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Abstract: The pursuit of energy-efficient solutions in the context of reconfigurable intelligent surface
(RIS)-assisted wireless networks has become imperative and transformative. This paper investigates
the integration of RIS into an orthogonal frequency-division multiple access (OFDMA) framework
for multi-user downlink communication systems. We address the challenge of jointly optimizing RIS
reflection coefficients alongside OFDMA frequency and power allocations, with the aim of maximiz-
ing energy efficiency. This optimization is subject to specific quality-of-service (QoS) requirements for
each user equipment (UE) and a constraint on transmission power and the RIS phase shift matrix.
To address this complex optimization problem, we propose a novel practical and low-complexity
approach that is based on optimizing a computationally efficient and numerically tractable lower
bound on energy efficiency. The numerical results highlight the effectiveness of our approach, demon-
strating a substantial increase in energy efficiency compared to scenarios without RIS, with random
RIS integration, and with the scheme using the Genetic Algorithm (GA).

Keywords: RIS-assisted network; OFDMA; energy efficiency; RIS phase design

1. Introduction

Energy efficiency (EE) has become a crucial topic in the research and development
of next-generation wireless networks, particularly in sixth generation (6G). However, the
deployment of 6G in the industry is quite challenging. Due to non-line of sight (NLOS), the
energy efficiency and throughput of the network decrease. NLOS also gives rise to multi-
path fading, attenuation, and interference due to reflection and refraction. To overcome
this problem, reconfigurable intelligent surface (RIS) is the primary solution. RIS reduces
attenuation and improves network performance [1].

A RIS is a meta-surface made up of numerous inexpensive passive antennas that may
effectively reflect the electromagnetic waves impinging on it to improve performance [2].
In wireless communication networks with RIS assistance, a base station (BS) communicates
control signals to a RIS controller to enhance incident wave characteristics and user com-
munication quality. As a reflector, the RIS does not engage in any digitization processes.
Therefore, if implemented properly, a RIS promises to use substantially less energy than
conventional amplify-and-forward (AF) relays [2,3].

When using a RIS in wireless communications, radio resource allocation to optimize
the network performance is a prime concern [4]. Effective resource allocation can aid to
further enhance a RIS-assisted wireless network’s energy efficiency.

1.1. Related Works

The design of reflection coefficients (or passive beamforming) for narrowband trans-
mission over frequency-flat channels was the main focus of earlier studies on RIS-enhanced
wireless communication [3,5]. However, more recent studies in [6–14] have looked at the
more general broadband transmission over frequency-selective channels for the case of a
single-user setup.
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In [6], the authors proposed a majorization–minimization (MM)-based iterative ap-
proach for optimizing RIS passive beamforming in an OFDM system, achieving near-
optimal performance with lower computational complexity compared to the existing sine
cosine algorithm (SCA). The work in [7] introduces a scalable framework for channel estima-
tion and reflection optimization in RIS-enhanced OFDM systems, achieving improved rate
performance with reduced training overhead and computational complexity. The authors
in [8] proposed a practical transmission protocol for RIS-enhanced OFDM systems under
frequency-selective channels, optimizing the achievable rate through a joint optimization
of transmit power allocation and RIS passive array reflection coefficients while reducing
training overhead. The work in [9] addresses the ergodic achievable rate optimization in
RIS-assisted mmWave MIMO-OFDM systems with statistical CSI, utilizing majorization
theory and alternating optimization for the joint design of the transmit covariance matrix
and RIS reflection coefficients. The work in [10] proposed a framework for integrating RIS
technology into wireless networks by leveraging localization information for robust user
multiplexing, minimizing the overhead of channel estimation and phase shift optimization
in OFDM systems. The authors in [11] suggested an intelligent resource allocation scheme
utilizing reinforcement learning (RL) for maximizing the sum-rate in RIS-enhanced OFDM
systems, considering both primary and secondary user scenarios, and demonstrated signif-
icant transmission rate improvements compared to benchmark schemes. The work in [12]
investigates spectral efficiency improvement in an OFDM system with a 1-bit resolution
RIS, utilizing a deep RL algorithm for optimizing reflection phase shifts, leading to signif-
icant performance gains and reduced calculation delay. The work in [13] addresses the
optimization of RIS-enhanced two-way D2D OFDM systems, maximizing the bidirectional
sum-rate via sub-band, power, and discrete phase shift optimization. In [14], the authors
presented joint optimization of the UAV trajectory, RIS scheduling, and resource allocation
in OFDMA systems to maximize the sum-rate while considering heterogeneous QoS re-
quirements, showing promising performance gains with RIS deployment in UAV-based
communication.

To the best of our knowledge, very few articles have examined a passive beamforming
design and resource allocation for multi-user broadband communication. The multi-
user system design is more complex than the single-user case because the RIS reflection
coefficients must be concurrently optimized with the multi-user transmission scheduling
and resource allocation. The use of RIS in orthogonal frequency-division multiple access
(OFDMA) systems, a multi-user variant of the well-known orthogonal frequency-division
multiplexing (OFDM) digital modulation method, has been the subject of an expanding
body of study. The fundamental benefit of OFDMA is that it enables variable resource
allocation, which is essential for enhancing wireless networks’ energy efficiency. Designing
efficient resource allocation algorithms that can effectively use the available resources is
one of the major issues in putting RIS-assisted OFDMA systems into practice. To tackle
this problem, many scholars have suggested numerous optimization strategies, including
machine learning, convex optimization, and game theory. These techniques have the
potential to increase the system’s energy efficiency by allocating resources as efficiently as
possible.

