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Abstract: In the field of video quality assessment for object recognition tasks, accurately predicting
the impact of different quality factors on recognition algorithms remains a significant challenge.
Our study introduces a novel evaluation framework designed to address this gap by focussing on
machine vision rather than human perceptual quality metrics. We used advanced machine learning
models and custom Video Quality Indicators to enhance the predictive accuracy of object recognition
performance under various conditions. Our results indicate a model performance, achieving a mean
square error (MSE) of 672.4 and a correlation coefficient of 0.77, which underscores the effectiveness
of our approach in real-world scenarios. These findings highlight not only the robustness of our
methodology but also its potential applicability in critical areas such as surveillance and telemedicine.

Keywords: video quality assessment; object recognition; TRVs (Target Recognition Videos); machine
vision; random forest regressor; video quality indicators (VQIs); SRC (Source Reference Circuits);
HRC (Hypothetical Reference Circuits); datasets; performance prediction

1. Introduction

The evaluation of video quality varies significantly between applications, highlighting
a crucial divergence in the evaluation criteria. While entertainment videos prioritise viewer
satisfaction, the quality assessment in Target Recognition Videos (TRVs) demands a focus
on operational effectiveness. This is particularly critical in applications such as video
surveillance, telemedicine, and fire safety, where accurate recognition of specific details can
save lives. Existing quality predictors, primarily grounded in subjective evaluations, do not
align with the intricate demands of recognition tasks. These conventional methods overlook
critical aspects such as fluctuating lighting conditions, blurred motion, and obstructions,
which play a pivotal role in applications such as surveillance and Automatic Number-
Plate Recognition (ANPR) [1]. The shortcomings of these predictors in handling such
variables can significantly impede their reliability and effectiveness, highlighting the need
for our method, which is designed to robustly respond to these specific challenges. This
discrepancy between subjective quality evaluations and the actual effectiveness of TRVs
in practical scenarios underscores a significant lack in the present methodology to assess
video quality in these situations [1].

Traditional quality assessment methods, such as Full Reference (FR) and No Reference
(NR) metrics, while effective for conventional videos, fail to account for specific features
crucial to TRVs’ performance. These standard methods frequently ignore essential factors,
such as the visibility of targets under diverse conditions, which are critical for precise recog-
nition. Consequently, there is a pronounced deficiency in research, especially with respect
to the objective assessment of TRVs for both manual and automated recognition tasks.

Despite the advances in video quality assessment, existing methodologies remain
insufficiently tuned to the specific demands of TRVs, particularly in critical applications
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such as surveillance and telemedicine. This misalignment poses significant challenges
in ensuring operational effectiveness and reliability in environments where precision
is paramount.

In the realm of autonomous driving, accurate recognition of objects in diverse driv-
ing environments is crucial for safety and efficiency. ITU-T Study Group 12 has re-
cently launched a work item called ‘P.obj-recog’, which focusses on developing an object-
recognition-rate-estimation model specifically for surveillance video in autonomous vehi-
cles. This model evaluates the effectiveness of object recognition systems by considering
various video and network parameters such as resolution, packet loss, and vehicle speed.
Such advances are vital because they provide a structured approach to improving the relia-
bility of object recognition systems, which are critical for the navigation of complex urban
environments [2,3]. This initiative reflects the growing trend to integrate sophisticated
machine learning algorithms to enhance the perceptual capabilities of automated systems,
ensuring higher safety and operational efficiency in autonomous driving scenarios [4].

To better address these challenges, we propose the following research questions aimed
at exploring and enhancing the methodology for assessing video quality in TRVs:

1. How can video quality assessment be effectively tailored to meet the specific needs of
TRVs in high-stakes environments?

2. What role do advanced machine learning algorithms play in enhancing the feature
detection capabilities necessary for TRVs?

We hypothesise that a method that integrates advanced machine learning algorithms
and enhanced feature detection capabilities will significantly improve the precision and
reliability of video quality assessments in TRVs, outperforming traditional methods in both
objective and practical terms.

To address these gaps, our proposed method integrates advanced machine learning
algorithms with enhanced feature detection capabilities, ensuring that the assessment of
video quality in TRVs is both comprehensive and precise. This integration allows for a
nuanced understanding of video content in varied environmental conditions, significantly
improving the accuracy and reliability of quality assessments in critical recognition tasks.

In this letter paper, we endeavour to bridge the noted gap by presenting an objective
evaluation methodology tailored for TRVs. This initiative is part of our ongoing effort,
as the results presented are based on the methodology detailed in our article [5] for face
recognition and are further elaborated in our article [1], where we transition from ANPR
to object recognition. Our methodology is based on a dataset aimed at object recognition,
addressing diverse real-world challenges, such as occlusion and inadequate lighting. Using
this dataset, we design, develop, and evaluate a system equipped to predict the performance
of machine vision algorithms by analysing the quality of the incoming TRVs. Our ultimate
objective is to validate the possibility of creating precise models capable of forecasting the
efficiency of TRV processing pipelines across a wide array of scenarios.

Our research introduces a notable departure from contemporary studies in our field.
For instance, a pioneering approach by Shi et al. for assessing video quality in impaired
conditions and their contribution to a relevant dataset [6] stand out. Their focus lies in the
realm of public safety, leveraging their success in the NIST challenge, which diverges from
our emphasis on object recognition tasks. Exploring the realm of TRV through the lens of
selective laser melting process identification also highlights the varied applications of TRV,
albeit distinct from our approach [7]. The domain of laparoscopic image quality, advanced
by Khan et al., reflects the growing interest in the evaluation of TRV quality from a medical
perspective [8]. An encrypted image database by Hofbauer et al. provides insight into
image encryption distortions, yet it operates within a different context compared with our
investigations [9].

