
Citation: Yang, S.; Guo, J.; Rui, X.

Formal Analysis and Detection for

ROS2 Communication Security

Vulnerability. Electronics 2024, 13,

1762. https://doi.org/10.3390/

electronics13091762

Academic Editors: Chih-Chieh Chang,

Nai-Wei Lo and Jheng-Jia Huang

Received: 30 March 2024

Revised: 29 April 2024

Accepted: 30 April 2024

Published: 2 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Formal Analysis and Detection for ROS2 Communication
Security Vulnerability
Shuo Yang 1 , Jian Guo 2,3,* and Xue Rui 3

1 MoE Engineering Research Center for Software/Hardware Co-Design Technology and Application, East
China Normal University, Shanghai 200062, China; 51215902140@stu.ecnu.edu.cn

2 National Trusted Embedded Software Engineering Technology Research Center, East China Normal
University, Shanghai 200062, China

3 School of Information Science and Technology, Xinjiang Teacher’s College, Urumgi 830043, China
* Correspondence: jguo@sei.ecnu.edu.cn

Abstract: Robotic systems have been widely used in various industries, so the security of commu-
nication between robots and their components has become an issue that needs to be focused on.
As a framework for developing robotic systems, the security of ROS2 (Robot Operating System
2) can directly affect the security of the upper-level robotic systems. Therefore, it is a worthwhile
research topic to detect and analyze the security of ROS2. In this study, we adopted a formal ap-
proach to analyze the security of the communication mechanism of ROS2. First, we used a state
transition system to model the potential vulnerabilities of ROS2 based on the ROS2 communication
mechanism and the basic process of penetration testing. Secondly, we introduced a CIA model
based on the established vulnerability model and used linear temporal logic to define its security
properties. Then, we designed and implemented a vulnerability detection tool for ROS2 applications
based on the vulnerability model and security properties. Finally, we experimentally tested some
ROS2-based applications, and the results show that ROS2 has vulnerabilities without additional
protection safeguards.

Keywords: robotic system; ROS2; communication mechanisms; security and safety analysis; formal
method

1. Introduction

Robotic systems, as a representative of advanced automation technology, have been
widely used in various industries, including but not limited to home service [1–3], health-
care [4–6], public safety [7,8], and many other fields. The Top 5 Robot Trends 2021 [9],
published by the International Federation of Robotics, shows that the annual installations
of industrial robots more than tripled between 2010 and 2019, and the global sales of
professional service robots increased by 32% to $11.2 billion in 2018–2019. These figures
fully demonstrate the huge potential of the robotics market. As robotic systems become
more and more intelligent and autonomous, the interaction and communication between
system nodes and between the system and the external world are rapidly increasing. How
to test, analyze, and enhance the security of robotic systems have become critical issues as
there may be a large amount of confidential or private data in the communication network,
and any failure in this network may also lead to data leakage or system failure [10–12].

In the Robot Operating System (ROS) [13], a widely used framework for robotics
application development, communication among various components, known as nodes, is
facilitated through a publish–subscribe messaging system. Nodes can publish messages
to specific topics, and other nodes can subscribe to those topics to receive the messages.
This communication mechanism is powerful for building complex robotic systems but
initially lacked robust security features, leaving it susceptible to various vulnerabilities and
attacks [14].

Electronics 2024, 13, 1762. https://doi.org/10.3390/electronics13091762 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091762
https://doi.org/10.3390/electronics13091762
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-8739-1466
https://doi.org/10.3390/electronics13091762
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091762?type=check_update&version=2

Electronics 2024, 13, 1762 2 of 22

Similar to ROS, ROS2 does not have a unified standard for security measurement, so
we analyzed its security using the CIA model, which is common in information security.
In addition, we formally modeled the communication security vulnerabilities of ROS2,
designed and developed a vulnerability scanning tool for ROS2 based on the model we saw,
and finally tested and analyzed the security of specific ROS2 applications with this tool.

The main work of this article is as follows:

• For the different communication mechanisms of ROS2, we formally modeled and
analyzed the potential vulnerabilities in it and, at the same time, formally expressed
the CIA properties as the security properties;

• Based on the established vulnerability model and security properties, we designed
and developed an ROS2 vulnerability detection tool. The tool detects vulnerabilities
in the ROS2 system by means of a reachability analysis and analyzes which properties
in the ROS2 CIA are damaged by the detected vulnerabilities.

The rest of the article is organized as follows. In Section 2, we list some of the related
work. In Section 3, we present the possible communication security vulnerabilities in
the different communication mechanisms of ROS2. In Section 4, we formally model and
analyze the proposed communication security vulnerability model and the CIA properties
that ROS2 needs to satisfy. In Section 5, we present the design and implementation of
ROS2Tester, a ROS2 vulnerability detection tool. In Section 6, we discuss the implemen-
tation environment that we built for ROS2 security testing and tested using ROS2Tester.
In Section 7, the work of this article is summarized, and future research directions are pre-
sented.

2. Related Work

The Robot Operating System (ROS), as a widely used framework for robot application
development, was not designed initially with adequate consideration of its security, making
ROS-based robot systems also vulnerable to security attacks, such as information theft,
tampering, and denial-of-service attacks [14]. These security issues pose potential threats
and risks to both the robot itself and the environment in which the robot is applied, so it
becomes critical to protect the security of the ROS.

At the early stage of ROS development, most of researchers’ studies on its communica-
tion security were focused on a specific system rather than on the ROS itself, and the objects
of research were rather fragmented and specific, such as rescue robots [15,16], household
robots [17,18], telemedicine robots [19,20], and drones [21]. Risk analyses also focused on
remote communication and control security, such as efficient remote authentication [22],
telemedicine protocols [23], etc. These studies reflect the lack of a unified underlying
framework for robots, and the research on robot security has not focused on the underlying
architecture of ROS/ROS2.

Of course, in addition to the security of the ROS itself, the security of the “computer”
running the robotic system is equally important. In the official community, researchers have
isolated a number of possible attackers from a network and authentication perspective [24].
Benjamin Breiling secured an ROS on a peer-to-peer basis through the direct interaction
between publishers and subscribers, thus strengthening the authenticity and integrity of
the communication at the application layer [25].

With the gradual maturity of ROS development, more and more researchers have
begun to focus on the impact of the communication security of the ROS framework itself
on the security of the entire robot system, and a large number of research results on ROS
security analysis and security solutions have emerged. In order to achieve an in-depth
analysis of ROS communication security, researchers have explored and summarized it
from many different directions. Among them, researchers have tested the communication
security vulnerabilities of ROSs from the perspective of simulated attacks by means of
penetration testing [26], of which the typical testing tools are ROSPenTo [27] and ROS-
ploit [28]. ROSPenTo is the first tool to achieve a vulnerability attack on the communication
of ROS nodes, parameters, topics, etc., and ROSploit adds network scanning and other

Electronics 2024, 13, 1762 3 of 22

expansion functions on the basis of the former to make it more suitable for practical scenar-
ios. Based on the ROSPenTo tool, researchers have successfully verified that ROSs have
security vulnerabilities such as to unauthorized publication, unauthorized data access, and
denial-of-service attacks [29], and they have proposed a security protection solution in the
direction of the application layer for solving such problems. In addition, some researchers
have also conducted research using formal methods for verifying the security and reliability
of the ROS communication [30] using runtime verification to enable the state monitoring of
a running robotic system [31].