Recent publications [15–20], among others, have looked at the usage of RISs in OFDMA
systems, as listed in Table 1. The works in [15–20] have focused on maximizing the sum-
rate in an OFDMA network. The work in [15] proposes a RIS-aided multi-user THz
MIMO system with OFDM access, aiming to maximize the weighted sum-rate via joint
analog/digital beamforming at the base station and reflection matrix optimization at the RIS.
In [16], the authors propose a novel uplink communication system with a transmissive RIS
transceiver, employing OFDMA for multiple users, and utilize alternating optimization to
maximize the system sum-rate while meeting QoS constraints. The work in [17] investigates
the joint design of MU beamformers and RIS’s programmable reflecting elements (PREs)
for quality-of-service in RIS-aided OFDM networks. In [18], the authors propose a resource
allocation algorithm for RIS-aided MISO OFDMA multicell networks targeting URLLC
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users, ensuring QoS while maximizing system throughput through a sub-optimal iterative
approach. The authors in [19] propose the optimal beam reflection based on the the
federated learning (OBR-FL) algorithm for RIS-assisted communications, utilizing federated
learning to optimize beam reflection based on sparse CSI while preserving user privacy.
The work in [20] proposes dynamic passive beamforming for RIS-integrated OFDMA
systems, optimizing reflection coefficients and resource allocations to maximize users’
common rate while flexibly adapting to channel variations and outperforming fixed passive
beamforming approaches. On the other hand, the authors in [21] delve into the investigation
of maximizing energy efficiency fairness in an active RIS-aided cell-free network. In
contrast to the studies mentioned, recent research is oriented towards formulating an
energy-efficient problem in the DL direction of a RIS-aided single input single output
(SISO) OFDMA system, taking passive RIS into account. The consideration of a single-
antenna BS and users allows for a more straightforward simplification of our proposed
problem. The presented problem is intricate, involving high-dimensional discrete and
continuous variables. Given the complexity, suggesting a model-based optimal solution
proves impractical. Additionally, the unavailability of accessible data for training hinders
the utilization of machine learning methods. Consequently, in comparison to other solutions
outlined in the literature and presented in Table 1, a sub-optimal solution is advocated by
us through the lower-bound optimization of the EE problem.

Table 1. Literature review.

Reference System Setup Objective Design Variables Decoupling

[10] Multi-user RIS-aided
SISO OFDM network-UL

Max. overall rate,
and minimum rate Resource allocation Max–min allocation algorithm

[11] Multi-user RIS-aided
MISO OFDM network-DL Max. sum-rate Resource allocation,

passive beamforming

Combined deep Q networks (DQN)
and deep deterministic
policy-gradient (DDPG)

[12] RIS-aided
SISO OFDM systems Max. spectral efficiency Passive beamforming DRL-DQN

[13]

RIS-enhanced
two-way D2D

multi-pair
OFDM communication systems

Max. Min. bidirectional
weighted sum-rate

Sub-band allocation,
the power allocation, and

passive beamforming design
SDR, projected sub-gradient method

[15] RIS-aided THz
MIMO-OFDMA system-DL Max. weighted sum-rate

Hybrid analog/digital beamforming
at the BS and reflection matrix

at the RIS
AO, SDR

[16]
Multi-user OFDMA system

with transmissive
RIS transceiver-Up

Max. system sum-rate
Power allocation,

subcarrier allocation,
and transmissive RIS coefficient

AO, Lagrangian dual decomposition
method, SCA

[17] Multi-user RIS-aided
MIMO OFDM network-DL

Max. weighted rate, sum-rate,
and geometric mean of rate Active and passive beamforming Closed form-based algorithms

[18] RIS-aided
OFDMA-URLLC systems Max. weighted sum throughput Active and passive beamforming SCA, and iterative rank

minimization approach (IRMA)

[19] Multi-user RIS-aided
SIMO OFDMA network-DL Max. users’ rate Passive beamforming Federated learning (FL),

Deep Neural Network(DNN)

[20] Multi-user RIS-aided
MIMO OFDMA network-DL Max. users’ common (minimum) rate

Passive beamforming,
OFDMA time-frequency
resource block as well as

power allocations

AO, Lagrange duality
method, SCA

[21]
Active RIS-aided
cell-free network-

MISO OFDMA-Up
Max. EE Passive beamforming and

resource allocation AO, FP

This
work

Multi-user RIS-aided
SISO-OFDMA network-DL Max-EE Subcarrier and power allocations,

passive beamforming
AO, Riemannian

gradient method (RGM), PSO
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1.2. Contributions

The key contributions of this work are outlined below:

• The EE problem in the SISO-OFDMA communication system for the DL direction is
formulated by us. This formulation takes into account THE subchannel and power
allocation within the OFDMA network, as well as the phase shift of the RIS. The
intricate relationship among the optimization variables renders the problem non-
convex, posing a significant challenge to finding an optimal solution directly.

• Within the framework of AO, a highly efficient sub-optimal solution strategy is in-
troduced by us. This approach capitalizes on the lower bound of the EE problem
by introducing a novel parameter into the EE formula. The integration of this new
parameter allows for the dissection of the intricate objective function of EE into indi-
vidual components for each user. Subsequently, a resourceful greedy method called
the maximizing-EE-lower-bound-based downlink subcarrier assignment (MDSA) is
proposed by us for subcarrier allocation, ensuring the effective utilization of avail-
able subchannels. Simultaneously, the approach employs the sequential quadratic
programming method (SQP) for power allocation, a versatile optimization technique.
Furthermore, the RIS phase shift is optimized using the particle swarm optimization
(PSO) algorithm, recognized for its adaptability in finding optimal solutions within
complex optimization spaces.

• The simulation results demonstrate that the proposed low-complexity sub-optimal
method, employing MDSA and PSO, enhances the performance of RIS-enabled SISO-
OFDMA communication systems compared to benchmark methods.