The deployment of a cascaded deep neural network by Wu et al. to blindly predict im-
age quality marks a significant advancement in the field, despite the utilisation of a different
methodology in the use of TRV for specific tasks compared with our study [10]. Similarly,
the methodologies proposed by Oszust for the blind image quality assessment [11] and
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Mahankali’s application of voxel-wise fMRI models for the evaluation of video quality
without reference [12] demonstrate the breadth of innovative approaches being developed.
These studies, while contributing valuable information, approach the challenge of quality
assessment and TRV utilisation from perspectives different from ours.

Furthermore, our previous work, which offers a comprehensive review of objective
methods to assess video quality in recognition tasks, underscores the ongoing evolution
and the various approaches within this research domain [13]. This landscape of research
illustrates not only the multiplicity of methodologies but also the broad spectrum of
applications, from public safety to medical imaging, underscoring the unique positioning
and contribution of our work within this field.

Finally, it is worth mentioning Larson and Chandler’s work on FR image quality
assessment, which offers insights into distortion measurement and its impact on per-
ceived quality [14]. Similarly, Sheikh, Sabir, and Bovik’s statistical evaluation provides a
foundational understanding of FR image quality assessment algorithms, emphasising the
importance of objective measurement in enhancing image processing techniques [15].

While our methodology aims to enhance video quality assessment for object recogni-
tion tasks by incorporating advanced machine learning and customised VQIs, it is distinct
from existing approaches observed in the literature. For example, Lu et al. have developed
an evaluation framework aimed primarily at enhancing video for human viewers, focussing
on perceptual quality metrics that may not directly correlate with the performance of object
recognition algorithms [16]. On the other hand, the SB-VQA framework uses a stack-based
architecture to evaluate video enhancements through a combination of spatial and temporal
features extracted through transformers [17]. Although innovative, this approach primarily
addresses enhancements from a visual improvement standpoint without a direct focus on
the nuanced requirements of object detection systems in varied operational environments.

Our approach diverges significantly by not only focussing on the perceptual aspects
of video quality, but also predicting how various quality factors affect the accuracy and
reliability of object recognition algorithms in real-world scenarios. This differentiation
highlights the unique positioning of our research within the existing landscape and under-
scores the potential of our methodology to provide more relevant insights for applications
requiring high precision in object recognition, such as surveillance and telemedicine.

Due to the concise nature of this ‘letter paper’, we do not delve more into a detailed
analysis of how our work distinguishes itself in superiority compared with others’ efforts
within the realm of objective video quality assessment for recognition tasks. Instead, we
direct the reader to our extensive surveys found in our papers [1,5,13]. These documents
meticulously explore state-of-the-art methods for objective video quality assessment specif-
ically tailored to recognition tasks, offering a broad perspective on the advancements and
methodologies that underpin our current research. This approach allows us to focus on
presenting our novel contributions without reiterating the extensive background covered
in our previous work.

In conclusion, while existing methodologies provide some insight into video quality
assessment, they do not address the specialised demands of TRVs in high-stakes environ-
ments like surveillance and telemedicine. Traditional video quality assessment methods
often fail to accurately predict the operational effectiveness of TRVs due to their reliance on
metrics designed for general viewing rather than specific recognition tasks. Our research
aims to fill this crucial gap by developing an advanced machine learning algorithm that not
only assesses but also enhances video quality specifically for the nuanced needs of TRVs.
This innovative approach seeks to significantly improve both the accuracy and reliability of
TRVs, ensuring better performance in critical applications.

The structure of this paper is as follows: in Section 2, we present the experimental
framework; Sections 2.1 and 2.2 detail the collection of the corpus and the creation of degra-
dation models, respectively; the experiments performed are explained in Sections 2.3 and 2.4;
our results are shared in Section 3; and the article is summarised in Section 4.
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2. Materials and Methods

This section presents the detailed methodology employed in our study. As depicted in
Figure 1, the flowchart of our general methodology encompasses the essential elements of
our research strategy. Our experimental setup is built upon a foundational dataset, known
as Source Reference Circuits (SRCs, detailed in Section 2.1), along with various visual
impairments, referred to as Hypothetical Reference Circuits (HRCs, detailed in Section 2.2).
Each HRC applies a different kind of visual degradation to an SRC. We then analyse the
altered video sequences using a computer vision library for object recognition (detailed in
Section 2.3), in conjunction with a Video Quality Indicator (VQI, detailed in Section 2.4).

Figure 1. Flowchart illustrating our comprehensive methodology, detailing the interactions among
the Recognition Experiment, the Quality Experiment, and the Objective Video Quality Assessment
Model. This diagram provides an overview of how experimental components contribute to our
overall objective of improving video quality assessment for TRVs.

To provide a visual representation of the intricate processes involved in our experimen-
tal framework, we included a detailed flowchart. This diagram (Figure 2) elucidates the
sequence of steps from the initial video acquisition to the final stages of quality assessment
and analysis. By delineating the interactions among the various components of our study,
namely, the SRCs, the HRCs, the Recognition Experiment, and the Quality Experiment,
it facilitates a deeper understanding of our methodological approach. This visual aid is
crucial to understanding how each element contributes to the overarching objective of
enhancing video quality assessment for object recognition tasks.