Along with the security analysis of ROSs, in order to enhance the security of a ROS, a
number of researchers have proposed a series of schemes, most of which use encryption
and authentication mechanisms. However, these solutions cannot fully protect against
sophisticated security attacks, so other researchers have explored many other directions
for ROS security. ROS_Immunity [32] integrates internal system defenses, external system
authentication, and automated vulnerability detection with Secure–ROS [33] together to
provide a set of defenses for ROSs against malicious attackers.

In 2014, the official ROS community introduced a robotic operating system, ROS2,
in order to improve the system’s real-time performance and security. Compared to the
ROS, the ROS2 middleware framework is based on the DDS (Data Distribution Service)
protocol, which provides better performance and security, and therefore, the latest robot
manufacturers prefer ROS2-based applications. Although ROS2 uses DDS Security and
SROS2 [34] to enhance its security and usability, it is not absolutely secure. The official ROS
community has posted vulnerabilities in the robotic system from hardware to software [35],
and the vulnerabilities regarding the ROS2 level are highly relevant to the work of this
article. On the one hand, the security problems existing in ROS may not be fully solved
by ROS2, and on the other hand, ROS2 itself may also have new security problems. Some
early studies [36,37] have analyzed the security and performance of ROS2 and SROS2 in a
comprehensive way, trying to find out the balance between the two. At the same time, some
other articles [36,38] have shown that SROS2 still has flaws at present through conducting
a security analysis of DDS Security and SROS2.

3. ROS2 Communication Security Vulnerability

In this section, we present potential communication security vulnerabilities based on
the ROS2 communication mechanism. And we explain the principle and attack flow of
these vulnerabilities.

3.1. Security Vulnerability of Topic Communication

In topic communication, nodes can act as publishers or subscribers. Publisher nodes
are responsible for publishing specific types of messages to topics, while subscriber nodes
receive messages by subscribing to the same topics. The communication between publishers
and subscribers of a topic is asynchronous. Publishers can publish messages to multiple
subscribers, and subscribers can receive messages from multiple publishers at the same
time. During the communication process, the publisher nodes serialize the message data
into binary format and send it to the topic through the communication layer of ROS2.
Subscriber nodes obtain the information sent by publishers by receiving and deserializing
the message data.

(1) Stealing basic data of the topic
In addition to the sensitive data contained within the message, the topic itself has
information with some data used for publication or subscription, such as topic name,
topic type, and so on. According to the DDS discovery protocol, any other node in
the same communication domain can access the data information of the topic without
additional protection for ROS2 communication. Therefore, as long as the intruder node
is able to join the communication domain where the target is located, it is able to steal
the information of the target topic. Then, the intruder can steal the data like the ROS2

Electronics 2024, 13, 1762 4 of 22

network structure, and may carry out further intrusion into the ROS2 communication
based on the obtained data.

(2) Unauthorized subscription
In the ROS2 topic communication mechanism, any node can subscribe to any topic
without authorization to obtain the message data. An intruder can use this vulnera-
bility to steal messages from an application, resulting in the disclosure of important
system data or user’s privacy data. Since any node can subscribe to any topic without
authorization, an intruder can create a malicious node to impersonate a subscriber
after obtaining the data related to the target topic so as to obtain the data in the topic.

(3) Unauthorized publication
Similar to unauthorized subscription, nodes in ROS2 are able to publish messages
to any topic without authorization, which may be used by intruders to inject false
data or commands into applications, thus interfering with their normal operation and
causing undesirable consequences. Before carrying out the attack, the intruder first
needs to obtain the relevant parameters of the target topic, such as topic name and
topic type. Then, the intruder creates a malicious node in the domain where the target
topic is located and creates a publisher on that node. Finally, based on the obtained
topic name and topic type, the intruder can forge false messages recognizable to the
target topic, which the target topic will publish to all the nodes subscribed to the topic.

3.2. Security Vulnerability of Service Communication

Service communication is a communication mechanism based on a request–response
model. In service communication, a node can provide a service or invoke a service. The
service server node registers a particular service and defines the data types of the request
and response. When another node invokes the service, the request is sent to the server-side
node, which performs the appropriate computation or operation and sends the result back
to the client node as a response.

(1) Stealing basic service data
In addition to the sensitive data contained within the ROS2 service, the service itself
has some data information, such as the service name, service type, etc., based on
which the client node can send a request to the specified service. According to the
DDS discovery protocol, any other node in the same communication domain can
access the data information of the service without the additional protection of ROS2
communication. Therefore, as long as the intruder node joins the communication
domain where the target is located, it can steal the information of the target service.
Then, the intruder may realize the theft of data, such as of the ROS2 network structure,
and carry out further intrusion into the service communication.

(2) Unauthorized service call
In ROS2 communication, any node in the same communication domain can make calls
to services in the domain and receive responses. Therefore, on the basis of stealing
the basic data of a service, the intruder can also communicate with the target service
based on these data and send malicious requests to the target service, thus successfully
stealing the sensitive ROS2 data or issuing malicious commands to the ROS2 nodes,
which can cause serious consequences.

3.3. Security Vulnerability of Action Communication

Action communication combines the characteristics of topics and services. In action
communication, a node can act as a target node, a feedback node, or a result node of an
action. The target node sends a goal to the action server and waits for the server to execute
the relevant action. During execution, the action server sends periodic feedback to the
feedback node so that the target node can understand the execution progress of the action.
When the action is completed, the result node receives the final result.

(1) Stealing basic action data

Electronics 2024, 13, 1762 5 of 22

In addition to the sensitive data contained within the ROS2 service, the action itself
has some data information, such as the action name, action type, etc., based on which
the client node can send a request to the specified service. According to the DDS
discovery protocol, any other node in the same communication domain can access the
information of the action without the additional protection. Therefore, the intruder
node is able to join the communication domain and steal the data of the target’s actions,
thus realizing the stealing of basic data, and may carry out further intrusion into the
action communication.

(2) Unauthorized action call
In ROS2 communication, any node in the same communication domain can make calls
to actions in the domain and receive responses and feedback. Therefore, the intruder
can also communicate with the target action based on these data and send malicious
requests to the target action based on stealing the basic data of the action, successfully
stealing sensitive ROS2 data or issuing malicious commands to the ROS2 nodes.

4. Modeling of Security Vulnerability

In this section, we formally model seven ROS2 communication security vulnerabilities
using a transition system. Based on the ROS2 communication process and the attack flow
of an intruder node, the model M = {S, Σ, δ, I} can be built based on the following:

• S is the set of all states in the system;
• Σ is the set of actions, representing all the actions in the system;
• δ = S × Σ × S denotes the transition relationship between the states in the system;
• I denotes the set of initial states of the system.

In addition, based on the model developed, we use linear temporal logic (LTL) [39] to
represent the confidentiality, integrity, and availability of the CIA security properties. LTL
formulates over the set AP of atomic propositions are formed according to the following
grammar:

φ ::= true | a | φ1 ∧ φ2 | ¬φ | Xφ | φ1Uφ2

where a ∈ AP, X means “next”, and U means “until”. LTL’s explanations are all given in
an infinite trajectory as follows:

• a: a holds at the current time, and in the trajectory, it behaves as if it holds at the
first position.

