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Abstract: The rapid evolution of technology has given rise to a connected world where billions
of devices interact seamlessly, forming what is known as the Internet of Things (IoT). While the
IoT offers incredible convenience and efficiency, it presents a significant challenge to cybersecurity
and is characterized by various power, capacity, and computational process limitations. Machine
learning techniques, particularly those encompassing supervised classification techniques, offer a
systematic approach to training models using labeled datasets. These techniques enable intrusion
detection systems (IDSs) to discern patterns indicative of potential attacks amidst the vast amounts
of IoT data. Our investigation delves into various aspects of supervised classification, including
feature selection, model training, and evaluation methodologies, to comprehensively evaluate their
impact on attack detection effectiveness. The key features selected to improve IDS efficiency and
reduce dataset size, thereby decreasing the time required for attack detection, are drawn from the
extensive network dataset. This paper introduces an enhanced feature selection method designed to
reduce the computational overhead on IoT resources while simultaneously strengthening intrusion
detection capabilities within the IoT environment. The experimental results based on the InSDN
dataset demonstrate that our proposed methodology achieves the highest accuracy with the fewest
number of features and has a low computational cost. Specifically, we attain a 99.99% accuracy with
11 features and a computational time of 0.8599 s.

Keywords: machine learning; feature selection; intrusion detection system; IoT; cybersecurity;
wireless security; SDN

1. Introduction

As the Internet of Things (IoT) continues to proliferate, ensuring the security of
interconnected devices and networks becomes increasingly crucial. A complete IoT system
includes devices, sensors, networks, software, and other essential components necessary
for operation and interconnection. Devices and sensors of this nature often have low
resource requirements and multiple security vulnerabilities from manufacturers [1]. It
is forecasted that by 2030, there will be approximately 500 billion IoT devices connected
to the internet [2]. Edge devices, gateways, cloud servers, data analysis tools, and user
interfaces represent the main components of an IoT system. In addition to having sensors
and controllers, edge devices can also perform initial data reviews before transmitting it to
the cloud.

Cybersecurity is a critical concern in today’s digital age due to the increasing number
of cyberattacks and the growing sophistication of cybercriminals. Ensuring the security of
computer systems, networks, and data is of utmost importance, particularly for IoT devices.
IoT environments are vulnerable to various cyber threats and attacks, making intrusion
detection a fundamental aspect of IoT security. There are many security flaws in IoT
devices, often originating from the manufacturer, along with insufficient defense against
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cyberattacks in edge network areas. Additionally, the importance of the data collected by
IoT devices contributes to increased cyberattacks in IoT systems.

Traditional rule-based IDSs have limitations in detecting emerging and unknown
attacks. This has led to the integration of machine learning techniques into IDSs, enabling
them to adapt and evolve to ever-changing security threats. Supervised classification refers
to a type of machine learning algorithm that learns from labeled data to classify input into
predefined categories or classes. In this approach, classification algorithms are trained on
labeled data to classify network traffic as normal or malicious. By analyzing the patterns
and features in labeled data, these algorithms can identify suspicious behavior in unseen
traffic. This makes supervised learning a powerful tool for IDS to distinguish legitimate
activity from cyberattacks, including device spoofing, data tampering, and denial-of-service
attacks on the Internet of Things (IoT).

The dynamic and heterogeneous nature of IoT networks presents a unique challenge.
Classification algorithms offer a viable solution by dynamically adapting to evolving attack
landscapes. This iterative process involves continuous learning from labeled data, enabling
these algorithms to enhance their accuracy in detecting and mitigating IoT-specific threats.
However, a critical factor influencing performance is data dimensionality or the number
of features used. In resource-constrained IoT devices, selecting the most relevant features
becomes crucial to optimize the performance of machine learning models for IDSs. This
is especially important as securing these environments with traditional techniques can
be challenging.

The sequential steps involved in the intrusion detection process using machine learn-
ing are depicted in Figure 1. It begins with dataset collection, where data relevant to both
normal and malicious activities are gathered. Subsequently, data preprocessing ensures
the data’s cleanliness, transformation, and formatting for analysis. Following this, feature
selection identifies the most informative attributes for model training. Model selection
involves choosing an appropriate algorithm tailored to the problem at hand, while model
training allows the model to learn from the preprocessed data. Model evaluation assesses
the model’s performance using validation datasets, and model optimization fine-tunes the
model for enhanced accuracy.
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Figure 1. Intrusion detection steps using machine learning.