To further clarify the experimental procedures and aid in the reproducibility of our
study, in Listing 1, we have provided a pseudocode representation of the workflow used in
our experiments. This pseudocode outlines the sequential steps from video data loading to
distortion application, recognition processing, and final quality assessment. By following
these steps, researchers can replicate our experimental conditions and verify our findings.
The pseudocode is detailed below and serves as a guide to navigate the complex interactions
among the various components of our study.

Listing 1. Pseudocode for Video Quality Assessment Experiment.

1 Pseudocode : Video Quali ty Assessment Experiment
2

3 1 . S t a r t
4 2 . Load video data
5 3 . For each video frame :
6 a . Apply Hypothet ical Reference C i r c u i t s (HRCs) to introduce d i s t o r t i o n s
7 b . For each d i s t o r t e d frame :
8 i . Process frame through Object Recognit ion Tool
9 i i . Record r e c o g n i t i o n r e s u l t s

10 4 . Assess the q u a l i t y of r e c o g n i t i o n f o r each d i s t o r t e d frame
11 a . Compare the r e c o g n i t i o n r e s u l t s with ground t r u t h
12 b . C a lc u la t e q u a l i t y metr ics ( e . g . , accuracy , mean square e r r o r )
13 5 . Aggregate r e s u l t s
14 6 . Analyse the o v e r a l l performance of the r e c o g n i t i o n system under various d i s t o r t i o n s
15 7 . End
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- Object top left Y coord.: 20.0
- ...
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frame distorted by HRC
#2:
32.1, 17.4, 9.8, ..., 23.1

A vector of results for the
frame distorted by HRC
#N:
91.6, 34.6, 55.8, ..., 61.2

Figure 2. Flowchart illustrating the experimental workflow from source video acquisition through
recognition tool processing to objective quality assessment. This visualisation helps to understand
the sequential processing and quality assessment steps involved in the study.

The process presented in Figure 2 can be described using a series of equations. Starting
from an image Si, we use a transformation Hj(Si, l) that generates a new image Pij(l). l
represents the level of specific distortion. In addition, we have the recognition function R()
that returns the percentage of areas detected. The recognition is given by the following:

rij = R(Pij(l)) = R(Hj(Si, l)) (1)
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Finally, we have objective quality indicators Ok() that indicate the level of a specific
distortion k. The objective quality for a specific distortion k and image Pij(l) is given by
the following:

oijk = Ok(Pij(l)) = Ok(Hj(Si, l)) (2)

Our model M is a function that predicts rij by r̂ij as a function of oijk for a specific set of
k. Finding a sufficiently accurate function M, we are able, based on the values oij1, · · · , oijK,
to predict whether lack of detection is caused by lack of objects or by the low quality of
the captured image. Note that the distortion level l is unknown to our function M since, in
reality, we do not know how much motion blur or any other distortion was added.

2.1. Gathering of Existing Source Reference Circuits (SRCs)

This subsection discusses the SRC selection and preparation process for the study.
SRCs consist of various original video sequences selected to establish a comprehensive
database with various characteristics. For the experimental design, a specific subset of
the SRC library was chosen, informed by initial tests, the potential for additional training
rounds, and a validation experiment for the model developed. This selection ensured that
the single experimental cycle, including both the Recognition Experiment (Section 2.3)
and the Quality Experiment (Section 2.4), would not exceed 1 week, considering the
computation time required to process each frame.

The selection process considered the average processing time for each frame in both
experiments to estimate the total number of frames that could be processed within a week.
Based on these considerations, it was feasible to process video sequences from 120 unique
SRC images within the given time frame. These were allocated as 80 for the initial training
phase, 20 for the testing phase, and 20 for validation purposes, each image featuring at
least one identifiable object. This method facilitated a practical and efficient experimental
setup, striking a balance between comprehensive testing and the limitations of processing
time and resource availability. The total count of HRCs, including the original SRC, is 65.
Further details on the SRC collection and the specific selections for the experiment are
provided in subsequent sections (Sections 2.1.1 and 2.1.2).

2.1.1. The Object Recognition Set

In this study, we have integrated two primary source datasets for Source Reference
Sequences (SRCs) (Si): the nuScenes mini-database [18], available at http://www.nuscenes.
org/, accessed on 22 April 2024, and a selection from the KITTI dataset [19], which can be
found at http://www.cvlibs.net/datasets/kitti/, accessed on 22 April 2024.

The nuScenes dataset, contributed by Aptiv Autonomous Mobility, offers a resolution
of 1600 × 900 (HD+). It encompasses v1.0-mini CAM_FRONT sweep images, including
4 scenes from both Boston and Singapore, totalling 1938 frames. Aptiv aims to advance
public research on computer vision and autonomous driving by releasing a subset of their
comprehensive data. The dataset is a large-scale public resource that includes 1000 driving
scenes selected from Boston and Singapore, cities known for their dense traffic and chal-
lenging driving conditions. These scenes, each 20 s long, have been chosen to demonstrate a
variety of driving manoeuvres, traffic situations, and unexpected behaviours, encouraging
the development of safe driving technologies in complex urban settings.