• Xφ: φ holds at the next time point and holds at the second position in the trajectory.
• φ1Uφ2: φ1 holds until φ2 holds.
• Fφ: Fφ = true U a, which means that φ holds sometime in the future.
• Gφ: Gφ = ¬ F¬φ, which means that φ always holds in the future.

LTL is particularly well suited to modeling the dynamic behavior of systems, especially
those properties that involve temporal order and persistence. The following are some of the
types of properties that can be modeled with LTL: liveness, responsiveness, fairness, etc.

4.1. Modeling of Topic Security Vulnerability
4.1.1. Vulnerability Model

In Section 2, we introduced three vulnerabilities in the ROS2 topic communication
mechanism, namely, stealing the basic data of the topic, unauthorized subscription, and
unauthorized publication. And in the following, we will model each of these three vulnera-
bilities as M1, M2, and M3.

In our work, we built the model for stealing basic data of the topic as follows:

M1 = {S1, Σ1, δ1, I1}

where the following are considered:

• S1 = {idle, check1, auth, comm, wait_t, check2, success, f ail}.
There are eight states in S1. In these states, idle denotes the initial state of the vulner-

Electronics 2024, 13, 1762 6 of 22

ability model; check1 denotes the state to check about whether the intruder can be
authorized; auth denotes that the intruder node can be an authorized node; comm
denotes that the intruder node is already able to communicate with the target; wait_t
indicates that the intruder node waits to receive information about the target topic;
check2 denotes the state to check about whether the intruder can obtain the basic data
of the topic; and success and f ail represent whether the topic information has been
successfully obtained or not, respectively.

• Σ1 = {authorized, get_domain, get_topic, return_topic}.
authorized denotes to determine whether the node is an authorized node; get_domain
denotes to get the communication domain where the target topic is located; and get_topic
denotes to get the information of the target topic. authorized, get_domain, get_topic, and
return_topic are channels that are used to communicate with the ROS2 communication
model.

• The initial state set I1 = {idle}.
• The transition relationship δ1 between the states is shown in Figure 1.

Figure 1. Stealing the basic data of the topic.

The model for the unauthorized subscription is

M2 = {S2, Σ2, δ2, I2}

where the following are considered:

• S2 = {idle, check1, auth, comm, wait_t, check2, sub, wait_m, success, f ail}.
There are ten states in S2. In these states, sub indicates that the intruder node can
subscribe to the target topic; wait_m indicates that the intruder node waits for the
topic that has been subscribed to; and success and f ail represent whether or not it
successfully subscribed to and received the messages in the topic, respectively. The
rest of the states have the same meaning as in S1.

• Σ2 = {authorized, get_domain, get_topic, return_topic, subscribe, publish, timeout}.
subscribe and publish are channels. The intruder node sends a request to the subscribe
topic through channel subscribe and receives the topic through channel publish. If it
cannot receive a message for a long time, it will receive a timeout response through
channel timeout. The rest of the states have the same meaning as in Σ1.

• The initial state set I2 = {idle}.
• The transition relationship δ2 between the states is shown in Figure 2.

Figure 2. Unauthorized subscription.

Electronics 2024, 13, 1762 7 of 22

The model for unauthorized publication is

M3 = {S3, Σ3, δ3, I3}

where the following are considered:

• S3 = {idle, check1, auth, comm, wait_t, check2, pub, wait_m, success, f ail}.
There are ten states in S3. In these states, pub indicates that the intruder node publishes
a message to the target topic; success and f ail represent whether it has successfully
published a fake message to the topic or not, respectively. The meanings of the
remaining states are the same as in S1.

• Σ3 = {authorized, get_domain, get_topic, return_topic, f akemsg, publish}.
f akemsg means to fake a fake message based on the topic information obtained, and
publish means to publish a message to the target topic. The rest of the actions have
the same meaning as Σ2.

• The initial state set I3 = {idle}.
• The transition relationship δ3 between states is shown in Figure 3.

Figure 3. Unauthorized publication.

4.1.2. Security Specification

ROS2 topic confidentiality requires that only authorized nodes have access to the topic
data, which can be broken down into the following two points:

• Only authorized nodes can access the information (topic name, topic type) of topics in
the communication domain. The ROS2 node should satisfy

G(¬((auth → F(wait_t)) → F(success)))

• Only authorized subscriber nodes can successfully subscribe to the target topic. The
ROS2 subscriber node should satisfy

G(¬((auth → F(sub)) → F(success)))

Thus, ROS2 topic confidentiality can be expressed as

G(¬((auth → F(wait_t)) → F(success))∧
¬((auth → F(sub)) → F(success)))

(1)

ROS2’s topic integrity requires that only authorized nodes can modify the topic’s data,
and only authorized publisher nodes can post messages to the topic, which means there
is no unauthorized publisher node that can post messages to the topic. Thus, ROS2 topic
integrity can be expressed as

G(¬((auth → F(pub)) → F(success))) (2)

Topic availability in ROS2 requires that authorized subscriber nodes must be able to
subscribe to messages in the target topic, and authorized publishers must be able to publish
messages to the target topic, which can be formulated as follows:

G(¬((auth → F(sub)) → F(success))∧
¬((auth → F(pub)) → F(success))

(3)

Electronics 2024, 13, 1762 8 of 22

4.2. Modeling of Service Security Vulnerability

In Section 2, we introduced two vulnerabilities in the ROS2 Service communication
mechanism: stealing the basic data of a service and unauthorized service calls. And in the
following, we will model M4 and M5 for each of these two vulnerabilities.

4.2.1. Vulnerability Model

The model for stealing basic data of service is

M4 = {S4, Σ4, δ4, I4}

where the following are considered:

• S4 = {idle, check1, auth, comm, wait_s, check2, success, f ail}.
There are eight states in S4. In these states, idle denotes the initial state of the vulnera-
bility model; auth denotes that the intruder node used to detect the vulnerability is an
authorized node; comm denotes that the intruder node has been able to communicate
with the target; wait_s denotes that the intruder node waits to receive a message from
the target’s service; and success and f ail denote, respectively, whether the message in
the service is successfully acquired or not.

• Σ4 = {authorized, get_domain, get_service, return_service}.
authorized denotes to make the intruder node be an authorized node; get_domain de-
notes to get the communication domain where the target service is located; get_service
denotes to get the information of the target service, and the intruder can obtain the
data of the service through channel return_service.

• The initial state set I4 = {idle}.
• The transition relationship between the states δ is shown in Figure 4.

Figure 4. Stealing basic data of service.

The model for unauthorized service call is

M5 = {S5, Σ5, δ5, I5}

where the following are considered:

• S5 = {idle, check1, auth, comm, wait_s, check2, service, call, success, f ail}.
There are ten states in S5. In these states, service denotes that the intruder has obtained
the data of the service; call denotes that the intruder has sent a service request to the
ROS2 system; and success and f ail represent whether the response was successfully
received or not, respectively.