It becomes imperative to identify and select the most relevant data features to enhance
the performance of a machine learning model, particularly for IDSs in IoT devices where se-
curing these environments with conventional algorithms and techniques poses a challenge.
IoT devices often have limitations, such as low computing capabilities, limited power
sources, restricted storage, or restricted memory capacity. Traditional feature selection
methods face optimization difficulties and have high computational complexity [2]. The
limitations of IoT devices lead to a higher likelihood of attacks or flaws in their security
protocols [3]. These limitations and challenges of IoT encompass various categories, includ-
ing hardware constraints, software issues, network concerns, and security vulnerabilities.
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It is crucial to thoroughly consider all of these limitations and challenges before embarking
on the development of any systems and security solutions.

Feature selection involves searching within the training data to enhance the classifi-
cation accuracy. It is crucial to identify and select the most relevant features in the data
to improve the performance of the ML model, particularly in anomaly-based IDSs [4].
This process entails selecting a subset of input features from the original set of features
in the training data. Feature selection holds significant importance, especially as the data
scale increases, to improve the accuracy and efficiency of machine learning models and
prevent overfitting [5]. One of the main challenges in ML is to identify the group of relevant
features that strike a balance between high accuracy and low time complexity [6]. Three
primary approaches can be used to classify the many feature selection techniques into
general categories [7]:

• Filter Methods: Filter approaches do not need to train a machine learning model
because they rely on statistical metrics. They evaluate each feature’s importance
separately without referencing the learning algorithm. Common filter methods include
correlation-based feature selection, the chi-squared test, and information gain and
mutual information.

• Wrapper Methods: By training and evaluating machine learning models on various
feature combinations, wrapper approaches assess feature subsets. Although they
require more computing power than filter approaches, they may produce feature sub-
sets that are better. Common wrapper methods include forward selection, backward
elimination, and recursive feature elimination (RFE).

• Embedded Methods: Feature selection is a crucial step in the model training process
that is carried out by embedded methods. Usually, they are employed with algorithms
that facilitate feature selection by default. Common embedded methods include L1
regularization (Lasso), tree-based methods, and feature importance from Support
Vector Machines (SVMs).

The contributions of this work are as follows:

• Innovative Approach to Feature Selection: This study presents a novel hybrid feature
selection methodology tailored specifically to IoT environments. This approach pro-
gresses through several defined stages, each contributing to selecting the most relevant
features for intrusion detection systems (IDSs) in IoT contexts.

• Caching Mechanism: This study introduces a new caching mechanism to improve the
efficiency of feature selection. The system identifies and caches significant features,
streamlining subsequent iterations by retrieving cached features when the dataset’s
feature count remains unchanged.

• Benchmarking Against Outdated Practices: This study highlights the limitations of
using non-compatible and outdated datasets, like the KDD’99, in current IDS research.
Our results underscore the importance of updated and relevant datasets for developing
more accurate and efficient IDS solutions tailored to modern IoT ecosystems.

In this study, the latest InSDN dataset, published in 2020, is used. The rest of this
paper is organized as follows: Section 2 reviews the related research on enhancing feature
selection. Section 3 provides an overview of the proposed method, the dataset used, and
the four stages for enhancing feature selection. Section 4 presents the experimental results
and discussion, followed by Section 5, which discusses future work and challenges. Finally,
Section 6 concludes this paper.

2. Related Work

An IDS plays a critical role in safeguarding networks by identifying and classifying
malicious activities. ML techniques have emerged as powerful tools for enhancing the
capabilities of IDSs, particularly in the dynamic and heterogeneous environments pre-
sented by the IoT. This review explores the application of supervised and unsupervised
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learning algorithms in ML-based IDSs, with a focus on feature selection techniques to
optimize performance.

A. Detection System based on Machine Learning

An IDS utilizes one of three detection methods to identify malicious activities. Firstly,
signature-based detection compares possible attack signatures with stored ones from
previous attacks [8]. While effective with a low false positive rate, it struggles against zero-
day attacks where the signature is absent. Secondly, anomaly detection identifies abnormal
behavior that deviates from regular baseline operations [9]. This method outperforms
signature-based detection in detecting zero-day attacks due to the uniqueness of operational
baselines for individual networks. However, it often suffers from a high rate of false
positive alarms due to legitimate network behaviors being flagged as anomalies. Thirdly,
hybrid detection combines signature-based and anomaly techniques to alleviate their
weaknesses [10]. To address zero-day attacks and high false positive problems, multiple
algorithms must concurrently process events to determine anomality while simultaneously
matching signatures to previously recorded attacks.