As shown in Figure 3, the dataset includes statistics for the selected frames. The data
collection effort spans multiple continents, facilitating the examination of computer vision
algorithms’ generalisability across different environments.

http://www.nuscenes.org/
http://www.nuscenes.org/
http://www.cvlibs.net/datasets/kitti/
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Figure 3. Statistical analysis of selected video frames from the nuScenes dataset, showcasing the
diversity of scenes captured across urban settings in Boston and Singapore. This chart highlights the
object type, critical for evaluating our video quality assessment methodology.

Aptiv annotates 23 object classes with accurate 3D bounding boxes across the dataset,
adding object-level attributes such as visibility, activity, and pose. Following this overview,
Figure 4 provides a visual example of a frame from the nuScenes dataset, highlighting the
rich detail of the dataset and the variety of scenarios it encompasses.

Figure 4. Example frame from the nuScenes dataset depicting typical urban traffic conditions used for
object detection testing. The frame demonstrates the application of our quality assessment techniques
under realistic conditions.

This extensive dataset supports the goal of developing methods that ensure safety
and efficiency in urban driving, highlighting the importance of diverse and comprehensive
data in the advancement of autonomous driving technologies.

The KITTI dataset, originating from the Karlsruhe Institute of Technology and the
Toyota Technological Institute at Chicago, offers a resolution of 1242 × 375. It is divided into
three categories: ‘City’, ‘Residential’, and ‘Road’, totalling 7480 frames. This dataset uses
the Annie-WAY autonomous driving platform to create challenging real-world computer
vision benchmarks. The benchmarks span tasks like stereo, optical flow, visual odometer,
3D object detection, and 3D tracking, with ground truth provided by a Velodyne laser
scanner and GPS localisation system.

In Figure 5, we present statistics for the selected frames from the KITTI dataset. This
provides a glimpse into the depth of the dataset and the diversity of the scenarios it covers.
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Figure 5. Statistical analysis of selected video frames from the KITTI dataset, showcasing the diversity
of scenes captured across urban settings in Karlsruhe. This chart highlights the object type, critical for
evaluating our video quality assessment methodology.

The KITTI dataset captures data by driving around Karlsruhe, in rural areas, and on
highways, featuring scenarios with up to 15 cars and 30 pedestrians per image, thus offer-
ing a rich testing ground for computer vision algorithms in various real-world conditions.
Figure 6 shows an example frame from the KITTI Vision Benchmark Suite, further illus-
trating the practical application of the dataset in the testing and improvement of computer
vision systems.

Figure 6. Example frame from the KITTI Vision Benchmark Suite dataset depicting typical urban
traffic conditions used for object detection testing. The frame demonstrates the application of our
quality assessment techniques under realistic conditions.

By utilising these source datasets, nuScenes and KITTI, we establish a solid foun-
dation for our object recognition set, providing a broad platform for the evaluation and
enhancement of our computer vision models in diverse driving conditions and scenarios.

2.1.2. The Object Recognition Subset

The set of selected SRC frames for object recognition is divided into a training set, a test
set, and a validation set, in a ratio of 80 vs. 20 vs. 20, respectively. When selecting images
for SRC sets, filtering was applied to ensure that only images with detection covering more
than 10% of the video frame are included in the SRC sets.

Figure 7 presents a montage of selected SRC frames. For the full list, please refer to
Appendix A.
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Figure 7. Montage of selected SRC frames used in our object recognition experiments, illustrating the
diversity of urban and rural scenes under various lighting and weather conditions. Each frame tests
the robustness and adaptability of our video quality assessment and object recognition algorithms,
visually representing the dataset’s complexity and environmental variability.
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2.2. Summary of Hypothetical Reference Circuits (HRC)

Given the concise nature of this ‘letter paper’, we forgo an in-depth analysis of the
development of Hypothetical Reference Circuits (HRCs). Instead, we offer an overview
of the HRCs (H(·, l)) used in our study, directing the reader to our previous work for
comprehensive methodologies and insights. The HRCs outlined for this investigation
include a spectrum of impairments encountered in the digital image acquisition process,
crucial for video quality assessment in recognition tasks.

• Adjustments in photographic lighting to tackle the challenges of under-/over-exposure;
• Considerations of camera optics, specifically the effects of defocus (blur);
• Issues related to electronic sensors, such as Gaussian noise and motion blur;
• Processing artefacts, with a focus on JPEG compression.

For the application of HRCs, we selected FFmpeg [20] and ImageMagick [21] because
of their comprehensive set of filters. FFmpeg was used to introduce under-/over-exposure
and Gaussian noise distortions, while ImageMagick was used to add defocus effects,
simulate motion blur, and implement JPEG compression.

The computational performance of these tools was evaluated under maximum load
(all filters active), achieving a throughput of 439 frames per minute on a standard laptop
equipped with an Intel i5 3317U processor and 16 GB of RAM. The equipment was sourced
in Kraków, Poland.

The thresholds for various distortions applied through these tools are summarised
in the following description. Typically, thresholds are set to identify the point at which
recognition fails completely, usually the next-to-last step in our test sequence. For added
safety, an additional step is included beyond this point.

• Under-Exposure: Applied via FFmpeg, parameter range from 0 to −0.6;
• Over-Exposure: Applied via FFmpeg, parameter range from 0 to 0.6;
• Defocus (Blur): Applied via ImageMagick, parameter range from 0 to 6;
• Gaussian Noise: Applied via FFmpeg, parameter range from 0 to 48;
• Motion Blur: Applied via ImageMagick, parameter range from 0 to 18
• JPEG Compression: Applied via ImageMagick, parameter range from 0 to 100.