• Σ5 = {authorized, get_domain, get_service, request_s, return_service, response_s, timeout}.
request_s means to send the service request, and response_s means to receive the ser-
vice response. The rest of the actions have the same meaning as in S5;

• The initial state set I5 = {idle}.
• The transition relationship between the states δ5 is shown in Figure 5.

Electronics 2024, 13, 1762 9 of 22

Figure 5. Unauthorized service call.

4.2.2. Security Specification

Service confidentiality in ROS2 requires that only authorized nodes have access to
data related to the service, which can be broken down into the following two points:

• Only authorized nodes can access the basic information (service name, service type)
of the service in the communication domain. So, the ROS2 node should satisfy

G(¬((auth → F(wait_s)) → F(success)))

• Only authorized client nodes can receive service responses sent by the server, and
only authorized server nodes can receive service requests sent by the client. So, the
ROS2 service client should satisfy

G(¬((auth → F(service)) → F(success)))

Thus, ROS2 service confidentiality can be expressed as

G(¬((auth → F(wait_s)) → F(success))∧
¬((auth → F(service)) → F(success)))

(4)

The service integrity of ROS2 requires that only authorized nodes can modify the data
of the service, and only authorized client nodes can send requests to the server node. Thus,
ROS2 service integrity can be expressed as

G(¬((auth → F(service)) → F(call))) (5)

Service availability in ROS2 requires that authorized service client nodes must be able
to send requests to the server, which can be formulated as follows:

G(¬((auth → F(service)) → F(success))) (6)

4.3. Modeling of Action Security Vulnerability

In Section 2, we introduced two vulnerabilities in the ROS2 action communication
mechanism: stealing basic the data of an action and unauthorized action calls. We will
model M6 and M7 for each of these two vulnerabilities in the following.

4.3.1. Vulnerability Model

The model for stealing basic data of action is

M6 = {S6, Σ6, δ6, I6}

where the following are considered:

• S6 = {idle, check1, auth, comm, wait_a, check2, success, f ail}.
There are eight states in S6. In these states, idle denotes the initial state of the vul-
nerability model; check1 denotes to check whether the intruder is authorized; auth
denotes that the intruder node used to detect the vulnerability is an authorized node;

Electronics 2024, 13, 1762 10 of 22

comm denotes that the intruder node is ready to communicate with the target; wait_a
denotes that the intruder node waits to receive the message from the target’s action;
check2 denotes whether the message of action is null; and success and f ail denote,
respectively, whether the response is successfully received or not.

• Σ6 = {authorized, get_domain, get_action, return_act}.
authorized indicates whether the node is an authorized node or not; get_domain in-
dicates the communication domain where the target action is located; get_action
indicates that the intruder requests to get the information of the target action; and
return_act indicates that the intruder has received the information.

• The initial state set I6 = {idle}.
• The transition relationship between the states δ is shown in Figure 6.

Figure 6. Stealing basic data of action.

The model for unauthorized action call is

M7 = {S7, Σ7, δ7, I7}

where the following are considered:

• S7 = {idle, check1, auth, comm, wait_a, check2, action, call, success, f ail}.
There are ten states in S7. In these states, action denotes that the intruder node is ready
to send a request; call indicates that the intruder has finished sending the request and
is waiting for a response from the server; and success and f ail represent whether or
not the response was successfully received, respectively. And the other states are the
same as in S6.

• Σ7 = {authorized, get_domain, get_action, return_act, request_a, response_a, timeout}.
request_a means to send a request for the action, and response_a means to receive the
response of the action.

• The initial state set I7 = {idle}.
• The transition relationship between the states δ is shown in Figure 7.

Figure 7. Unauthorized action call.

4.3.2. Security Specification

ROS2 action confidentiality requires that only authorized nodes have access to data
related to the action, which can be broken down into the following two points:

Electronics 2024, 13, 1762 11 of 22

• Only authorized nodes can access the basic information (action name, action type) of
actions in the communication domain, so the ROS2 node should satisfy

G(¬((auth → F(wait_a)) → F(success)))

• Only authorized client nodes can receive action responses and feedback sent by the
server, and only authorized server nodes can receive action requests sent by the client.
So, the action client should satisfy

G(¬((auth → F(action)) → F(success)))

Thus, the action confidentiality can be expressed as

G(¬((auth → F(wait_a)) → F(success))∧
¬((auth → F(action)) → F(success)))

(7)

ROS2’s action integrity requires that only authorized nodes can modify the action’s
data, and only authorized client nodes can send requests to server nodes, which can be
formulated as follows:

G(¬((auth → F(action)) → F(call))) (8)

Action availability in ROS2 requires that authorized service client nodes must be able
to send requests to the server, which can be formulated as follows:

G(¬((auth → F(action)) → F(success))) (9)

5. ROS2 Communication Security Vulnerability Detection Method

In order to analyze ROS2 security, we designed and developed ROS2Tester, a tool for
the vulnerability detection of the ROS2 system. In this section, we describe and illustrate
the design and implementation of the tool.

5.1. Framework of Method

In order to test and analyze the impact of the above attacks on ROS2 applications, we
designed a vulnerability detection method and tool for ROS2 in which these attacks have
been implemented and integrated. Our method was designed to detect potential security
vulnerabilities in ROS2 systems by conducting penetration testing [40]. This method
comprises two modules: a communication domain scanning module and a vulnerability
detection module, as shown in Figure 8.

Figure 8. Framework of method.

Electronics 2024, 13, 1762 12 of 22

The domain scanning module uses network port scanning to locate ROS2 systems
running in the LAN. The vulnerability detection module scans for vulnerabilities according
to a formal method and generates a vulnerability detection report. This report includes
details of the detection target, information about the vulnerabilities detected in the target,
and the results of vulnerability attacks. It provides a comprehensive analysis of the security
issues identified in the scanned ROS2 system.

5.2. Domain Scanning Module

The communication domain scanning module is responsible for detecting active ROS2
systems in the local area network (LAN) and passing their communication domain IDs to
the vulnerability detection module. The module is composed of three parts: pre-scan port
calculation, port scanning, and ROS2 node scanning. The overall flow of the module is
shown in Figure 9.

As per the DDS protocol, ROS2 nodes in the same communication domain can discover
and communicate with each other. To determine the communication domain ID of the
ROS2 system, this module performs a UDP port scan in reverse. To optimize the scanning
efficiency, ROS2Tester calculates all UDP ports that may be utilized for ROS2 communi-
cation using the DDS discovery protocol before conducting port scanning, resulting in a
pre-scanned port list.

To obtain the pre-scanned port list, the module employs the DDS discovery protocol,
which has a discovery broadcast port in each DDS communication domain for mutual
discovery between nodes in the communication domain. The port and the domain ID have a
corresponding transformation relationship, which is determined by the following formula:

DiscoveryMulticastPort = PB + DG ∗ DomainID (10)

Here, PB is a constant value of 7400, which indicates the starting port number, i.e., the
discovery broadcast port of the domain with DomainID 0, and DG is a constant value of
250, which indicates the maximum number of ports that can be included in a domain.

Figure 9. Domain scanning module.