Machine learning methods in IDSs fall into two categories based on the training
method. Supervised learning algorithms, such as Logistic Regression, Gaussian Naive
Bayes, Support Vector Machines (SVMs), and Random Forest, are trained on labeled
data [11,12]. Unsupervised learning algorithms, including K-Means Clustering and Single
Linkage Clustering, do not rely on labeled data and can autonomously classify traffic
patterns [13].

B. Feature selection methods for IDS

An essential aspect of ML-based IDSs is their ability to process large amounts of
data quickly to detect attacks in real time. However, not all features contribute equally
to the classification process, and some may introduce noise or are highly correlated with
others [14]. Feature selection techniques aim to improve classification performance by se-
lecting only the most significant features, thus enabling ML-based IDSs to make predictions
more efficiently.

Several studies have explored feature selection methods for IDSs, each contributing
unique insights to enhance detection accuracy. Thaseen et al. [15] proposed an intrusion
detection method that combines chi-square feature selection with a Multi-Class Support
Vector Machine (MSVM) to minimize the processing time while maximizing the classifi-
cation accuracy for network attacks. Kumar et al. [16] introduced the gain ratio feature
selection technique, which, when coupled with an updated Naive Bayes classifier, out-
performed existing methods in classification performance. Pham et al. [17] presented an
IDS framework utilizing gain ratio feature selection with an ensemble bagging model,
demonstrating improved classification accuracy and reduced false alarm rates compared
to alternative approaches. Shahbaz et al. [18] investigated a feature selection approach
based on Correlation-Based Feature Selection (CFS) and Symmetrical Uncertainty (SU),
showcasing enhanced classification accuracy relative to conventional methods like CFS,
information gain, and chi-square techniques. Le et al. [19] introduced a hybrid Sequence
Forward Selection (SFS) algorithm coupled with a Decision Tree model, achieving signif-
icantly improved prediction performance and reduced false alarm rates across various
neural network architectures.

Additionally, Taher et al. [20] proposed a wrapper feature selection method with an
Artificial Neural Network (ANN) and Support Vector Machine (SVM), yielding superior
detection rates compared to existing models. Furthermore, Yeshalem et al. [21] introduced
a Bootstrap-Based Homogeneous Ensemble Feature Selection (BHmEFS) method, which se-
lected a subset of relevant features to enhance classification accuracy, while Bostani et al. [22]
devised a hybrid feature selection method combining a Binary Gravitational Search Al-
gorithm (BGSA) with Mutual Information (MI), achieving higher accuracy and detection
rates than standard wrapper-based and filter-based techniques. Finally, Zhang et al. [23]
proposed a two-level network intrusion detection model integrating the ReliefF algorithm
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and borderline Synthetic Minority Oversampling Technique (SMOTE), demonstrating im-
proved detection accuracy, particularly for minority samples. Despite these advancements,
single feature selection’s potential impact on prediction performance remains underex-
plored, prompting the development of the Hybrid Ensemble Feature Selection (HEFS)
approach to retain critical candidate features and enhance prediction performance in NIDS.

C. InSDN Dataset

Many researchers are interested in securing the IoT and wireless networks, and in
this subsection, the focus is on the research that uses the InSDN dataset, and it compares
those results with the results of this study. Numerous published studies rely on datasets
that are either incompatible or outdated. For example, the KDDCup99 dataset, which was
published in 1999, has been used in recent research [24,25]. Additionally, the Nsl-KDD
dataset, published in 2009, has been used in studies such as [4,26–30]. However, using
outdated datasets in an intrusion detection system (IDS) for machine learning may not
accurately reflect the current threat landscape. New types of attacks and vulnerabilities may
have emerged since the dataset was created, making the model less effective in identifying
contemporary threats. Outdated datasets can also introduce disadvantages, such as limited
relevance to current threats, obsolete features, a lack of diversity, mismatch with real-world
scenarios, and reduced model performance, which can lead to a false sense of security.
Therefore, in this section, we discuss several methodologies proposed in recent studies that
utilized the InSDN dataset, which was published in 2020, such as [31–35].