For detailed methodologies on these HRCs and their implications for video quality
assessment, consult our publications: Refs. [1,5]. These documents elaborate on the criteria
for selecting HRCs, the decision to use specific camera models (including digital single-
lens reflex cameras and basic pinhole camera models), and how these decisions affect the
applicability of quality assessment methods in recognition scenarios.

2.3. Recognition Experiment

Object detection in our study is performed using the YOLOv3 neural network, which
is specifically trained on the comprehensive COCO database. This choice is crucial because
it ensures robust object detection across a wide range of object classes pertinent to our
study, particularly persons, cars, stop signs, traffic lights, trucks, and bicycles. The YOLOv3
model is renowned for its effectiveness in detecting objects with high precision in various
lighting and occlusion conditions, making it highly suitable for evaluating video quality in
TRVs. For a more in-depth understanding, we refer our readers to Redmon and Farhadi’s
work on YOLOv3 [22].

The network not only detects, but also accurately marks objects with bounding boxes,
providing specificity scores that are critical for subsequent quality assessments. Object
detection results are stored in a structured JSON format, enabling streamlined processing
and analysis. An example of the KITTI database is provided in Listing 2 to illustrate the
structure of the data and the level of detail captured by the detection algorithm.



Electronics 2024, 13, 1750 11 of 21

Listing 2. Example of the recognition output file.

1 { " 000001 . png " :
2 { " car " :
3 [ −5 , 186 , 44 , 70 , 0 .6787664890289307]
4 } ,
5 " 000000 . png " :
6 { " car " :
7 [ 6 6 9 , 171 , 56 , 26 , 0 .8234646916389465]
8 } ,
9 " 000002 . png " :

10 { " car " :
11 [ 5 5 8 , 186 , 50 , 17 , 0 .5980743765830994] ,
12 " motorbike " :
13 [ 2 7 5 , 228 , 82 , 54 , 0 .528740406036377]
14 }
15 }

Since we know the bounder boxes for the source image and bounded boxes generated
by YOLO, we are able to calculate rij given by Equation (1). The rij percentage of areas
marked by the same object in the source dataset and by YOLO is compared with the
percentage of the entire recognised part of the image.

Our approach leverages the OpenCV YOLO Object Detection tutorial (https://www.
pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/) as the basis for
the code that extracts YOLO information, ensuring that our implementation adheres to
established and effective practices. The robustness of YOLOv3, combined with its training
in the diverse COCO dataset, addresses potential biases related to the distribution of
training data. This is critical because it minimises the impact of data distribution shifts that
could otherwise affect the performance evaluation in our quality assessment model. The
tests indicate that one analyses 500 images in about 100 s. The KITTI database with object
annotation contains 7480 images, which means that, for a single HRC, we can calculate
the results for all KITTI frames in about 25 min, which is a reasonable time to obtain a
significant amount of data points needed for modelling.

In Figures 8–15, the influence of different distortions on the number of objects detected
for the selected values is shown.
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Figure 8. Object recognition performance with varying motion blur intensities, quantified in
σ/degrees. This graph displays how motion blur impacts the accuracy of detecting various objects,
providing insights into the algorithm’s effectiveness in handling such environmental distortions.

https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
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Figure 9. Object recognition performance with different levels of Gaussian noise, quantified in
σ/pixels. This graph displays how Gaussian noise impacts the accuracy of detecting various objects,
providing insights into the algorithm’s effectiveness in handling such environmental distortions.
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Figure 10. Object recognition performance with varying degrees of defocus, quantified in σ/pixels.
This graph displays how defocus impacts the accuracy of detecting various objects, providing insights
into the algorithm’s effectiveness in handling such environmental distortions.



Electronics 2024, 13, 1750 13 of 21

●

●

●

●

●

●
● ●

●
●

●

●

●
100

200

300

400

500

−0.4 0.0 0.4 0.8
Exposure

# 
D

et
ec

te
d 

O
bj

ec
ts

Figure 11. Object recognition performance under different exposure levels, measured in equivalent
units (eq units). This graph displays how exposure impacts the accuracy of detecting various objects,
providing insights into the algorithm’s effectiveness in handling such environmental distortions.
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Figure 12. Object recognition performance under various levels of JPEG compression, mea-
sured in quality units. This graph displays how JPEG compression impacts the accuracy of de-
tecting various objects, providing insights into the algorithm’s effectiveness in handling such
environmental distortions.
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Figure 13. Object recognition performance under combined Gaussian noise and exposure, measured
in σ/pixels and equivalent units, respectively. This graph displays how these conditions impact
the accuracy of detecting various objects, providing insights into the algorithm’s effectiveness in
handling such environmental distortions.
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Figure 14. Object recognition performance under combined Gaussian noise and motion blur, mea-
sured in σ/pixels and σ/degrees, respectively. This graph displays how these conditions impact
the accuracy of detecting various objects, providing insights into the algorithm’s effectiveness in
handling such environmental distortions.
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Figure 15. Object recognition performance under combined exposure levels and motion blur, mea-
sured in equivalent units and σ/degrees, respectively. This graph displays how these conditions
impact the accuracy of detecting various objects, providing insights into the algorithm’s effectiveness
in handling such environmental distortions.

2.4. Quality Experiment

In alignment with the scope of this ‘letter paper’, detailed discussions on the Quality
Experiment are not included. However, to furnish a comprehensive understanding, we
summarise the core aspects and specifically delineate the Video Quality Indicators (VQIs)
utilised. For exhaustive methodologies, detailed analyses, and the rationale behind these
experiments, we direct our readers to our extensive publications: Refs. [1,5].

