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Abstract: In coal-fired power plants, coal piles serve as the fundamental management units. Acquiring
point clouds of coal piles facilitates the convenient measurement of daily coal consumption and
combustion efficiency. When using servo motors to drive Light Detection and Ranging (LiDAR)
scanning of large-scale coal piles, the motors are subject to rotational errors due to gravitational
effects. As a result, the acquired point clouds often contain significant noise. To address this issue,
we proposes a Rapid Point Cloud Stitching–Constrained Particle Filter (RPCS-CPF) method. By
introducing random noise to simulate servo motor rotational errors, both local and global point
clouds are sequentially subjected to RPCS-CPF operations, resulting in smooth and continuous coal
pile point clouds. Moreover, this paper presents a coal pile boundary detection method based on
gradient region growing clustering. Experimental results demonstrate that our proposed RPCS-CPF
method can generate smooth and continuous coal pile point clouds, even in the presence of servo
motor rotational errors.

Keywords: point cloud stitching; edge detection; coal stock pile; 3D reconstruction; lidar scanning

1. Introduction

With the rapid growth in demand for electricity supply, the need for coal is also
steadily increasing. In the operation of coal-fired power plants, coal piles serve as the
fundamental units of management. Obtaining point cloud data of coal piles allows for the
easy measurement of various parameters such as volume [1–3], density, and boundaries,
which are crucial for ensuring safe operations at coal yards and effectively managing coal
combustion efficiency.

1.1. 3D Reconstruction of Coal Piles

Traditional methods for obtaining point clouds of coal piles involve the tedious process
of manual scanning using handheld scanners [4]. This approach demands significant
time and effort. Recently, researchers have explored more efficient 3D reconstruction
techniques [5,6], such as employing GNSS-RTK technology, utilizing multiple fixed LiDARs
for scanning coal heaps [7], and deploying drones. Each of these methods offers their own
advantages and disadvantages depending on specific circumstances and applications.

Handheld devices, typically employing laser scanners or cameras, are utilized by
operators to manually scan coal piles for data collection. However, the scanning efficiency
of this method is relatively low, making it unsuitable for rapid scanning and continuous
monitoring of large coal piles. Moreover, measuring larger coal piles presents significant
challenges for workers.
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Drone scanning involves the use of unmanned aerial vehicles (UAVs) equipped with
cameras or laser scanners to perform aerial scans of coal piles [8–11]. This system can
rapidly capture surface data of extensive coal piles within a short timeframe, thereby
offering the advantages of improved resolution and comprehensiveness. However, drone
scanning does have certain limitations. A study by Alsayed et al. [9] revealed that drones
equipped with LiDAR sensors may have blind spots during data scanning, particularly
in enclosed coal yard environments, which pose challenges for optimizing flight trajec-
tories and may require further refinement. Additionally, research by Davis et al. [12]
demonstrated that increasing the altitude of drone flights can result in greater errors and
reduced reliability.

Mahlberg et al. [13] pioneered a portable LiDAR device mounted on a pole for scanning
point clouds in expansive granaries. However, this method relies on complex point cloud
registration techniques, leading to considerable evaluation complexity. Farhood et al. [14]
proposed using smartphone cameras to extract material point clouds by capturing moving
images. However, it is important to note that this approach is restricted to smaller materials
and faces challenges in ensuring the accuracy of point cloud reconstruction.

While GNSS-RTK can provide precise location data, it often faces challenges like
signal obstruction and multipath interference in indoor enclosed environments. These
issues negatively affect its positioning accuracy and reliability, making it unable to provide
continuous point cloud data [15]. Raevaa et al. [8] utilized GNSS-RTK for measurements
in an open-pit quarry, but they found that the measurement speed was significantly slow,
resulting in decreased work efficiency.

In contrast, using laser scanning [16–18] allows for the acquisition of complete point
cloud data for coal piles, but, for large-scale coal piles, a single laser scanner operates at a
slow speed and produces sparse point clouds [19,20]. Therefore, this study employs a sys-
tem of multiple fixed LiDARs to construct a coal pile scanning system, which offers several
advantages. Firstly, fixed LiDARs exhibit higher scanning precision and stability [21–23].
By adjusting the installation height and angle appropriately, they can adapt to coal piles
of varying heights, thus better covering the entire surface of the coal pile and obtaining
more comprehensive and accurate point cloud data [12,24]. Secondly, fixed LiDARs enable
long-term continuous scanning, allowing for the continuous acquisition of point cloud data
for coal piles. This makes them suitable for long-term monitoring of changes in coal pile
morphology and real-time volume calculations. Therefore, this study adopts the approach
of using multiple laser scanners to obtain coal pile point clouds.

However, employing multiple LiDARs for scanning coal piles does pose certain
limitations. Applying pressure to actuators can induce instability, leading to deviations
in the generated point clouds. These discrepancies may cause non-smooth surfaces when
stitching point clouds using the existing coordinate system. To address this challenge, this
study introduces the RPCS-CPF method as a solution for coal pile point cloud stitching.