Notation: In this paper, vectors and matrices are denoted by bold-face lower-case
and upper-case letters, respectively. Sets are designated by upper-case calligraphic letters.
Additionally, the functionsR(·), I(·), | · |, (·)∗, and arg(·) indicate distinct properties of a
complex number, namely, its real part, imaginary part, modulus, complex conjugate, and
angle, in that order. IM denotes the identity matrix of size M × M, and em denotes the
mth column of IM. diag(x) denotes a square diagonal matrix with the elements of x on the
main diagonal. ∥.∥ denotes the l2 norm. The distribution of a circularly symmetric complex
Gaussian (CSCG) random variable with mean µ and variance σ2 is denoted by CN (µ, σ2).
Some other notations used in the paper are defined in Table 2.

Table 2. Notations used.

Notation Description

HT;n The channel from the transmitter to the RIS

hk
R;n The channel from kth receiver to the RIS

ϱk Set of subcarriers assigned to the kth user

ρk,n Subcarrier n assigned to the kth user

pk,n Transmit power assigned to the kth user on subcarrier n

R Total data rate of the system, where R = ∑K
k=1 ∑N

n=1 rk,n

αk,RIS Hypothetical static circuit power allocated to the kth UE and nth RIS element

2. System Model and Problem Formulation
2.1. System Model

The depicted system model can be observed in Figure 1, illustrating the interaction
between a single-antenna base station and K single-antenna users. These entities establish
communication through the intermediary of a RIS comprising M elements.
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Figure 1. The considered RIS-based multi-user SISO-OFDMA system.

The channel model is based on an OFDM with N subcarriers. The channels from
the transmitter and the kth user to the RIS are defined as HT;n ∈ CM×1 and hk

R;n ∈ CM×1,
respectively, where n = 1, 2, . . . , N and k = 1, 2, . . . , K. xk

n is denoted as the transmitting
signal from the transmitter to the kth user over the nth subcarrier.

In particular, the direct line-of-sight (LOS) link between the transmitter and the receiver
is blocked (i.e., occlusion due to buildings). Thus, the received signal at the kth receiver is
given as

yk
n = ((hk

R,n)
TΦk

nHT,n)pk,nxk
n + wk

n,

where Φk
n = diag[ϕ1, ϕ1, . . . , ϕM] ∈ CM×M is the RIS configuration matrix describing the

phase shift effect of the RIS on the incident signal. Note that the amplitude of the incident
signal does not change, which means ϕm = ejθm for any m = 1, 2, . . . , M and θm ∈ [0, 2π].
Furthermore, wk

n ∼ CN (0, σ2
n) denotes the additive white Gaussian noise (AWGN) at

the receivers.
The signal-to-noise ratio (SNR) perceived by the kth user on the nth subcarrier is

formulated as follows:

SNRk,n =

∣∣∣(hk
R,n)

TΦk
n HT,n

∣∣∣pk,n

N0W
. (1)

In this context, N0 = σ2 represents the variance of the AWGN noise. The total
bandwidth, B, is divided into N subcarriers, each with a bandwidth of W = B

N .
Next, the maximum achievable data rate of the kth user on the nth subcarrier, rk,n, and

the overall rate of the system, R, can be expressed as:

rk,n = W log2(1 + SNRk,n) (2)

R =
K

∑
k=1

N

∑
n=1

ρk,n log2(1 + SNRk,n). (3)

Also, ρk,n ∈ {0, 1} indicates whether or not the nth subcarrier is assigned to the kth
user. A feasible subcarrier assignment indictor matrix, ρ = [ρk,n]K×N , should satisfy:
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ρ ∈ ϱ = {[ρk,n]K×N | ∑
k∈K

ρk,n ≤ 1, ∀n ∈ N ;

ρk,n ∈ {0, 1}, ∀k ∈ K, n ∈ N},
(4)

where N = {1, 2, · · · , N} and K = {1, 2, · · · , K} represent the sets of all subcarriers and
all UEs, respectively. To minimize interference between users, each subcarrier is assigned
exclusively to one user at a time. Also, the total power consumption of the system is
represented as:

Ptotal = ζP + PBS + KPUE + MPm(b), (5)

where P = ∑k∈K ∑n∈N pk,n, and P = [pk,n]K×N denotes any possible power allocation
matrix and should be subject to:

P ∈ P =

{
[pk,n]K×N

∣∣∣∣∣ pk,n ≥ 0, ∀k ∈ K, ∀n ∈ N ; ∑
k∈K

∑
n∈N

pk,n ⩽ Pmax

}
. (6)

In this context, PBS, PUE, and Pm(b), respectively, represent the circuit power of the
base station, the power consumption of users, and the power consumption of the m-th
element of RIS. In addition, ζ = ν−1, and the parameter ν is used to describe the drain
efficiency of the power amplifier at the side of the transmitter.

2.2. Problem Formulation

The expression for the generalized EE in downlink transmission is given as the ratio
of the total delivered bits to the total consumed energy, represented mathematically as:

EE =
R
Ptotal

. (7)

To ensure quality-of-service (QoS) for each user equipment (UE), we consider the
generalized EE while incorporating minimum rate requirements R̂k and the peak transmit
power Pmax. To simplify the problem, we assume an infinite resolution for the reflectors’
phase shifting (2b >> 1). Furthermore, we assume perfect knowledge of all communication
channels (hk

R,n and HT,n) by the BS for all k = 1, · · · , K.
Therefore, we can express the optimization problem for maximizing the EE in down-

link transmission through the following formula:

(P1) max
Φ,ρ∈ϱ,P∈P

∑K
k=1 ∑N

n=1 ρk,nrk,n

ξ ∑K
k=1 pk,n + PBS + KPUE + MPm(b)

(8)

subject to ∑
n∈N

ρk,nrk,n ≥ R̂k, ∀k = 1, 2, ..., K, (8a)

|ϕm| = 1, ∀m = 1, 2, ..., M, (8b)

where R̂k denotes the individual QoS constraint of the kth user. Also, constraint (8b)
accounts for the fact that each RIS reflecting element can only provide a phase shift, without
amplifying the incoming signal.