The Quality Experiment aims to evaluate the effectiveness and computational effi-
ciency of various VQIs, identifying those best suited for real-time video quality assessment
in automated systems, including but not limited to object recognition. This experiment
involves the following:

• Breaking down each video into individual frames;
• Applying a comprehensive set of 19 VQIs to each frame;
• Documentation of execution times for each VQI;
• Aggregation of the results into a comprehensive metrics vector.

The Quality Experiment’s primary focus is on individual video frames, with an excep-
tion for the Temporal Activity (TA) Video Quality Indicator (VQI), which is excluded due
to its unique characteristics in assessing temporal aspects of video sequences.

For the sake of clarity, the VQIs are categorised into ‘All Metrics’ and ‘Our (AGH)
Metrics’. ‘All Metrics’ encompasses a broad spectrum of VQIs developed by various
research groups worldwide, providing a wide range of perspectives on video quality
assessment. Conversely, ‘Our (AGH) Metrics’ refers specifically to the VQIs developed by
the AGH University of Krakow team, focused on particular aspects of video quality that
are pertinent to our research interests and projects.

Below is a list of the VQIs employed, categorised by their source:
Our (AGH) Metrics [1]:

• AGH VQI: Blockiness;
• AGH VQI: Blur;
• AGH VQI: Contrast;
• AGH VQI: Exposure;
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• AGH VQI: Noise;
• AGH VQI: Spatial Activity;
• AGH VQI: Temporal Activity.

All Metrics:

• LIVE VQI: BIQI [23];
• LIVE VQI: BRISQUE [24];
• LIVE VQI: NIQE [25];
• LIVE VQI: OG-IQA [26];
• LIVE VQI: FFRIQUEE [27];
• LIVE VQI: IL-NIQE [28];
• UMIACS VQI: CORNIA [29];
• BUPT VQI: HOSA [30].

The distinction between ‘Our (AGH) Metrics’ and ‘All Metrics’ allows for a nuanced
analysis of video quality, catering to both general assessment frameworks and specific
scenarios relevant to our research focus. This bifurcation enables the targeted exploration
of quality aspects that are crucial for the performance of specialised systems, such as ANPR,
under various conditions.

For a thorough understanding of the methodology behind the selection and applica-
tion of these VQIs, including the computational frameworks and the execution strategy
employed, we encourage our readers to refer to the cited papers. These publications
provide detailed insights into the experimental design, execution nuances, and analytical
perspectives that underpin our approach to advance video quality assessment.

3. Results

The modelling using a random forest regressor proved to be the most effective.
Using all metrics, we have obtained MSE: 672.4 and correlation: 0.77 for the test set

(not used in the training process or in the validation of initial models). The scatter plot
obtained for the predicted and actual values for the test set is shown in Figure 16.
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Figure 16. Scatter plot showing the correlation between the predicted and actual percentages of
detected areas, using all metrics. Each point represents one observation, with semi-transparency used
to indicate overlapping data points and to highlight the distribution density.

Using only our metrics, we have obtained MSE: 722.1 and correlation: 0.75. The scatter
plot obtained for the predicted and actual values for the test set is shown in Figure 17.

The two models perform similarly, with the slightly worst result for only AGH metrics,
which is expected. We can see (by the darker region) that the models work reasonably well
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by classifying the most 100 to 100 groups and the most 0 to 0. It is probably the reason why
models such as the neural network did not work so well.
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Figure 17. Scatter plot showing the correlation between the predicted and actual percentages of
detected areas, using only our AGH metrics. Points are semi-transparent to show the overlap and
distribution density of the data points effectively.

4. Conclusions

Our study represents a significant advancement in the objective assessment of video
quality for TRVs, specifically designed to address the intricacies of their operational de-
mands. The implementation of a comprehensive evaluation system, rooted in a meticu-
lously curated object recognition dataset, coupled with a random forest regression model,
has led to notable results. We achieved a mean square error of 672.4 and a correlation of
0.77 in all metrics, figures that not only substantiate the predictive competence of the model,
but also set a new benchmark for assessing TRV processing efficiency.

These statistical results are of considerable significance. Our findings lay the ground-
work for the enhancement of systems that rely on precise object recognition, such as video
surveillance and telemedicine, potentially revolutionising their operational effectiveness.

Recognising the limitations inherent in our study, particularly the model’s dependence
on a specific dataset and image distortion types, we foresee an extensive avenue of explo-
ration in enhancing generalisability. Our future work will focus on enlarging the scope
of our dataset and integrating various machine learning algorithms, moving beyond the
confines of the random forest regression model. The anticipated expansion not only will
refine our predictive framework but also is expected to bolster the model’s resilience and
its broader applicability to varied real-world scenarios.

The challenge of computational resource constraints and the limited diversity of SRCs
tested have been acknowledged as areas that need attention. To this end, our subsequent
efforts will be channelled towards amassing a broader array of datasets, engaging with a
wider range of recognition systems, and boosting the computational efficacy of our model
training and evaluation phases. These steps will contribute to a more comprehensive and
thorough validation of our evaluation system.