As the communication domain ID of ROS2 ranges from 0 to 232, the pre-scanned port
list can be calculated accordingly. Subsequently, ROS2Tester employs the network scanning
tool Nmap [41] to scan the ports sequentially in the pre-scanned port list. If the port is
active, it conducts a node scan to confirm whether a ROS2 node is running on it. If a ROS2
node is found, the module returns the corresponding domain ID. If not, it continues to scan
the next port.

Electronics 2024, 13, 1762 13 of 22

5.3. Vulnerability Detection Module

The vulnerability detection module is used to simulate an intruder and perform
network attacks on the ROS2 application to test its security. According to the type of
ROS2 communication mechanism. The module is divided into three sub-modules: a
topic vulnerability detection module, service vulnerability detection module, and action
vulnerability detection module.

5.3.1. Topic Vulnerability Detection Module

In the Topic Vulnerability Detection Module, the tool mainly carries out the three
attacks of stealing the basic data of the topic, unauthorized subscription, and unauthorized
publication to detect vulnerabilities in the target system. And the tool also performs
runtime verification in the process of vulnerability detection. The implementation flow of
this module is shown in Figure 10.

Figure 10. Topic vulnerability detection module.

The left side of the figure shows the vulnerability detection function for a running
ROS2 system. First, the tool will discover the target system based on the aforementioned
communication domain scanning module. Then, the tool will establish an intruder node
and link it into the communication of that system. After successfully joining the commu-
nication network, the intruder node will create a daemon node, which will be used to
continuously obtain the information of other nodes. Finally, the intruder will obtain the
type of message in the topic by calling the ROS2 API to detect the vulnerability of stealing
the basic data of the topic.

Based on the topic name and topic type, the module first creates an attacker node in
the target domain and then creates subscribers on this node for subscribing to the target
topic. Finally, the attacker node is launched to subscribe to the target topic and obtain the
data in the target topic. Similarly, the module can also send false data to the target topic by
creating a publisher, and all the subscribers of the topic will be subjected to the false data to
detect unauthorized publication vulnerability.

During the entire vulnerability detection process, the tool will record the behavior
and state changes of the intruder and the system at the same time. Then, this information
will correspond to the vulnerability models. Based on this, the tool will perform a runtime
verification of the system, to verify whether it meets the confidentiality, integrity, and
availability under different vulnerability attacks. The verification results will be included
in the inspection report together with the vulnerability detection results. The specific
implementation interface is shown in Figure 11.

Electronics 2024, 13, 1762 14 of 22

Figure 11. Topic vulnerability detection module.

5.3.2. Service Vulnerability Detection Module

In this module, we use two types of attacks to detect vulnerabilities: stealing the basic
data of a service and unauthorized service calls. If successful, these attacks indicate the
existence of vulnerabilities in the target system. The implementation flow of this module is
shown in Figure 12.

Figure 12. Service vulnerability detection module.

To carry out an unauthorized service call attack, an attacker can obtain the basic data
of a service, including its name, type, and interface information, by creating daemon nodes.
With this information, the attacker can create an intruder node and service client on the
target domain, assign parameters, and issue a request to the server, waiting for a response.

The impact of the attack on the ROS2 application depends on the service function. If
the function is related to data access, the attack may compromise the data confidentiality of
the ROS2 application. However, if the function is related to data or command writing, the
attack may compromise the data integrity of the ROS2 application.

As with the topic vulnerability detection module, during the entire vulnerability
detection process, the tool will record the intruder and the system at the times of behavior
and state changes, and then the stealing-of-basic-service-data vulnerability model and
unauthorized service call model will be verified. Finally, the results of the verification will
be written into the detection report.

5.3.3. Action Vulnerability Detection Module

In the action vulnerability detection module, we mainly detect vulnerabilities in the
target system using two kinds of attacks, namely, stealing the basic data of an action and

Electronics 2024, 13, 1762 15 of 22

unauthorized action calls, and if an attack is successful, the corresponding vulnerability
exists in the target system. The implementation flow of this module is shown in Figure 13.

Figure 13. Action vulnerability detection module.

The basic data of an action include its name, type, and interface information. With
these data obtained using a daemon node, an attacker can make unauthorized action calls.
The attacker can create an intruder node in the target domain, call the relevant API to create
an action client on this node, assign parameters required for the action request, and send
the request to the action server, waiting for feedback and a response. Depending on the
function of the invoked action, this attack can be classified as either a confidentiality or
integrity attack, similar to an unauthorized service attack.

Similarly, during the entire vulnerability detection process, the tool will record the
intruder and the system at the times of behavior and state changes. And then the stealing-of-
basic-action-data vulnerability model and unauthorized action call model will be verified.
Finally, the results of the verification will be written into the detection report.

In addition to implementing target-specific functionality, the tool also automates the
detection of vulnerabilities across the entire ROS2 application throughout the vulnerability
detection module. When choosing to perform an attack manually, the user can select a
specific target, such as a topic or service, and then manually assign values to the parameters
required for the attack so that the appropriate parameter values can make the results of the
attack more obvious. The goal of automated vulnerability detection, on the other hand, is
to quickly detect vulnerabilities in an entire ROS2 application in order to find the parts of it
that could be attacked.

6. Experiment

In order to test the usability of ROS2Tester and the security vulnerabilities of the ROS2
system, we set up a series of experiments. In this section, we describe the environment
setup and the results of the experiments.

6.1. Experiment Environment

In order to test the usability of the tool and the communication security of the ROS2
system, we used three hosts in the same LAN to build the required experimental network
environment, with the same hardware and software configurations for the three hosts.

The experimental network environment is shown in Figure 14. Host A and host B
form an ROS2 system in which ROS2 nodes will be created for communication during
the experiment; host C acts as an intruder and attacks the ROS2 system of host A and
B components.

Electronics 2024, 13, 1762 16 of 22

Figure 14. Experimental environment.

In this experiment, in order to detect the security vulnerabilities of the three commu-
nication mechanisms of ROS2 topics, services, and actions in a complete way, we ran the
systems that carry out these three types of communication in hosts A and B. The specific
information is shown in Figure 15.

Figure 15. ROS2 system communication structure.

In this system, topic communication is carried out between a node talker and node
listener. The name of the topic is chatter, and the data type of the transmitted message in the
topic is String. Service communication is carried out between the node service client and
node service server. The service client sends a service request to the server and transmits
two integer values of type Int64. The service server performs an addition operation on
these two integers and transmits an integer value of type Int64 as a response. Action
communication is performed between the node action client and node action server. The
action client sends a target request to the server and transmits a data of type String. The
action server processes the data, controls the drawing of a circle on its own canvas, and
sends a response of type String.

Through the above experimental environment, we can achieve the testing and analysis
of the security of ROS2 in its default state, but in order to further analyze the security of
SROS2, we can protect all the nodes in the above hosts A and B with SROS2, and then we
can use ROS2Tester to carry out the same vulnerability detection, comparing the security
of SROS2 in the use of SROS2 and the inapplicability of SROS2 to the security changes.

Electronics 2024, 13, 1762 17 of 22

6.2. Results and Analysis
6.2.1. Runtime Verification Results

In this experiment, we performed a runtime verification of the ROS2 system to verify
that it can satisfy the communication security properties in case of some type of vulnerabil-
ity attack, as shown in Table 1.

Table 1. Runtime verification results.