3. Proposal Method and Discussion

The EE optimization problem presented in (8) poses a significant computational
challenge due to its NP-hard nature. This difficulty arises from the discrete variable ρ and
the unit modulus constraint imposed on Φ. Finding optimal solutions for such problems
is generally infeasible within reasonable time frames. To address these complexities, we
propose a sub-optimal solution strategy using an AO framework.

In our AO-based approach, we iteratively optimize two sets of variables: the OFDMA
resources ρk,n and pk,n and the RIS reflection coefficients Φ. Crucially, we keep one set of
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variables fixed while optimizing the other. This alternating optimization scheme allows us
to tackle the intricate EE problem more effectively.

In the initial stages of our approach, we employ sub-optimal solutions. This choice is
motivated by the computational expense associated with obtaining closed-form optimal so-
lutions for all variables simultaneously. Instead, by initially focusing on one set of variables,
we streamline the optimization process. Subsequently, in the following step of our AO
framework, we introduce the PSO algorithm to further enhance the optimization process.

3.1. Optimization Respect to Subcarrier and Power Allocations

It is difficult to optimize the original objective function in (8) directly, but it may be
possible to optimize a surrogate objective function that is easier to handle. In this case,
the lower bound of the objective function can be used as a surrogate objective function
to facilitate the optimization process. The surrogate objective function is then optimized
instead of the original objective function, and the solution obtained using the surrogate
objective function is used as a lower bound on the optimal value of the objective function.

Based on the insights from the work conducted in [22], the following theorem and
corollary are established.

Theorem 1. By considering a fixed value for the RIS phase shifts and introducing a new parameter
αk,RIS = αk,UE × αm,RIS into Equation (8), the optimal EE is given by:

(P2) ÊE = max
ρ∈ϱ,P∈P ,

α∈α

min
k∈K

∑k∈K ∑n∈N ρk,nrk,n

∑k∈K ∑n∈N ζ pk,n + αk,RIS × Pc
(9)

s.t. ∑
n∈N

ρk,nrk,n ⩾ R̂k, ∀k = 1, 2, . . . , K. (9a)

where αk,RIS = {[αk,UE]K×1, [αm,RIS]M×1 | ∑k∈K ∑n∈N αk,RIS = 1; αk,RIS ∈ R} and Pc =
PBS + KPUE + MPm(b). The structure of the optimal solution, as demonstrated in Theorem 1
presented in Appendix A, can be depicted in a split form. This split form provides valuable insights
that enable the derivation of Corollary 1.

Corollary 1. For any fixed αk,RIS ∈ αk,RIS, the optimal energy efficiency (ÊE) in (9) is bounded
from below by:

(P3) ÊE ≥ max
ρ∈ϱ,P∈P

min
k∈K

{
∑k∈K ∑n∈N ρk,nrk,n

∑k∈K ∑n∈N ζ pk,n + αk,RIS × Pc

}
(10)

subject to ∑
n∈N

ρk,nrk,n ≥ R̂k, ∀k = 1, 2, ..., K. (10a)

Assuming that αk,RIS
opt = [α

opt
k,RIS]K×1 corresponds to the optimal energy efficiency

(ÊE) in Equations (8) and (9), α
opt
k,RIS can be interpreted as the portion of static circuit power

individually allocated to the kth UE and the mth RIS element when aiming for maximum EE.
This decomposition allows us to split the complex optimization objective in

Equation (8) into a set of relatively independent and simpler objectives in Equation (10).
Consequently, we can employ sub-optimal methods for efficient problem-solving.

3.1.1. Subcarrier Allocations

Utilizing a heuristic algorithm is advantageous in this scenario since the maximum achiev-
able energy efficiency of the kth UE, ÊE = ∑n∈N ρk,nrk,n

∑n∈N ζpk,n+αk,RISPc
, depends solely on its own parame-

ters and the subcarriers it occupies, without being influenced by the power adaptation strategies
of other users. To simplify, we assume there is no difference in the RIS configuration matrix
between subcarriers of the same user, meaning Φk

1 =, · · · ,= Φk
m = Φk.

Additionally, constant values for αk,RIS are considered for further simplification. Neg-
ative values of αk,RIS may arise due to the nature of αk,RISPc, representing the hypothetical
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static circuit power allocated to the kth UE and nth RIS element. It is important to note that
this value serves as a conceptual representation rather than a concrete physical reality. In
practice, the total static circuit power remains constant at Pc.

To solve the optimization problem in Equation (10), we employ a heuristic algorithm
called MDSA [22]. The power allocation is optimized using the SQP method, which is
integrated into the MDSA algorithm.

The central concept behind the MDSA algorithm is to iteratively assign subcarriers,
with the aim of maximizing the minimum individual EE, denoted as ÊE, while ensuring
that QoS requirements are met. Initially, each UE virtually receives its worst subcarrier, a
conservative starting point. In this scenario, an individual EE is optimized under the QoS
constraint using the algorithm employed for the power allocation, as described in Lines 2
to 5.

In each iteration, the UE with the lowest individual EE selects its preferred subcarrier
from the pool of unassigned subcarriers. The UE then optimizes its individual EE under
the QoS requirements using the SQP method. This iterative process continues until all
subcarriers have been assigned, as outlined in lines 7 to 12 of Algorithm 1.

Algorithm 1: MDSA Maximizing-EE-lower-bound-based downlink subcarrier
assignment.