In addition, we are poised to explore the impact of additional environmental factors
on recognition performance. Future iterations of our work will discuss how varying digi-
tal camera settings, noise levels, and lighting conditions affect object detection accuracy.
Preliminary results have shown that these factors are critical to the adaptability of recog-
nition algorithms, signalling a promising trajectory for research aimed at solidifying the
robustness of recognition systems in operationally diverse environments.
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In culmination, our ongoing research trajectory includes plans to collaborate with
industrial and academic partners, with the aim of testing and refining our methodologies
across a spectrum of real-world applications. Such collaborations will not only enhance the
practical relevance of our work but also drive innovation in the domain of object recognition
for TRVs.

Ultimately, this paper has sought to bridge the gap between the current state of video
quality assessment and the emerging needs of advanced recognition systems. We trust that
our methodical approach, underscored by concrete statistical evidence and a defined path
forward, will invigorate future research and development in this rapidly evolving field.
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Appendix A. The Object Recognition Subset Files

Below, please find the list of selected SRC frames for object recognition:

1 KITTI/City /2011 _09_26_drive_0009_sync/image_02/data /0000000149.png
2 KITTI/City /2011 _09_26_drive_0009_sync/image_02/data /0000000297.png
3 KITTI/City /2011 _09_26_drive_0011_sync/image_02/data /0000000208.png
4 KITTI/City /2011 _09_26_drive_0048_sync/image_02/data /0000000005.png
5 KITTI/City /2011 _09_26_drive_0048_sync/image_02/data /0000000011.png
6 KITTI/City /2011 _09_26_drive_0051_sync/image_02/data /0000000255.png
7 KITTI/City /2011 _09_26_drive_0059_sync/image_02/data /0000000187.png
8 KITTI/City /2011 _09_26_drive_0091_sync/image_02/data /0000000303.png
9 KITTI/City /2011 _09_26_drive_0093_sync/image_02/data /0000000144.png