Type of Vulnerability
Security Property Confidentiality Integrity Availability

stealing basic data of the topic ✕ ✓ ✓

unauthorized subscription ✕ ✓ ✕

unauthorized publication ✕ ✕ ✕

stealing basic data of service ✕ ✓ ✓

unauthorized service call ✕ ✕ ✕

stealing basic data of action ✕ ✓ ✓

unauthorized action service ✕ ✕ ✕

In the table, “✓” indicates that the system still satisfies the corresponding security
attribute under the vulnerability attack corresponding to that row, and “✕” indicates that
the system does not satisfy the corresponding security attribute. For the stealing of the basic
data of the topic, unauthorized subscription, and unauthorized publication, confidentiality,
integrity, and availability in the table denote the relevant security attributes of the topic.
Similarly, stealing the basic data of a service and unauthorized service calls denote the
relevant security attributes of the service, and the action vulnerabilities denote the relevant
security attributes of the action.

From the experimental result data, it can be seen that for topic communication, the
stealing of basic data through the topic vulnerability attack only destroys the confidentiality
of the system. The unauthorized subscription destroys confidentiality and availability. The
unauthorized publication is capable of destroying all the three security attributes. Analyzed
in principle, the attacker’s theft of some basic information may only lead to the risk of data
leakage, and they are unable to inject malicious data into the system or affect the normal
communication between the system nodes. Therefore, these vulnerabilities cannot damage
the integrity or availability of the system.

Similarly, for service communication and action communication, the theft of basic
information cannot serve the purpose of data injection or the disruption of system com-
munication and, therefore, cannot compromise the integrity and availability of the system.
For unauthorized service calls and unauthorized action calls, they can be used both by
an attacker to steal confidential data from the system and to inject false data or malicious
commands into the system, so they have the capability of compromising all of the three
security properties.

6.2.2. Vulnerability Detection Result

In this experiment, we performed vulnerability testing on the system for all seven
vulnerabilities as a means of identifying the communication security vulnerabilities that
exist in the system. In addition, in order to test the actual effect of SROS2 on the security
enhancement of ROS2, as well as to contrast with ROS2, we built the system on the
framework of SROS2, which is consistent with the original experiment, and divided the
attackers into unauthorized nodes and authorized nodes to conduct the experiment to test
the degree of security protection of SROS2, and the results of the experiments are shown in
Table 2.

Electronics 2024, 13, 1762 18 of 22

Table 2. Detection results.

Attacker Node Type of Attack ROS2 SROS2

unauthorized node

stealing basic data of the topic ✓ ✕

unauthorized subscription ✓ ✕

unauthorized publication ✓ ✕

stealing basic data of service ✓ ✕

unauthorized service call ✓ ✕

stealing basic data of action ✓ ✕

unauthorized action call ✓ ✕

authorized node

stealing basic data of the topic ✓ ✓

unauthorized subscription ✓ ✓

unauthorized publication ✓ ✓

stealing basic data of service ✓ ✓

unauthorized service call ✓ ✓

stealing basic data of action ✓ ✓

unauthorized action call ✓ ✓

In the table, “✓” indicates that the system has the corresponding vulnerability. On
the contrary, “✕” indicates that the system does not have the corresponding vulnerability.
From the experimental results, we can see that regardless of whether the attacker is an
authorized node or not, the system built based on ROS2 has seven communication secu-
rity vulnerabilities. While the system built based on SROS2 can withstand these seven
vulnerability attacks from unauthorized nodes, but cannot withstand vulnerability attacks
from authorized attacker nodes. This shows that the authentication mechanism of SROS2
can indeed play a security role, but due to the lack of a reliable scheme for the remote
transmission of security profiles of SROS2 at present, there is a risk of being intercepted,
and the attacker can use the intercepted profiles to achieve identity authentication, thus
achieving the purpose of vulnerability attacks.

6.2.3. Tool Performance

Our tool, ROS2Tester, can currently detect seven types of security vulnerabilities, and
we can subsequently consider expanding the vulnerabilities detected, such as authentication
and other types of vulnerabilities. ROS2Tester can be run in an environment with various
versions of ROS2; the version of this experiment was ROS2 Foxy, and its performance is
shown in Figure 16.

To ensure that the vulnerability detection time for ROS2-based applications with
a large number of nodes is acceptable, we tested ROS2-based applications with a large
number of nodes. As shown in Figure 16, in order to fully evaluate the performance of
the tool, we evaluated systems consisting of 100, 500 and 1000 communicating entities
such as nodes or topics, respectively. The results show that the performance of the tool can
be affected by the communication frequency settings and the size of the communication
data in the system itself. In our tests, vulnerability scans for 1000 actions that manage
common tasks were completed in 15 min. These results suggest that while scanning time
increases linearly with the number of nodes or topics, the tool’s ability to quickly complete
vulnerability detection tasks is feasible even for larger systems when the system’s own
communication performance is good.

Electronics 2024, 13, 1762 19 of 22

Figure 16. Tool Performance.

6.3. Comparison of Related Tools

Since ROS2 is still in the development stage, there is no vulnerability detection tool for
ROS2 like ROS2Tester, but ROS and ROS2 have many similarities in terms of vulnerability
detection. Therefore, in order to better reflect the perfect function of ROS2Tester, we
compared ROS2Tester with ROSPenTo [27] and ROSploit [28].

ROSPenTo and ROSploit are both tools that use penetration testing to detect vulner-
abilities in ROS, and their implementation principles are basically the same. Since ROS
communication relies on the master node as the central node for communication, both tools
further control other nodes in the system by gaining control of the master node. Table 3
compares the vulnerabilities that can be detected by ROS2Tester, ROSPenTo, and ROSploit,
and it can be seen from the table that each of the three tools has its own focus.

Table 3. Comparison of tool detection vulnerability coverage.

Vulnerability Type
Tool Name ROS2Tester ROSPenTo ROSploit

stealing basic data of node ✓ ✓ ✓

Impersonating node identity ✓

stealing basic data of the topic ✓ ✓ ✓

unauthorized subscription ✓ ✓ ✓

unauthorized publication ✓ ✓ ✓

stealing basic data of service ✓ ✓

unauthorized service call ✓

stealing basic data of action ✓

unauthorized action call ✓

stealing basic data of parameter ✓ ✓

modify node parameter information ✓ ✓

As can be seen from Table 3, ROSploit and ROSPenTo focus more on vulnerabilities
related to accessing and modifying information on the ROS nodes themselves, as well as
security vulnerabilities related to parameter servers, while ROS2Tester focuses on security
vulnerabilities related to the three types of communication mechanisms: ROS2 topics,
services, and actions. Since publish–subscribe is the most commonly used communication
mechanism in ROS and ROS2, all three tools focus heavily on vulnerability detection in
this area. The difference is that ROS2Tester is not able to detect the vulnerabilities of node
impersonation and node parameter modification like the other two tools, which is mainly
due to the difference in the underlying communication architectures of ROS and ROS2.
ROS adopts a centralized communication model, where all the nodes need to be registered
and logged out of the master node, and all the nodes need to obtain parameters from the
global parameter server. All nodes need to subscribe to a global parameter server to obtain
parameters. As for ROS2, it adopts a distributed communication model. There is no central
node controlling all nodes, so it is impossible to control other nodes through malicious

Electronics 2024, 13, 1762 20 of 22

nodes and achieve the purpose of impersonating other nodes. Meanwhile, compared with
the global parameter server in ROS, ROS2 places more emphasis on the flexibility of the
distributed system, so the implementation of parameter service may be decentralized.
Therefore, it is also difficult for intruders to achieve the modification of node parameters.