1. Input: ρ = [ρk,n]K×N ← 0K×N ; ϱk ← ∅, ∀k ∈ K; αk,RIS ← αini
k,RIS

2. Output: ρ, P
3. For each UE k ∈ K
4. Find the subcarrier ňk ← arg minn∈N SNRk,n

5. Calculate EE← maxPk≥R−1
k

Rk(ňk ,Pk)
ζPk+αk,RISPc

6. End
7. While N ̸= ϕ
8. Find the UE ǩ ∈ K such that ǩ← arg mink∈K EE
9. Find the UE n̂ ∈ N such that n̂← arg maxn∈N SNRk,n
10. Set ρǩ,n̂ ← 1; ϱǩ ← ϱǩ ∪ n̂ǩ; N ← N\{n̂ǩ}
11. Calculate EE← maxPk≥R−1

k (ϱk ,Rk)
Rk(ϱk ,Pk)

ζPk+(αk,RISPc)

12. End

Notably, the MDSA algorithm does not impose a total transmit power constraint
explicitly. However, this constraint is likely to be automatically satisfied during subcarrier
allocation for several reasons:

By appropriately choosing the parameter αk,RIS, the eventually optimized individual
EEs tend to converge to similar values. If a UE initially requires excessive power to meet
its QoS, it likely has a lower individual EE and will request more subcarriers later. This
allows the UE to reduce its transmit power and increase its EE. In this work, a fixed set of
parameters α1,RIS, α2,RIS, . . . , αK,RIS is employed for more simplification.

When the EE improvement achieved by the energy-efficient design compared to the
spectral-efficient design is substantial, the actual transmit power used for the energy-
efficient design should be significantly lower than the maximum transmit power, ensuring
efficient power utilization.

In the following, we delve into the SQP method employed to optimize power allocations.

3.1.2. Power Allocations

The sequential quadratic programming method is an iterative optimization technique
used to solve constrained optimization problems, often encountered in mathematical
modeling and engineering applications. SQP combines principles from both Newton’s
method and Lagrange multipliers to find the optimal solution within a feasible region
defined by constraints.
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In the context of SQP, the following subproblems should be defined:

min
P∈P

g(P) (11)

subject to b(P) ≤ 0, ∀k = 1, 2, ..., K, (11a)

where

g(P) = −
{

∑n∈N ρk,nrk,n

ξ ∑N
n=1 ρk,n pk,n + αk,RIS × Pc

}
(12)

and
b(P) = − ∑

n∈N
ρk,nrk,n + R̂k ∀k = 1, 2, ..., K. (13)

The primary idea behind the SQP method is to use a second-order subproblem at the
current point P(t) and minimize this subproblem to determine the new point P(t+1).

In its simplest form, the SQP method defines the second-order subproblem in the tth
iteration as follows:

min
P

1
2

dT∇2
PPL(P(t), λ(t))d +∇T g(P(t))d + g(t) (14)

s.t. ∇Tb(P(t))d + b(P(t)) = 0, (14a)

∇Tb(P(t))d + bi(P(t)) ≤ 0. (14b)

Here, ∇2
PPL(P(t), λ(t)) is the Hessian matrix (second-order partial derivatives matrix)

of the Lagrange function for the problem (11), ∇T g(P(t)) denotes the gradient of the
objective function at point P(t), ∇Tb(P(t)) represents the gradient of the constraints, and d
is the direction of motion.

L(P(t), λ(t)) = g(P(t)) + λ ∗ b(P(t)) (15)

Solving this second-order subproblem yields the solution (d(t), λ), which, under
Karush–Kuhn–Tucker (KKT) conditions, is valid for the problem. A merit function is
designed to assess solution suitability and balance the decrease rate of the objective function
with respect to the established problem constraints.

The iterations continue until an acceptable answer is acquired [11]. The SQP algorithm
is presented in Algorithm 2.

3.2. Optimization with Respect to RIS Phase Shift Matrix

Consider the optimized values for the vectors ρ and P obtained in the first step of the
AO algorithm. The EE optimization problem with respect to RIS phase shifts is formulated
as follows:

maximize
Φ

EE =
∑K

k=1 ∑N
n=1 ρk,nrk,n

ξ ∑K
k=1 pk + PBS + KPUE + MPm(b)

(16)

subject to |ϕm| = 1, ∀n = 1, 2, . . . , M. (16a)

In this problem, EE represents Energy Efficiency, Φ is the RIS phase shift matrix,
and the constraints in (16a) ensure that the phase shifts have unit magnitude. This EE
maximization problem can be transformed into a rate maximization problem with respect
to the RIS phase shift variables.

maximize
Φ

REE =
K

∑
k=1

N

∑
n=1

ρk,nrk,n (17a)

subject to |ϕm| = 1, ∀n = 1, 2, . . . , M. (17b)
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To tackle this optimization problem, we employ the PSO algorithm, renowned for its
versatility in solving complex optimization tasks. PSO maintains a population of particles,
each associated with a phase shift vector, and efficiently explores the solution space to find
optimal solutions. Here is a more detailed breakdown of the key operations and parameters
in the PSO algorithm.

Algorithm 2: Sequential fractional programming algorithm.

