

mp=0.3, mn=0.5

0 100

mp=0.5, mn=0.5

Epochs

Av
er

ag
e 

Pr
ec

isi
on

baseline ours

Figure 4. Grid search on distance margins. mp is the distance margin for positive motion pairs, or the
maximum tolerated distance between representation vectors of the same motions. mn denotes the
margin for negative pairs, the minimum distance between two vectors representing different motions
without loss penalty. Blue curves denote the baseline model, and orange curves represent our new
model. The Y-axis is shared among all subplots.

The other nine blue curves in Figure 4 show that model performance is liable to these
two margin parameters. The combination of 0.5 (mp) and 0.5 (mn) leads to a model that
does not converge. Therefore, if we shift the training to another dataset, we should do this
grid search again to find the best combination.

4.2. Self-Supervised Pretraining

During the self-supervised pretraining phase, we did two experiments: one used only
image transformations across all frames to create twin clips, and the other manipulated
frames to create two new clips in the mini-batch using our contrastive subclips method.
When the pretraining phase ended, we used the same model configuration as the baseline
and initialized the inside sequence encoder using pretrained parameters. Then, we fine-
tuned this model using the same loss function as the baseline.

The results are shown in Figure 5. We used SS to represent the first experiment and
SS+ to denote the second experiment with contrastive subclips. We noticed that models
with SS and SS+ both converge quickly, and their AP scores reach 0.8 in just ten epochs.
However, the final performance of the two models was different. First, SS did not enhance
the model’s ability, as its curve nearly overlaps with the baseline eventually. While the color
distortion or Gaussian blur transform only adds spatial variations that do not change the
semantic content of individual frames to the video, it does not involve temporal variations
from frame to frame. This theory can explain SS’s futility and SS+’s usefulness. SS+ led to
an AP equal to 0.897, 3.8% more elevated than the baseline. It indicates that the contrastive
subclips method improves upon the plain SSL method for facial videos.
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Figure 5. Improvements in self-supervised pretraining. Compared to the baseline approach, the
contrastive subclips method (SS+) makes the training process faster to converge and increases the
final performance.

We also did a grid search on distance margins for our new approach; see the orange
curves in Figure 4. All margin combinations can make the model reach an AP higher than
0.75, meaning that the self-supervised pretraining method makes the fine-tuning process
less susceptible to the margin setting. Although combinations like (0.2, 0.2), (0.3, 0.5), and
(0.5, 0.5) lead to low AP with the baseline approach, they still show a considerable AP in
the new model. These results confirm that our proposed method can improve the model
performance and reduce the workload of hyper-parameter tuning.

4.3. Further Study

Because of the improvement obtained by SSL, we plan to bring in more video data
during the pretraining phase. While acquiring video clips containing faces from the internet
is straightforward, we must carefully deal with the varying head pose in wild videos, which
could be largely avoided in our application. The self-supervised method above could fail
as the sequence encoder may focus on the head pose changes instead of the facial motions.

There are two possible solutions to this issue. One is taking a head pose estimator [29],
which can give the pitch, yaw, and roll combination for a cropped face. When the data
loading program grabs video clips for training, it only considers the clips with a stable
head pose across all frames. The contrastive learning scheme could learn more about facial
motions when the facial appearance and head pose have minimal movement.

The other one is disentangling the facial action features from the head pose on the
CNN stage. The CNN model in our approach is truncated from a facial landmark detector,
which is associated with the head pose. Its output features differ when input images
contain identical facial actions but different head poses. We can replace the landmark
detector with an action unit (AU) detector. Most image samples in AU datasets are with
frontal faces, so the resultant CNN model could be less accurate with the non-frontal face
images. However, one recent study introduced a method that solves this issue using a
twin-cycle autoencoder [30]. Evaluating their model for our facial motion study could be a
good next step.

5. Conclusions

Our work builds upon previous facial motion representation learning studies. We
specifically build upon the work done with the biometric identification technique of dis-
tinguishing between users’ customized facial motions as an authentication method. As
the existing datasets target motions that only include one significant facial action, we need
a more complex dataset to expand this technique to motions containing multiple facial
actions. We obtained this dataset through a synthetic method, which uses permutations of
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different facial actions to create compound facial actions. We then demonstrated that this
new dataset confirms that the standard contrastive learning scheme could also handle com-
plicated facial motions, such as those created in our dataset with a combination of multiple
facial actions. Our results support the idea that a simple SSL approach for distinguishing
between users’ customized facial motions does not enhance the model’s performance.
To overcome this, we propose the novel contrastive subclips method, which enables the
model to yield higher-quality motion representations and results in the SSL, performing a
more in-depth analysis than was previously attainable in supervised learning technique
implementations. We show that this new method improves facial motion representation
learning results and increases the accuracy of verifying users based on their customized
facial motions.
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