7. Conclusions

In this study, we formally modeled common communication security vulnerabilities in
ROS2 applications and used LTL to represent the CIA security properties that ROS2 needs
to satisfy. In addition, we designed and developed a communication security vulnerability
detection tool for ROS2 based on a reachability analysis, through which we can detect the
existence of relevant security vulnerabilities in specific ROS2 applications and analyze
which property of the CIA security properties is broken by the detected vulnerabilities.

ROS2 is still in rapid development, but there is a lack of tools for security testing.
The work in this article explored some of these aspects, which are very favorable to
enhancing the security of ROS2. In the future, we will consider validating additional
security specifications such as authentication, identity authorization, etc. Also, we will
consider the use of runtime verification for vulnerability detection to ensure that the
purpose of security detection is achieved without interfering with the normal operation of
the system. In this study, we built formal models for ROS2 vulnerabilities and used these
models to verify security specifications. In future work, we will consider incorporating
these models into the runtime ROS2 system and verifying the security of the system at
runtime using the collected data information as input for the models. In fact, in this study,
we already integrated a runtime verification module into the tool. Our primary aim is to
isolate this module so that it can operate independently within the ROS2 system, serving a
function analogous to that of a monitor, The brief process of this is shown in Figure 17.

Figure 17. Overflow of future work.

Author Contributions: Conceptualization, S.Y. and J.G.; methodology, S.Y., J.G. and X.R.; software,
S.Y.; validation, S.Y. and J.G.; formal analysis, S.Y.; investigation, S.Y. and X.R.; resources, S.Y. and J.G.;
writing—original draft preparation, S.Y.; writing—review and editing, S.Y., J.G. and X.R.; supervision,
S.Y. and J.G.; project administration, J.G.; funding acquisition, J.G. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported in part by the National Key Research and Development Program
(Grant 2022YFB3104002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Electronics 2024, 13, 1762 21 of 22

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gonzalez-Aguirre, J.A.; Osorio-Oliveros, R.; Rodríguez-Hernández, K.L.; Lizárraga-Iturralde, J.; Morales Menendez, R.; Ramírez-

Mendoza, R.A.; Ramírez-Moreno, M.A.; Lozoya-Santos, J.d.J. Service robots: Trends and technology. Appl. Sci. 2021, 11, 10702.
[CrossRef]

2. Wang, Z.; Tian, G.; Shao, X. Home service robot task planning using semantic knowledge and probabilistic inference. Knowl.-Based
Syst. 2020, 204, 106174. [CrossRef]

3. Belanche, D.; Casaló, L.V.; Flavián, C.; Schepers, J. Service robot implementation: A theoretical framework and research agenda.
Serv. Ind. J. 2020, 40, 203–225. [CrossRef]

4. Kyrarini, M.; Lygerakis, F.; Rajavenkatanarayanan, A.; Sevastopoulos, C.; Nambiappan, H.R.; Chaitanya, K.K.; Babu, A.R.;
Mathew, J.; Makedon, F. A survey of robots in healthcare. Technologies 2021, 9, 8. [CrossRef]

5. Kazanzides, P.; Chen, Z.; Deguet, A.; Fischer, G.S.; Taylor, R.H.; DiMaio, S.P. An open-source research kit for the da Vinci®

Surgical System. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong,
China, 31 May–7 June 2014; pp. 6434–6439.

6. He, W.; Ge, S.S.; Li, Y.; Chew, E.; Ng, Y.S. Neural network control of a rehabilitation robot by state and output feedback. J. Intell.
Robot. Syst. 2015, 80, 15–31. [CrossRef]

7. Mintrom, M.; Sumartojo, S.; Kulić, D.; Tian, L.; Carreno-Medrano, P.; Allen, A. Robots in public spaces: Implications for policy
design. Policy Des. Pract. 2022, 5, 123–139. [CrossRef]

8. Luo, R.C.; Chou, Y.T.; Liao, C.T.; Lai, C.C.; Tsai, A.C. NCCU security warrior: An intelligent security robot system. In Proceedings
of the IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007;
pp. 2960–2965.

9. International Federation of Robotics. Top 5 Robot Trends 2021. 2022. Available online: https://ifr.org/ifr-press-releases/news/
top-5-robot-trends-2021 (accessed on 29 April 2024).

10. Plósz, S.; Schmittner, C.; Varga, P. Combining safety and security analysis for industrial collaborative automation systems.
In Proceedings of the Computer Safety, Reliability, and Security: SAFECOMP 2017 Workshops, ASSURE, DECSoS, SASSUR,
TELERISE, and TIPS, Trento, Italy, 12 September 2017; Proceedings 36; Springer: Berlin/Heidelberg, Germany, 2017; pp. 187–198.

11. Kirschgens, L.A.; Ugarte, I.Z.; Uriarte, E.G.; Rosas, A.M.; Vilches, V.M. Robot hazards: From safety to security. arXiv 2018,
arXiv:1806.06681.

12. Lacava, G.; Marotta, A.; Martinelli, F.; Saracino, A.; La Marra, A.; Gil-Uriarte, E.; Vilches, V.M. Cybsersecurity Issues in Robotics.
J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2021, 12, 1–28.

13. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating
System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5.

14. Değirmenci, E.; Kirca, Y.S.; Yolaçan, E.N.; Yazici, A. An Analysis of DoS Attack on Robot Operating System. Gazi Univ. J. Sci.
2023, 36, 1050–1069. [CrossRef]

15. Zhai, G.; Zhang, W.; Hu, W.; Ji, Z. Coal mine rescue robots based on binocular vision: A review of the state of the art. IEEE Access
2020, 8, 130561–130575. [CrossRef]

16. Vuong, T.; Filippoupolitis, A.; Loukas, G.; Gan, D. Physical indicators of cyber attacks against a rescue robot. In Proceedings of
the 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS),
Budapest, Hungary, 24–28 March 2014; pp. 338–343.

17. Khan, A.T.; Li, S.; Cao, X. Human guided cooperative robotic agents in smart home using beetle antennae search. Sci. China Inf.
Sci. 2022, 65, 122204. [CrossRef]

18. Brondi, S.; Pivetti, M.; Di Battista, S.; Sarrica, M. What do we expect from robots? Social representations, attitudes and evaluations
of robots in daily life. Technol. Soc. 2021, 66, 101663. [CrossRef]

19. Coble, K.; Wang, W.; Chu, B.; Li, Z. Secure software attestation for military telesurgical robot systems. In Proceedings of the
2010-Milcom 2010 Military Communications Conference, San Jose, CA, USA, 31 October–3 November 2010; pp. 965–970.