1. Choose parameters η ∈ (0, 0.5), τ ∈ (0, 1), and an initial pair (x(0), λ(0));
2. Evaluate g(0),∇g(0), b(0), A(0);
3. If a quasi-Newton approximation is used, choose an initial
n× n symmetric positive definite Hessian approximation B(0),
otherwise compute ∇2

xxL(0);
4. repeat until a convergence test is satisfied
5. Compute d(t) by solving (14); let λ̂ be the corresponding
multiplier;
6. Set dλ ← λ̂− λ(t);

7. Choose µ(t) to satisfy µ ≥ ∇ f T
k pk+

σ
2 pT

k∇2
xx Lk pk

(1−ρ)∥ck∥1
with σ = 1;

8. Set α(t) ← 1;
9. while
O(x(t) + α(t)d(t); µ(t)) ≤ O(x(t); µ(t)) + ηα(t)D(O(x(t); µ(t)), d(t))
10. Reset α(t) ← τ(t)α(t) and λ(t+1) ← λ(t) + α(t)dλ;
11. end(while)
12. x(t+1) ← x(t) + α(t)d(t) and λ(t+1) ← λ(t) + α(t)dλ;
13. Evaluate g(t+1),∇g(t+1), b(t+1), A(t+1),
(and possibly ∇2

xxL(t+1));
14. If a quasi-Newton approximation is used, set
15. d(t) ← α(t)d(t)

and y(t) ← ∇xL(x(t+1), λ(t+1))−∇xL(x(t), λ(t+1)),
16. and obtain B(t+1) by updating B(t) using a quasi-Newton
formula;
17. repeat

The PSO algorithm, outlined in Algorithm 3, efficiently explores the solution space by
maintaining a population of particles with associated phase shift vectors. The algorithm’s
complexity is proportional to the product of the population size L and the maximum
number of iterations T.

For each particle i = 1, 2, . . . , L at time t, it is associated with a 1×M phase shift vector
θ
(t)
i = (θi1, θi2, . . . , θiM), where each component is limited within [−vmax, vmax]. The fitness

value of each particle is evaluated using the fitness function ´REE(θ), which can be defined
as follows:

´REE(θ) = −REE. (18)

Finding the maximum value of REE in Equation (17) is equivalent to finding the
minimum value of ´REE(θ). q(t)

best,i and zbest
(t) are defined as the optimal position of particle

i and the optimal position of the entire population after t iterations. The following equations
update, at each current iteration t + 1, the velocity v and position of θ of each particle i as:

v(t+1)
i = ωv(t)

i + k1u1(qbest,i − θ
(t)
i ) + k1u2(zt

best − θ
(t)
i ), (19)

θ
(t+1)
i = θ

(t)
i + v(t+1)

i . (20)

In the context of our optimization process, we denote v as the velocity vector, and ω is
employed as the inertia weight to carefully balance between local exploitation and global
exploration. To introduce stochasticity, we utilize u1 and u2 as random vectors uniformly
distributed within the interval [0, 1] for each dimension of the search space (where D
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represents the dimensionality or size of the problem). Additionally, we incorporate k1 and
k2, which we refer to as acceleration coefficients, as positive constants [23–25].

Algorithm 3: Particle swarm optimization algorithm.
1. Initialize L, T, ω, u1, u2, k1, k2;
2. for i = 1, 2, . . . , L do
3. Initialize θ

(0)
i , v(0)

i , q(0)
best,i = θ

(0)
i ;

4. end for
5. Find ´REE(q∗

(0)

best) = min{ ´REE(q∗
(0)

best,1), . . . , ´REE(q
(0)
best,L)}, and set z(0)best = q∗

(0)

best,1;
6. while t ≤ T do
7. for i = 1, 2, . . . , L do
8. Update the velocity and position of particles using Equations (19) and (20):
9. Evaluate fitness value;
10. Calculate the historical optimal position of particle i:

11. q(t+1)
best,i =

{
q(t)

best,i, ´REE(q
(t)
best,i) ≤ ´REE(θ

(t+1)
i ),

θ
(t+1)
i , ´REE(q

(t)
best,i) >

´REE(θ
(t+1)
i );

12. Find ŔEE(q∗(t+1)) = min{ŔEE(q
(t+1)
1 ), . . . , ŔEE(q

(t+1)
L )};

13. end for
14. Calculate the historical optimal position of the population:

15. z(t+1)
best =

{
z(t)best, ´REE(z

(t)
best) ≤ ´REE(q

∗(t+1)
best ),

q∗(t+1)
best , ´REE(z

(t)
best) >

´REE(q
∗(t+1)
best );

16. Adjust adaptive parameter shown in Algorithm 4;
17. Set t← t + 1.
18. end while

The PSO algorithm proceeds through the outlined stages as detailed in Algorithm 3.

• In lines 2–4, we initialize each particle’s position, velocity, and historical best position.
• In line 5, we find the best position among all particles and update the historical best

position of the entire population, denoted as z(t)best. This is the position with the best
fitness value.

• The iterative optimization process starts in line 6 and continues until the maximum
number of iterations T is reached.

– Within each iteration:
- In lines 7–17, we perform operations for each particle i in the population.
- Lines 7–8 update the velocity and position of the particle based on its previous
position, the best position it has encountered (qbest,i), and the best position in the
entire swarm (zbest). This helps particles explore the solution space.
- Line 9 evaluates the fitness value of the particle’s current position.
- Lines 10–11 update the historical best position of the particle based on whether
the current position or the previous best position is better. This helps particles
remember their best-performing positions.
- After evaluating and updating each particle, we find the best position among all
particles in line 12 and update the historical best position of the entire population
(z(t+1)

best ) in line 15.
- The adaptive parameter is adjusted in lines 16 based on the performance of the
swarm according to Algorithm 4.
- The dynamic adjustment of ω aims to strike a balance between exploration and
exploitation during the PSO algorithm’s execution. It helps fine-tune the search
process to improve convergence and find optimal solutions effectively.

The AO algorithm is presented in Algorithm 5.
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Algorithm 4: Adjust adaptive parameter.
1. Initialize c = 0;
2. if z(t+1)

best < z(t)best
3. f lag = 1;
4. else
5. f lag = 0;
6. end if
7. if f lag = 0
8. c = c + 1;
9. else
10. c = max{c− 1, 0};
11. if c < 2
12. ω = 2ω;
13. else if c > 5
14. ω = ω/2;
15. end if
16. end if

Algorithm 5: Alternating optimization algorithm.