D. Firdaus et al. [34] proposed a DDoS detection method using machine learning
with an Ensemble Algorithm. Their study consisted of two methodologies: clustering
and classification and Ensemble Algorithm clustering and classification. The researchers
utilized Ensemble Algorithm K-means++ and Random Forest to achieve high detection
accuracy and efficiency, obtaining a remarkable accuracy of 100% using 15 features out
of the original dataset’s 84. Conversely, other researchers, such as those in [31,35,36], also
achieved very high accuracies of 99.42%, 99.9961%, and 99.94%, respectively, but they
employed 48 or 56 features. A. Ibrahimy et al. [36] used feature correlation to reduce the
number of features in the InSDN dataset, while V. Hnamte and J. Hussain [35] employed
two 1D convolutional layers to capture important features from the input data. These layers
are connected to a flattened layer, which converts the output of the convolutional layers
into a 1D array. Subsequently, four fully connected dense layers are utilized, activated by
the rectified linear unit (ReLU) activation function.

The researchers in [32,33] achieved an accuracy of 98.98% with 30 features and 98%
with 20 features, respectively. A. Zainudin et al. [32] employed the LightGBM feature
selection technique, which utilized three main modules: pre-block, depth-wiseConv, and
stacked GRU. The depth-wiseConv module utilized a residual connection to enhance
training model performance and address the issue of gradient vanishing. Additionally, a
factorized convolution architecture was utilized to create a lightweight model structure.

3. Material and Methods

The number of features in an intrusion detection system (IDS) significantly influences
its accuracy and performance. A larger feature set can provide a more detailed representa-
tion of the data, potentially leading to the better detection of complex intrusion patterns.
However, it can also introduce noise and irrelevant information, which can confuse the
model, leading to overfitting and reduced generalization capabilities. Conversely, a smaller,
well-curated feature set can result in a more streamlined and interpretable model, reducing
the computational load and enabling the IDS to operate more efficiently, especially for IDSs
in IoT environments and resource limitations.

This paper introduces an improved feature selection methodology aimed at achiev-
ing high accuracy while utilizing a reduced number of features. The focus on a lower
feature count is particularly relevant for wireless networks, which often have resource
constraints. In this section, we present a hybrid feature selection approach designed to
enhance the performance of intrusion detection system (IDS) classification. We demonstrate
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the application of our methodology on the InSDN dataset. Software-defined networking
(SDN) has been developed to reduce network complexity by centralizing the control and
management of the entire network [31]. SDN-based Industrial Internet of Things (IIoT)
networks utilize a centralized controller, which can make them vulnerable to DoS/DDoS
attacks and susceptible to single points of failure [37].

A. Dataset

The dataset used in this research is called the InSDN dataset, which was published
in 2020 by M. Elsayd et al. [31]. The purpose of creating the InSDN dataset was to reduce
its size compared to other IDS datasets. The researchers collected real-world network
traffic from an SDN environment and classified it based on the presence of DDoS attacks.
Unlike NSL-KDD and KDD99, InSDN provides a realistic representation of traffic in an
SDN environment [34].

The dataset consists of a total of 343,889 data records with 84 features. Of these,
127,828 records correspond to ordinary traffic, while 216,061 records correspond to attack
traffic in both OSV and metaspoitable files. InSDN includes various attack scenarios, such
as SYN, TCP, UDP, and ICMP floods, as well as Slowloris attacks. Table 1 presents the
distribution of samples within the InSDN dataset.

Table 1. Distribution of samples in InSDN dataset.

CSV File Class Sample Percentage Total

Normal_data.csv Normal traffic 68,424 20% 68,424

OVS.csv

DoS 52,471

39.76% 136,743

DDoS 48,413

Probe 36,372

BFA 1110

Web_attack 192

Botnet 164

metasploitable-2.csv

DoS 1145

40.34%

138,772

DDoS 73,529

Probe 61,757

BFA 295

Exploitation (R2L) 17

Total 343,889

The InSDN dataset was generated using multiple virtual machines with an SDN
network architecture. The standard Ubuntu system represents regular users, while the Kali
system represents attackers performing various types of attacks on the SDN network [35].

B. Hybrid feature selection approach

In this paper, we present a sophisticated hybrid feature selection approach specifically
devised for the nuanced requirements of IoT environments. The proposed methodology
unfolds across several defined stages:

1. Initial Stage (Data Preprocessing);
2. Second Stage (Dimension Reduction);
3. Feature Selection Stage;
4. Final Stage (Model Evaluation);
5. Caching Mechanism.