10 KITTI/City /2011 _09_26_drive_0093_sync/image_02/data /0000000289.png
11 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0019_sync/image_02/data /0000000467.png
12 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0022_sync/image_02/data /0000000070.png
13 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0022_sync/image_02/data /0000000131.png
14 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0022_sync/image_02/data /0000000170.png
15 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0022_sync/image_02/data /0000000242.png
16 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0022_sync/image_02/data /0000000401.png
17 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0022_sync/image_02/data /0000000422.png
18 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0022_sync/image_02/data /0000000512.png
19 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0022_sync/image_02/data /0000000533.png
20 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0023_sync/image_02/data /0000000031.png
21 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0023_sync/image_02/data /0000000178.png
22 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0023_sync/image_02/data /0000000205.png
23 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0023_sync/image_02/data /0000000219.png
24 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0023_sync/image_02/data /0000000237.png
25 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0023_sync/image_02/data /0000000248.png
26 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0023_sync/image_02/data /0000000272.png
27 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0023_sync/image_02/data /0000000305.png
28 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0023_sync/image_02/data /0000000371.png
29 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0035_sync/image_02/data /0000000059.png
30 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0035_sync/image_02/data /0000000066.png
31 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0035_sync/image_02/data /0000000115.png
32 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0036_sync/image_02/data /0000000056.png
33 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0036_sync/image_02/data /0000000147.png
34 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0036_sync/image_02/data /0000000150.png
35 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0036_sync/image_02/data /0000000254.png
36 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0036_sync/image_02/data /0000000268.png
37 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0036_sync/image_02/data /0000000790.png
38 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0039_sync/image_02/data /0000000106.png
39 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0039_sync/image_02/data /0000000158.png
40 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0039_sync/image_02/data /0000000175.png
41 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0039_sync/image_02/data /0000000198.png
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42 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0039_sync/image_02/data /0000000211.png
43 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0046_sync/image_02/data /0000000062.png
44 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0046_sync/image_02/data /0000000063.png
45 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0061_sync/image_02/data /0000000123.png
46 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0061_sync/image_02/data /0000000405.png
47 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0064_sync/image_02/data /0000000041.png
48 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0064_sync/image_02/data /0000000053.png
49 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0064_sync/image_02/data /0000000108.png
50 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0064_sync/image_02/data /0000000190.png
51 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0064_sync/image_02/data /0000000191.png
52 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0064_sync/image_02/data /0000000344.png
53 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0086_sync/image_02/data /0000000566.png
54 KITTI/ R e s i d e n t i a l /2011 _09_26_drive_0087_sync/image_02/data /0000000039.png
55 KITTI/Road/2011 _09_26_drive_0028_sync/image_02/data /0000000075.png
56 KITTI/Road/2011 _09_26_drive_0029_sync/image_02/data /0000000216.png
57 KITTI/Road/2011 _09_26_drive_0052_sync/image_02/data /0000000022.png
58 KITTI/Road/2011 _09_26_drive_0052_sync/image_02/data /0000000026.png
59 KITTI/Road/2011 _09_26_drive_0052_sync/image_02/data /0000000052.png
60 KITTI/Road/2011 _09_26_drive_0052_sync/image_02/data /0000000073.png
61 nuScenes/samples/CAM_FRONT/n008 −2018−08−01−15−16−36−0400__CAM_FRONT__1533151606012404 . jpg
62 nuScenes/samples/CAM_FRONT/n008 −2018−08−01−15−16−36−0400__CAM_FRONT__1533151610412404 . jpg
63 nuScenes/samples/CAM_FRONT/n008 −2018−08−01−15−16−36−0400__CAM_FRONT__1533151611412404 . jpg
64 nuScenes/samples/CAM_FRONT/n008 −2018−08−01−15−16−36−0400__CAM_FRONT__1533151611862404 . jpg
65 nuScenes/samples/CAM_FRONT/n008 −2018−08−01−15−16−36−0400__CAM_FRONT__1533151612362404 . jpg
66 nuScenes/samples/CAM_FRONT/n008 −2018−08−01−15−16−36−0400__CAM_FRONT__1533151621012404 . jpg
67 nuScenes/samples/CAM_FRONT/n008 −2018−08−01−15−16−36−0400__CAM_FRONT__1533151621912404 . jpg
68 nuScenes/samples/CAM_FRONT/n008 −2018−08−01−15−16−36−0400__CAM_FRONT__1533151622412404 . jpg
69 nuScenes/samples/CAM_FRONT/n008 −2018−08−27−11−48−51−0400__CAM_FRONT__1535385093162404 . jpg
70 nuScenes/samples/CAM_FRONT/n008 −2018−08−27−11−48−51−0400__CAM_FRONT__1535385096862404 . jpg
71 nuScenes/samples/CAM_FRONT/n008 −2018−08−27−11−48−51−0400__CAM_FRONT__1535385097362404 . jpg
72 nuScenes/samples/CAM_FRONT/n008 −2018−08−27−11−48−51−0400__CAM_FRONT__1535385107412404 . jpg
73 nuScenes/samples/CAM_FRONT/n008 −2018−08−28−16−43−51−0400__CAM_FRONT__1535489301512404 . jpg
74 nuScenes/samples/CAM_FRONT/n008 −2018−08−28−16−43−51−0400__CAM_FRONT__1535489302512404 . jpg
75 nuScenes/samples/CAM_FRONT/n008 −2018−08−28−16−43−51−0400__CAM_FRONT__1535489303912404 . jpg
76 nuScenes/samples/CAM_FRONT/n008 −2018−08−28−16−43−51−0400__CAM_FRONT__1535489305912404 . jpg
77 nuScenes/samples/CAM_FRONT/n008 −2018−08−28−16−43−51−0400__CAM_FRONT__1535489307412404 . jpg
78 nuScenes/samples/CAM_FRONT/n008 −2018−08−28−16−43−51−0400__CAM_FRONT__1535489308362404 . jpg
79 nuScenes/samples/CAM_FRONT/n008 −2018−08−28−16−43−51−0400__CAM_FRONT__1535489308862404 . jpg
80 nuScenes/samples/CAM_FRONT/n008 −2018−08−28−16−43−51−0400__CAM_FRONT__1535489311862404 . jpg
81 nuScenes/samples/CAM_FRONT/n008 −2018−08−30−15−16−55−0400__CAM_FRONT__1535657118612404 . jpg
82 nuScenes/samples/CAM_FRONT/n008 −2018−08−30−15−16−55−0400__CAM_FRONT__1535657119612404 . jpg
83 nuScenes/samples/CAM_FRONT/n008 −2018−08−30−15−16−55−0400__CAM_FRONT__1535657120112404 . jpg
84 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402928112460 . jpg
85 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402929162460 . jpg
86 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402935662460 . jpg
87 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402937162460 . jpg
88 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402937662460 . jpg
89 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402938162460 . jpg
90 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402938612460 . jpg
91 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402939112460 . jpg
92 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402943162460 . jpg
93 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402944662460 . jpg
94 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402945162460 . jpg
95 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402945662460 . jpg
96 nuScenes/samples/CAM_FRONT/n015 −2018−07−24−11−22−45+0800__CAM_FRONT__1532402946262460 . jpg
97 nuScenes/samples/CAM_FRONT/n015 −2018−10−02−10−50−40+0800__CAM_FRONT__1538448763512460 . jpg
98 nuScenes/samples/CAM_FRONT/n015 −2018−10−08−15−36−50+0800__CAM_FRONT__1538984240912467 . jpg
99 nuScenes/samples/CAM_FRONT/n015 −2018−10−08−15−36−50+0800__CAM_FRONT__1538984242412460 . jpg

100 nuScenes/samples/CAM_FRONT/n015 −2018−10−08−15−36−50+0800__CAM_FRONT__1538984242912460 . jpg
101 nuScenes/samples/CAM_FRONT/n015 −2018−10−08−15−36−50+0800__CAM_FRONT__1538984243412460 . jpg
102 nuScenes/samples/CAM_FRONT/n015 −2018−10−08−15−36−50+0800__CAM_FRONT__1538984243912460 . jpg
103 nuScenes/samples/CAM_FRONT/n015 −2018−10−08−15−36−50+0800__CAM_FRONT__1538984244412460 . jpg
104 nuScenes/samples/CAM_FRONT/n015 −2018−10−08−15−36−50+0800__CAM_FRONT__1538984244912460 . jpg
105 nuScenes/samples/CAM_FRONT/n015 −2018−10−08−15−36−50+0800__CAM_FRONT__1538984246912460 . jpg
106 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800847912460 . jpg
107 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800848912460 . jpg
108 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800849412460 . jpg
109 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800849912460 . jpg
110 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800850412460 . jpg
111 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800851412460 . jpg
112 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800851912460 . jpg
113 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800852412460 . jpg
114 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800852912460 . jpg
115 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800853412460 . jpg
116 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800853912460 . jpg
117 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800854912460 . jpg
118 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800855412460 . jpg
119 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800989412460 . jpg
120 nuScenes/samples/CAM_FRONT/n015 −2018−11−21−19−38−26+0800__CAM_FRONT__1542800991912460 . jpg
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