1. Input: K, N, M, η, PBs, PUE, Pm(b), Pmax, σ2, {Rmin,k}K
k=1, hk

R,n, hT,n, ϵ > 0;
2. Output: ρ⋆, P⋆, and Φ⋆

3. repeat
4. Fixing the RIS coefficients Φ = Φ0 = π

2 · IN
5. Find the ρ, P according to MDSA Algorithm and
SQP Algorithm
6. Fixing the power allocation ρ, P, given initial Φ0,
update the RIS coefficients Φ via PSO Algorithm
7. Until the objective value of (P1) with the obtained ρ, P, and Φ

reaches convergence.
8. ρ⋆ = ρ, P⋆ = P, and Φ⋆ = Φ

4. Simulation Results

In this section, we present the results of our proposed algorithm’s performance evalu-
ation through numerical simulations for downlink communications. All simulations were
conducted using MATLAB 2019b. The simulation setup is based on an OFDM system
with N = 72 subcarriers. The multiple single-antenna mobile users are considered to be
randomly and uniformly distributed within the 100 m × 100 m rectangular region on
the right-hand side of the RIS in the x–y plane. All the provided illustrations represent
averaged outcomes obtained from 103 independent scenarios involving variations in users’
positions and channel characteristics. These scenarios were generated following the 3GPP
propagation environment detailed in [26], and the relevant parameters are outlined in
Table 1. The performance of our proposed joint resource allocation was compared with
two benchmark schemes, random passive beamforming and without RIS, where the first
scheme considers the BS-user direct link and performs the OFDMA resource allocation.
The results also compared with the optimization approach using the genetic algorithm (GA)
for phase shift optimization [27]. However, detailed information regarding these schemes
are omitted in this context. The specific simulation parameters are outlined in Table 3.
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Table 3. Simulation parameters.

Parameters Values

Bandwidth of the BS B 180 KHz

Maximum transmit power at BS Pmax 20 dBW

Circut power of the Bs PB 39 dBm

Power amplifier efficiency at the Bs ν 0.8

Circut power of each user Pk 10 dBm

Circut power of each RIS element Pm(b) 10 dBm

It is noteworthy to point out that a majority of the papers listed in Table 1 primarily
concentrate on optimizing the sum-rate. This poses a challenge when attempting to com-
pare our results with the aforementioned papers. Moreover, the study in [21] focuses on
maximizing EE and incorporates an active RIS in the system model, presenting a distinction
from the system model considered in our work.

The graph in Figure 2 illustrates the performance of achievable EE with respect to
variations in Pmax in dBm. In this depiction, we have set the minimum QoS constraint as
Rmin = 2.5 bps/Hz and fixed αk,RIS to 0.25 for all K users. Our study considers system pa-
rameters M = 4, K = 4, and N = 72. As depicted in Figure 2, an increase in Pmax correlates
with an increase in EE. Nevertheless, around Pmax = 12 dBm, there is an underutilization of
excess transmit power, resulting in a decline in energy efficiency. This can be attributed to
the fact that the EE function does not exhibit a strictly increasing trend with the maximum
BS transmit power, Pmax. Instead, it reaches a finite maximizer. It is essential to emphasize
that the proposed algorithm for passive beamforming optimization using PSO outperforms
the one using GA, random passive beamforming optimization, as well as the scenario
without RIS in terms of EE. Moreover, Figure 3 illustrates the average SE versus Pmax for
different schemes. It can be observed that with an increase in Pmax, there is an enhance-
ment in the achievable SE for all the schemes. It also underscores that for low values of
Pmax, the problem is frequently infeasible. This is expected since the BS lacks adequate
transmit power to meet the rate requirements of the users, leading to significantly low SE
values. Nevertheless, as Pmax increases, the attainable SE starts to rise. Additionally, similar
to the trend in Figure 2, the proposed algorithm for passive beamforming optimization
using PSO outperforms other schemes. Besides, Figure 4 portrays the performance of EE
concerning the number of RIS elements, denoted as M. As observed, when M is relatively
small, i.e., M ≤ 10, all designs except for the without-RIS scheme, exhibit the same trend.
Particularly, EE performance increases as M increases. However, as M assumes moderate
to intermediate values and beyond, EE undergoes a reduction, substantiating the existence
of an optimal M for the maximization of EE objectives [28]. The proposed scheme exhibits a
significant improvement when contrasted with a random passive beamforming mechanism.
Conversely, the performance of the without-RIS scheme remains unaffected by the number
of RIS elements in the system, implying the enhancement achievable through RIS in the
wireless communication environment.
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Figure 2. Average EE versus Pmax for Rmin = 2.5 bps/Hz, αk,RIS = 0.25, and M = 4, K = 4, N = 72.

Figure 3. Average SE versus Pmax for Rmin = 2.5 bps/Hz, αk,RIS = 0.25, and M = 4, K = 4, N = 72.
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Figure 4. Average EE versus number of RIS elements, M for Rmin = 2.5 bps/Hz, αk,RIS = 0.25,
Pmax = 20 dBm, and K = 4, N = 72.