20. Jang, S.M.; Hong, Y.J.; Lee, K.; Kim, S.; Chiến, B.V.; Kim, J. Assessment of user needs for telemedicine robots in a developing
nation hospital setting. Telemed. E-RHealth 2021, 27, 670–678. [CrossRef] [PubMed]

21. Javaid, A.Y.; Sun, W.; Devabhaktuni, V.K.; Alam, M. Cyber security threat analysis and modeling of an unmanned aerial vehicle
system. In Proceedings of the 2012 IEEE Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 13–15
November 2012; pp. 585–590.

22. Groza, B.; Dragomir, T.L. Using a cryptographic authentication protocol for the secure control of a robot over TCP/IP. In
Proceedings of the 2008 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania,
22–25 May 2008; Volume 1, pp. 184–189.

23. Lee, G.S.; Thuraisingham, B. Cyberphysical systems security applied to telesurgical robotics. Comput. Stand. Interfaces 2012,
34, 225–229. [CrossRef]

24. GvdHoorn. Security about ROS. 2020. Available online: http://wiki.ros.org/Security (accessed on 29 April 2024).
25. Breiling, B.; Dieber, B.; Schartner, P. Secure communication for the robot operating system. In Proceedings of the 2017 Annual

IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 24–27 April 2017; pp. 1–6.

http://doi.org/10.3390/app112210702
http://dx.doi.org/10.1016/j.knosys.2020.106174
http://dx.doi.org/10.1080/02642069.2019.1672666
http://dx.doi.org/10.3390/technologies9010008
http://dx.doi.org/10.1007/s10846-014-0150-6
http://dx.doi.org/10.1080/25741292.2021.1905342
https://ifr.org/ifr-press-releases/news/top-5-robot-trends-2021
https://ifr.org/ifr-press-releases/news/top-5-robot-trends-2021
http://dx.doi.org/10.35378/gujs.976496
http://dx.doi.org/10.1109/ACCESS.2020.3009387
http://dx.doi.org/10.1007/s11432-020-3073-5
http://dx.doi.org/10.1016/j.techsoc.2021.101663
http://dx.doi.org/10.1089/tmj.2020.0215
http://www.ncbi.nlm.nih.gov/pubmed/33095109
http://dx.doi.org/10.1016/j.csi.2011.09.001
http://wiki.ros.org/Security

Electronics 2024, 13, 1762 22 of 22

26. Arkin, B.; Stender, S.; McGraw, G. Software penetration testing. IEEE Secur. Priv. 2005, 3, 84–87. [CrossRef]
27. Dieber, B.; White, R.; Taurer, S.; Breiling, B.; Caiazza, G.; Christensen, H.; Cortesi, A. Penetration Testing ROS. In Robot Operating

System (ROS): The Complete Reference; Koubaa, A., Ed.; Studies in Computational Intelligence; Springer International Publishing:
Cham, Switzerland, 2020; Volume 4, pp. 183–225.

28. Rivera, S.; Lagraa, S.; State, R. ROSploit: Cybersecurity Tool for ROS. In Proceedings of the 2019 Third IEEE International
Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; pp. 415–416.

29. Dieber, B.; Breiling, B.; Taurer, S.; Kacianka, S.; Rass, S.; Schartner, P. Security for the robot operating system. Robot. Auton. Syst.
2017, 98, 192–203. [CrossRef]

30. Halder, R.; Proença, J.; Macedo, N.; Santos, A. Formal Verification of ROS-Based Robotic Applications Using Timed-Automata. In
Proceedings of the 2017 IEEE/ACM 5th International FME Workshop on Formal Methods in Software Engineering (FormaliSE),
Buenos Aires, Argentina, 27 May 2017; pp. 44–50.

31. Huang, J.; Erdogan, C.; Zhang, Y.; Moore, B.; Luo, Q.; Sundaresan, A.; Rosu, G. ROSRV: Runtime Verification for Robots. In
Runtime Verification; Bonakdarpour, B., Smolka, S.A., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland,
2014; pp. 247–254.

32. Rivera, S.; State, R. Securing Robots: An Integrated Approach for Security Challenges and Monitoring for the Robotic Operating
System (ROS). In Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM),
Bordeaux, France, 17–21 May 2021; pp. 754–759.

33. Sundaresan, A.; Gerard, L.; Kim, M. Secure ROS. Available online: http://secure-ros.csl.sri.com/ (accessed on 29 April 2024).
34. Mayoral-Vilches, V.; White, R.; Caiazza, G.; Arguedas, M. Sros2: Usable cyber security tools for ros 2. In Proceedings of the 2022

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 11253–11259.
35. Open Source Robotics Foundation. ROS2 Robotic Systems Threat Model. 2019. Available online: http://design.ros2.org/articles/

ros2_threat_model.html (accessed on 29 April 2024).
36. Kim, J.; Smereka, J.M.; Cheung, C.; Nepal, S.; Grobler, M. Security and Performance Considerations in ROS 2: A Balancing Act.

arXiv 2018, arXiv:1809.09566.
37. Maruyama, Y.; Kato, S.; Azumi, T. Exploring the performance of ROS2. In Proceedings of the 13th International Conference on

Embedded Software, Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10.
38. Deng, G.; Xu, G.; Zhou, Y.; Zhang, T.; Liu, Y. On the (In) Security of Secure ROS2. In Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security, Los Angeles, CA, USA, 7–11 November 2022; pp. 739–753.
39. Camacho, A.; Icarte, R.T.; Klassen, T.Q.; Valenzano, R.A.; McIlraith, S.A. LTL and Beyond: Formal Languages for Reward

Function Specification in Reinforcement Learning. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence (IJCAI-19), Macao, China, 10–16 August 2019; Volume 19, pp. 6065–6073.

40. Bacudio, A.G.; Yuan, X.; Chu, B.T.B.; Jones, M. An overview of penetration testing. Int. J. Netw. Secur. Its Appl. 2011, 3, 19.
[CrossRef]

41. Orebaugh, A.; Pinkard, B. Nmap in the Enterprise: Your Guide to Network Scanning; Elsevier: Amsterdam, The Netherlands, 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MSP.2005.23
http://dx.doi.org/10.1016/j.robot.2017.09.017
http://secure-ros.csl.sri.com/
http://design.ros2.org/articles/ros2_threat_model.html
http://design.ros2.org/articles/ros2_threat_model.html
http://dx.doi.org/10.5121/ijnsa.2011.3602

	Introduction
	Related Work
	ROS2 Communication Security Vulnerability
	Security Vulnerability of Topic Communication
	Security Vulnerability of Service Communication
	Security Vulnerability of Action Communication

	Modeling of Security Vulnerability
	Modeling of Topic Security Vulnerability
	Vulnerability Model
	Security Specification

	Modeling of Service Security Vulnerability
	Vulnerability Model
	Security Specification

	Modeling of Action Security Vulnerability
	Vulnerability Model
	Security Specification

	ROS2 Communication Security Vulnerability Detection Method
	Framework of Method
	Domain Scanning Module
	Vulnerability Detection Module
	Topic Vulnerability Detection Module
	Service Vulnerability Detection Module
	Action Vulnerability Detection Module

	Experiment
	Experiment Environment
	Results and Analysis
	Runtime Verification Results
	Vulnerability Detection Result
	Tool Performance

	Comparison of Related Tools

	Conclusions
	References