Each stage contributes to the overarching goal of selecting the most pertinent features
for use in the IDS. The resulting features are of pivotal importance in machine learning,



Electronics 2024, 13, 1678 7 of 16

directly influencing the model’s learning efficacy and predictive accuracy. Our method-
ological process, depicted in Figure 2, underscores the critical nature of feature selection in
enhancing IDS performance within IoT contexts.
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Incorporating a caching mechanism significantly improves the efficiency of our feature
selection methodology. Throughout our proposed approach, the system meticulously iden-
tifies and caches the most significant features for subsequent iterations. After each iteration,
the system checks the dataset’s feature count. Unchanged counts prompt the retrieval of
previously selected features from the cache, streamlining the process to the final evaluation
stage. Conversely, any change in feature count mandates a fresh execution through all four
stages, commencing with data preprocessing and culminating in model evaluation.

1. Initial Stage (Data Preprocessing)

The data processing stage—which includes data encoding, scaling, normalization,
cleaning, transformation, and formatting—is essential for preparing the raw dataset and
creating a refined dataset where the intrinsic patterns can be more easily and accurately
discerned by the IDS, leading to improved detection accuracy and performance. Data
encoding converts categorical data into a numerical format, which is necessary because
most machine learning algorithms can only interpret numerical values. This ensures that
valuable categorical information, such as protocol types or service names, is retained and
can be used in the detection process. Data scaling and normalization are critical steps
that adjust the range of the feature data. Scaling alters the range of the data to a common
scale without distorting the differences in the ranges of values, while normalization adjusts
the data in such a way that their distribution will have a mean value of 0 and a standard
deviation of 1. These steps are crucial to prevent features with larger scales from dominating
those with smaller scales, thus ensuring that the IDS model treats all features equally.

Data cleaning is the process of detecting and correcting (or removing) corrupt or
inaccurate records from a dataset, which might otherwise lead to incorrect conclusions.
Data transformation involves converting data into a suitable format or structure for analysis,
which could include generating polynomial features or interaction terms if needed. Finally,
data formatting ensures that all data are consistently and correctly formatted, such as
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ensuring data times are in a uniform format, which is fundamental for a time-series analysis
in intrusion detection. One major challenge in IDS is dealing with high-dimensional and
imbalanced data, which increases the cost of machine learning [38]. Well-preprocessed
data lower the chance of overfitting, aid in the model’s learning of pertinent patterns, and
produce predictions that are more reliable and accurate.

2. Second Stage (Dimension Reduction)

The second stage is the dataset resizing stage, which is a crucial step in data prepro-
cessing; there are various methods used for dimensionality reduction, such as Principal
Component Analysis (PCA), to suit different needs. A Linear Discriminant Analysis (LDA)
excels in classification tasks by using label information to maintain class distinctions.
t-Distributed Stochastic Neighbor Embedding (t-SNE) shines in visualizing complex data
but can be computationally demanding and sensitive to hyperparameters. Uniform Mani-
fold Approximation and Projection (UMAP) offers a faster alternative to t-SNE, and it is
suitable for large datasets while preserving the data structure. Autoencoders (AEs), lever-
aging neural networks, are powerful for non-linear transformations but require substantial
data and computational resources. Random Projection provides a speedy, simple approach,
though it may yield less precise results due to its stochastic nature. Finally, Isomap is
effective for unfolding manifolds by maintaining geodesic distances, albeit at a higher
computational cost. The choice among these techniques hinges on the specific dataset and
analytical objectives, as well as balancing factors like visualization clarity, computational
efficiency, and interpretability. In this stage, we use PCA because it performs data resizing
at a faster speed compared with the other methods, while the other methods gave us good
results but took more computational time.

After employing the dimension reduction algorithm in our proposed method, the
preprocessed data will be fed into the feature selection stage. Each line will undergo
feature ranking and pruning after a specific number of iterations. The combination process
may involve selecting the best features based on scoring metrics or aggregating results
from different workers. The outcome of the feature selection stage will be cached, which
offers a time-saving advantage for subsequent runs on similar datasets or during iterative
model development.

3. Feature Selection Stage

The act of choosing a subset of the most pertinent features (input variables or at-
tributes) from the initial collection of features is known as feature selection in machine
learning. Improving the machine learning model’s efficiency, decreasing overfitting, and
improving performance are the goals. Filter methods select features that are independent
of one another and are heavily dependent on the output, while wrapper techniques strive
to maximize some specified criteria with respect to the feature set as part of the selection
process [39].