Remark

• Complexity
Securing the optimal solution for problem (P1) requires the application of a power
allocation algorithm to each feasible subcarrier assignment that meets the constraint
in Equation (4) and subsequently selecting the assignment with the highest EE. Its
computational complexity depends on the number of optimizing variables, which can
be large if the number of subcarriers and/or the number of UEs is large. Nevertheless,
the associated complexity proves excessively high, rendering it impractical for real-
world scenarios.
In contrast, the proposed sub-optimal solution, facilitated by the MDSA algorithm,
eliminates the need to optimize a joint and intricate objective in each step. Subcarrier
assignment becomes more manageable with this pragmatic approach. This is because,
for each UE, the maximum of its individual EE is contingent solely upon its parameters
and the subcarriers it will occupy, without reliance on the power adaptation strategies
of other UEs. The complexity of the MDSA algorithm for a given αk,RIS is roughly
O((NOLN) times that of the SQP method, where NOL is the number of iterations in
the outer layer, and N is the total number of subcarriers.
The complexity of the SQP algorithm is dependent on the QP subproblem. By using
modern interior-point (IP) methods for solving subproblems, a polynomial bound of
computational complexity results [29]. Additionally, it is observed that the computa-
tional complexity of the PSO algorithm mainly involves the computation of fitness
values of L passive beamformers for K users. Thus, the computational complexity is
O((LK log(L)). It is clear that the complexity of the PSO algorithm is only linearly
increasing with the number of particles L.

• Convergence
The iterative alternating algorithm for solving the EE maximization problem (P3) is
given in Algorithm 5. Since the updates through SQP and PSO all maximize the
objective function at each iteration, the iterations in Algorithm 5 lead to a monotone in-
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crease of the objective function of problem (P3). Since the objective function under the
power and amplitude reflection coefficient constraints are bounded, the convergence
of the alternating maximization algorithm can be guaranteed with the monotonic
convergence theorem [30].

5. Conclusions and Future Work

This study seamlessly integrates RIS technology into multi-user downlink OFDMA
communication systems, optimizing RIS reflection coefficients, OFDMA frequency alloca-
tions, and power distributions. Guided by stringent QoS requirements and transmission
power constraints, as well as unit modulus constraint on the RIS phase shifts, the efficiency-
focused methodology systematically address these multifaceted optimizations. These
strategies redefine the original problem, deriving computationally accessible lower bounds
on energy efficiency while striking a harmonious balance between performance enhance-
ment and real-world feasibility. At its core, the AO algorithm, featuring the MDSA, SQP,
and PSO approaches, effectively addresses complex challenges in energy-efficient wireless
networks. Robust numerical results confirm substantial energy efficiency improvements
compared to non-RIS scenarios. Our current work focuses on the simplicity of the SISO
system, avoiding the complexities introduced by MISO and MIMO systems. For future
research, we propose the exploration of the application of multiple antennas at both trans-
mitter and receiver ends, anticipating a deeper understanding and a broader scope of
findings.
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Acronyms

RF Radio Frequency
EE Energy Efficiency
SE Spectral Efficiency
RB Resource block
GA Gradient decent algorithm
RL Reinforcement Learning
QoS quality-of-service
ZF Zero-Forcing
RIS Reconfigurable Intelligent Surface
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
SISO Single Input Single Output
MISO Multiple Input Single Output
MIMO Multiple Input Multiple Output
APs access points
MU Multiple User
SNR Signal to Noise Ratio
SINR Signal to Interference Plus Noise Ratio
AWGN Additive White Gussian Noise
CSI Channel State Information
SCA sine cosine algorithm
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MM Majorization–Minimization
OBR-FL optimal beam reflection based on federated learning
MC Monte Carlo
AO Alternating Optimization
KKT Karush Kuhn Tucker
SQP Sequential Programming Method
PSO Particle Swarm Optimization

Appendix A. Proof of Theorem 1

Proof. Consider the optimal subcarrier and power allocation matrices, denoted as ρopt and
Popt, respectively, for (8). In this context, ÊE represents the energy efficiency defined as

ÊE =
∑k∈K ∑n∈N ρ

opt
k,n ropt

k,n

ζ ∑k∈K ∑n∈N popt
k,n+Pc

.

For any fixed values of ρ ∈ ϱ and P ∈ P , we can express the energy efficiency, denoted
as EE, as follows:

EE =
∑n∈N ∑K

k=1 ρk,nrk,n

∑n∈N ∑K
k=1(ζ pk,n + αk,RISPc)

≥ min
k∈K

∑n∈N ρk,nrk,n

∑n∈N(ζ pK,n + αK,RISPc)
.

(A1)

Here, αK,RIS ∈ αK,RIS, and equality holds if and only if:

∑n∈N ρ1,nr1,n

∑n∈N ζ p1,n + α1,RISPc
= · · · = ∑n∈N ρK,nrK,n

∑n∈N ζ pK,n + αK,RISPc
. (A2)

This equality condition implies that αk,RIS can be expressed as αk,RIS = ∑n∈N ρk,nrk,n
EEPc

−
∑n∈N ζ pk,n

Pc
.

Furthermore, it is evident that:

ÊE = max
ρ∈ϱ,P∈P

EE ≥ max
ρ∈ϱ,P∈P

{
min
k∈K

∑n∈N ρk,nrk,n

∑n∈N ζ pk,nαk,RISPc
.
}

(A3)

In this equation, αK,RIS ∈ αK,RIS. Therefore, the right-hand side (RHS) cannot ex-
ceed the left-hand side (LHS) for any αK,RIS ∈ αK,RIS. Additionally, equality always
holds if the RHS uses the same ρ and P as ρopt and Popt that achieve the LHS. This

requires setting {αk,RIS} such that αk,RIS = α
opt
k,RIS ≜

∑n∈N ρ
opt
k,n ropt

k,n
ÊEPc

− ∑n∈N ζ popt
k,n

Pc
. It becomes

apparent that through a straightforward substitution of α
opt
k,RIS in the expression for ÊE,

ÊE =
∑k∈K ∑n∈N ρ

opt
k,n ropt

k,n

ζ ∑k∈K ∑n∈N popt
k,n+Pc

; we can draw the conclusion that the sum of the optimized α
opt
k,RIS

values for all k in K equals 1.
This concludes the proof.
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