In our proposed method, we utilize the filter method because we aim to enhance
the speed of our IDS. A higher speed translates to lower power usage, reduced capac-
ity requirements, and a faster computational time. Filter methods are generally faster
compared to wrapper methods. They preprocess the data independently of the learning
algorithm. Common filter methods include mutual information, the chi-squared test, and
correlation-based feature selection. These methods can be highly efficient, particularly
when dealing with high-dimensional data. They employ statistical or correlation-based
techniques to rapidly evaluate the relevance of individual features without the need to
train a machine learning model.

Common metrics for feature selection include mutual information, the chi-squared
test, and correlation coefficients. In the study by the researchers of [40], both filter and
wrapper methods were compared, and it was found that wrapper methods often require
more computing resources but provide higher accuracy. On the other hand, filter methods
require fewer resources but lack optimization capabilities. Filter methods are known
for their ease of implementation and faster execution compared to wrapper and hybrid
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methods. However, wrapper methods outperform filter methods in terms of accuracy, albeit
at the cost of a slower execution [41]. Another study by Zhang et al. [27] also compared
these feature selection methods and found that wrapper methods are closely tied to the
classifier, which uses the performance of the classifier as an objective function to evaluate
the current feature subset. Wrapper methods train a new model for each feature subset,
resulting in a relatively higher computational cost.

The provided rank feature pseudo code outlines a procedure for ranking features
using a combination of a variance threshold method and a Random Forest classifier
(Algorithm 1). The pseudo-code stops short of detailing the application of the Random
Forest classifier; however, in typical usage, the Random Forest would be employed post-
variance threshold application to rank the features according to their importance. This
importance is gleaned from how much the features contribute to the accuracy of the Ran-
dom Forest model. By combining the variance threshold with Random Forest ranking,
the algorithm aims to enhance the feature selection process, potentially improving the
predictive power of the subsequent machine learning models and offering a deeper un-
derstanding of the features’ influence within the dataset. The algorithm commences by
initializing a VarianceThreshold object with a predefined threshold value, set here at 0.1.
This threshold acts as a filter to remove features with low variance under the assumption
that features with a lower variance may contain less information. The variance_selector is
then fitted to the dataset, denoted as X, where it computes the variance for each feature.

Algorithm 1: Rank features using a Random Forest classifier pseudocode.

1. # Step 1: Initialize the VarianceThreshold object with a threshold value
2. threshold_value = 0.1
3. variance_selector = VarianceThreshold(threshold = threshold_value)
4. # Step 2: Fit the selector to data
5. variance_selector.fit(X)
6. # Step 3: Get the indices of the features selected
7. selected_feature_indices = variance_selector.get_support(indices = True)
8. # Step 4: Use the selected features
9. selected_features = X[: selected_feature_indices]

Subsequently, the algorithm retrieves the indices of the features that surpass the
variance threshold by invoking the get_support method with indices=True, which returns
an array of indices. These indices represent the features that have been deemed important
enough to retain based on their variance. In the final step, the algorithm selects the
features from dataset X using the obtained indices, creating a subset of X that only includes
features with significant variance. This subset, denoted as selected_features, can be used
for further processing or directly in the Random Forest classifier for ranking based on
feature importance.

We used filter methods to select features based on their statistical properties. Common
filter methods include the following:

• Correlation: This involves calculating the correlation between features and remove
highly correlated or redundant ones.

• Variance Threshold: This involves removing features with low variance as they often
contain little information.

• Statistical Tests: This involves utilizing statistical tests (e.g., chi-squared test and
ANOVA) to select features that significantly contribute to the classification.

You can use several different methods and approaches to increase the feature selection
process speed. Choosing features can be computationally costly, particularly when working
with big datasets or intricate feature spaces. It is challenging for IoT characteristics to
exploit the features and attributes of IDS to ensure self-protection [4]. The following are
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some methods used in the proposed method (Figure 2) to enhance the speed of the feature
selection process:

• Feature Ranking: In this manner, it might not be necessary to assess every feature in
the dataset; instead, the most promising features should be concentrated on first.

• Pruning: Early in the feature subset evaluation process, any subsets that do not seem
promising should be pruned or removed. This will expedite the feature selection
process and shrink the search space. In the proposed methodology, feature ranking is
performed in each round, while pruning is conducted every n number of iterations.

• Caching: Implementing a caching mechanism can significantly enhance the efficiency
of our feature selection methodology. During our proposed method journey, the
system meticulously identifies and selects the most significant features, which are
then cached for subsequent iterations. The system checks the dataset’s feature count
after each iteration. If there is no change in the number of features, the system will
swiftly retrieve the previously selected features from the cache, skipping unnecessary
steps and advancing directly to the final evaluation stage. Conversely, any alteration
in feature count necessitates a fresh execution through all four stages—beginning with
data preprocessing and culminating in model evaluation.

4. ML Model

It is important to note that while these methods are generally faster, they may not
always yield the best subset of features for a specific problem. When choosing the feature
selection method, factors such as the nature of the data, the complexity of the problem,
the desired trade-off between the speed and model performance, and the specific goals of
the analysis should be considered. Sometimes, a slightly slower method may yield better
results in terms of model accuracy and generalization.

Using Random Forest (RF) or L1 regularization (Lasso) can offer faster feature selection
compared to other techniques. With Random Forest, one can assess feature importance,
which is often faster than running more computationally intensive wrapper methods
like recursive feature elimination with cross-validation (RFECV). Random Forest models
can achieve a high prediction accuracy with a small overhead in terms of computational
resource usage [42]. In our proposed method, we utilize Random Forest as the primary
supervised machine learning model for detecting attacks. Random Forest offers several
advantages that make it well-suited for this task. Notably, it excels in handling both
continuous and categorical data, making it versatile for various types of features commonly
encountered in intrusion detection datasets. Additionally, Random Forest has robust
mechanisms for addressing missing and outlier values, which are common challenges
in real-world data. Furthermore, its ability to parallelize computations enables shorter
training times, contributing to the efficiency of our detection system [43].

L1 regularization (Lasso) is commonly used in linear models to encourage sparsity
in feature selection. It can be relatively fast, especially when combined with optimization
techniques like coordinate descent.

5. Final Stage (Model Evaluation)

By selecting the most relevant features and eliminating irrelevant or redundant ones,
one can enhance the performance of the IDS. This reduces the computational complexity
and improves its ability to accurately detect and classify intrusions. Metrics for evaluating
intrusion detection systems (IDS) are used to assess the performance of IDS solutions
in detecting and preventing network or system intrusions and security breaches. These
metrics help security professionals understand the effectiveness and efficiency of their IDS
solutions. Below are some common IDS evaluation metrics:

• True Positive (TP): This is the number of intrusions or attacks correctly detected using
the IDS.

• True Negative (TN): This is the number of normal or non-malicious network activities
correctly detected using the IDS.
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• False Positive (FP): This is the number of normal activities incorrectly classified as
intrusions or attacks using the IDS. This is also known as a “false alarm”.

• False Negative (FN): This is the number of intrusions or attacks that the IDS failed to
detect or classify as normal. This is also known as a “missed detection”.

• Accuracy: This is the ratio of correctly identified instances (TP + TN) to the total
number of instances. It provides an overall measure of the IDS’s correctness.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

• Precision: Precision is defined as the ratio of true positives (TP) to the total number of
instances classified as positive using the IDS (TP + FP). It measures the ability of the
IDS to avoid false positives.

Precision =
TP

TP + FP
(2)

• Recall (Sensitivity or True Positive Rate): This is the ratio of true positives (TPs) to the
total number of actual positive instances (TP + FN). It measures the IDS’s ability to
identify all positive instances.

Recall =
TP

TP + FN
= RecallPositive (3)

• F1 Score: This is the harmonic mean of precision and recall. It balances the trade-off
between false positives and false negatives [1].

F1 Score = 2 ∗ precision ∗ Recall
precision + Recall

(4)

Figure 3 illustrates the performance of a multi-class classification model across nine
distinct classes, ranging from 0 to 8, as detailed in the confusion matrix. The findings are
as follows:

• Class 0: There are 298 samples correctly classified.
• Class 1: There are 25 samples correctly classified.
• Class 2: There are 14,395 samples correctly classified.
• Class 3: There are 9612 samples correctly classified.
• Class 4: There are 9433 samples correctly classified.
• Class 5: There are 13,493 samples correctly classified.
• Class 6: There are 19,590 samples correctly classified.
• Class 7: There are 0 samples; it appears to be a class with no correct classifications, or

it might be a mislabeled row in the confusion matrix.
• Class 8: There are 20 samples correctly classified.

The confusion matrix is square, indicating that there are nine classes in total. Each
class’s sample count corresponds to the value along the diagonal, which represents the
number of true positive predictions for each class. The matrix also provides data on mis-
classifications; for instance, instances where Class 2 is predicted to be Class 5 (180 instances)
or Class 4 is predicted to be Class 5 (213 instances). However, there is an anomaly with
Class 7, which does not shows any correct classifications, suggesting that there is an error
in the model or the data, or perhaps it is a class without instances.
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4. Experimental Results and Discussion

In this section, we present the outcomes of our extensive investigation into the effec-
tiveness of the proposed methodology. Our experiments involve extracting crucial features
from the InSDN dataset through the suggested stages. We evaluate the performance using
classification matrices, which include metrics such as accuracy, loss, and AUC score.

In our proposed system, we have different stages: the initial stage (data preprocessing),
second stage (dimension reduction), the feature selection stage, and the final stage (model
evaluation). After each stage, we preserved the dataset for size comparison, as illustrated
in Figure 4. The original InSDN dataset consists of 84 features. However, after applying
the dimension reduction algorithm in the second stage, the dataset is reduced to only 18
columns. The ultimate dataset is further refined, retaining the top 11 features. The most
important features are shown in Figure 5.
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The proposed model achieved excellent results with an accuracy of 99.99%, a preci-
sion of 99.99%, a recall of 99.99%, an ROC score of 0.99997, and a computational cost of
0.8599 s when using 11 features. Figure 6 depicts the module’s results with actual versus
predicted values.

Table 2 presents a comparison between our methodology and existing approaches.
Our methodology achieves a remarkably high accuracy of 99.99% with a minimal number
of features, namely 11 of them. Additionally, we achieved a high computational speed
of less than a second, specifically 0.8599 s; this was achieved after the application of
our novel feature selection methodology, which effectively reduced the feature set to the
most informative 11 features from the original 84 features present in the InSDN dataset.
The reduction in feature space is a crucial factor contributing to the notable efficiency of
our intrusion detection system (IDS) in processing and classifying data. This makes our
methodology suitable for wireless networks, particularly in limited resource environments
such as IoT.
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Table 2. Comparison between our method and other research.

Ref Number ML Tech. Accuracy # of Features Time (s)

[31] RF 99.42% 48 226.151
[32] CNN 98.98% 30 0.164
[33] RF 98% 20 20.50
[34] KNN and RF 100% 15 1.5
[37] CNN 90.83% 19 21.0506
[36] KNN 99.9961% 56 18.69
[35] DCNN 99.94% - -

Our paper Hybrid Feature Selection 99.99% 11 0.8599

5. Future Work and Challenges

Our methodology incorporates a caching mechanism to optimize the feature selection
process. After each round, we check the number of columns in the dataset. If the number
of columns remains constant, the methodology retrieves features from the cache, bypassing
intermediary stages and sending them directly to the final stage. However, if there is a
change in the column counts, the proposed approach proceeds through all four stages. It
extracts the most influential features, sends them to the model evaluation stage, and stores
them in the cache for future use.
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In our future work, we aim to enhance our methodology by conducting a compre-
hensive examination of the data within these columns rather than solely relying on the
column count. This adjustment is necessary because there may be cases where the number
of columns remains unchanged, but the content within those columns is entirely replaced.
Additionally, the methodology might encounter a new dataset with a coincidental match-
ing number of columns. Therefore, we plan to assess the data alone to ensure accurate
feature selection.

Our next plan is to further improve the methodology by incorporating lightweight
techniques. We intend to evaluate and test these enhancements on larger datasets to ensure
their effectiveness and scalability. This way, we can address the power limitations of IoT
devices while achieving optimal feature selection performance.

6. Conclusions

This paper introduces an advanced feature selection method to address the need for
efficiency and a reduced dataset size in an IDS. The method combines multiple stages to
optimize secure communication in wireless environments. The main objectives include
improving model performance, reducing overfitting, and enhancing the efficiency and
speed of the machine learning model. The ultimate goal is to achieve high accuracy with a
minimal number of features to make the IDS more compatible with IoT environments.

The proposed methodology is applied to the InSDN dataset, and the experimental
results demonstrate its effectiveness. The methodology successfully achieves the objective
of a high accuracy with a minimal feature set and low computational cost. Notably, the
results show an impressive 99.99% accuracy using only 11 features, with a computational
time of 0.8599 s. These findings highlight the potential of the methodology to advance
secure communication in wireless IoT environments.
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