1.2. Point Cloud Edge Detection

During coal pile operations, vehicles often need to climb to the top of coal piles for
tasks such as loading, leveling, or measurement. However, the surface terrain of coal piles
is complex and variable. When nearing the edges of the pile or encountering depressed
areas, vehicles are susceptible to sliding hazards, resulting in potential casualties. Therefore,
detecting boundaries of coal piles and providing early warnings are crucial for ensuring
the safety of personnel.

By analyzing and meticulously processing dense point cloud data, it becomes possible
to accurately detect the boundaries and depressions on the surface of the coal pile, thus
revealing potential safety risks. Chen et al. [25] introduced a 3D boundary identification
technique that utilizes DBSCAN clustering. This method demonstrated favorable out-
comes when applied to point clouds exhibiting conventional local shapes. However, it was
found to be unsuitable for point clouds representing complex coal piles. Furthermore, the
controllability of the parameters in this clustering method is limited, posing a challenge
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in identifying the Pareto optimum. In their study, Mineo et al. [26] introduced a unique
algorithm called BPD for boundary point identification, along with a spatial FFT-based
filtering approach. This approach is effective in fitting surfaces with polynomials and is
particularly suitable for smooth coal pile surfaces. However, its performance is subop-
timal when dealing with complex coal heaps that have pits and tunnels. Additionally,
Runge’s phenomenon arises when the order of the polynomial exceeds 10. In their study,
Yang et al. [27] introduced an algorithm that utilizes multi-scale directional curvature to ex-
tract and quantify the borders of accumulations from 3D point cloud data. This algorithm is
capable of detecting the boundaries of various wave peak materials, but it faces difficulties
in detecting pits and trenches. Hu et al. [28] introduced a boundary identification technique
that utilizes semantic segmentation. This method demonstrated favorable outcomes when
used on the S3DIS and ScanNet datasets. However, it encounters challenges in accurately
differentiating the intricate distribution of coal pile surface terrain.

Given these challenges, it is crucial to devise a robust and flexible strategy for surface
identification and assessment of coal piles, ensuring the safety and efficiency of coal
handling operations. The adoption of such technology holds promise for significantly
reducing accident rates and optimizing the performance of coal handling facilities.

The innovations in this work are as follows:

(1) A rapid point cloud stitching algorithm grounded in the Constrained Particle Filter
(CPF) is presented, which addresses the stochastic rotational errors of servos through
mathematical modeling and has undergone algorithmic validation on a large coal
pile. Utilizing multiple LiDAR–servo units, we scanned the coal pile and initially
processed the point cloud generated by a single LiDAR scan with the CPF. Following
this, we applied the CPF to the point cloud resulting from the stitching of multiple
LiDAR scans. Experimental results have confirmed that our stitching algorithm not
only ensures a smooth transition at the junction points but also maintains the surface
integrity of the coal pile’s point cloud.

(2) We propose a complex coal pile surface edge detection algorithm based on gradient
region growing clustering. Initially, we estimate the normal vectors and calculate the
gradients of the stitched point cloud. Subsequently, clustering is performed using the
slope and gradient magnitude of the coal pile. By setting specific slope and magnitude
intervals, we extract the boundaries of the coal pile. Experimental results indicate
that our method is capable of detecting the boundaries of hazardous terrains such as
pits, aisles, and ridges within the coal pile, thereby enhancing the safety of coal pile
operations. This approach holds broad application value.

2. Method

When acquiring point cloud data for a large coal pile in an enclosed coal yard, using a
handheld scanner is impractical for scanning the entire coal pile, and employing drones
requires planning complex scanning routes while avoiding obstacles within the coal yard.
Therefore, we opted to use multiple fixed LiDARs to scan the coal pile. Each LiDAR
was mounted on a servo, which rotated the LiDAR to scan a local area of the coal pile.
Ultimately, the point clouds obtained from the multiple LiDAR scans were stitched together.
With the known spatial relationships of the LiDARs’ coordinates, we could conveniently
merge the coal pile point clouds, thereby circumventing the complex process of point
cloud registration.

The point cloud processing workflow employed in this study is illustrated in Figure 1.
Initially, a series of LiDAR scans were utilized to acquire point cloud data from various
sections of the coal stockpile. To mitigate noise arising from random errors in servo motor
rotation angles, the RPCS-CPF algorithm was applied to each cloud data point for refined
filtering. Subsequently, coordinate transformations were applied to the filtered point clouds
prior to fusion, followed by another round of RPCS-CPF algorithmic treatment to obtain a
smooth point cloud representation of the entire coal pile. Building upon this framework, a
gradient-based region growing clustering algorithm is proposed for identifying boundaries
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on the coal pile surface, with the effectiveness of the algorithm corroborated through the
meticulous construction of point cloud models.

Figure 1. Flowchart of our method. Initially, the point cloud obtained from a single LiDAR scan
undergoes CPF processing. Subsequently, the point clouds from various LiDAR sections are subjected
to coordinate transformation and then stitched together. Following this, CPF is applied to the con-
catenated point cloud to obtain an integrated point cloud of the coal pile. This comprehensive point
cloud can then be utilized for boundary detection or for the statistical analysis of coal pile reserves.

2.1. Point Cloud Coordinate Transformation

The original point cloud’s coordinates are aligned with the three-dimensional coor-
dinate system of the LiDAR. To analyze the 3D point clouds collected by the LiDAR at
various angles, it is essential to calculate the coordinate transformation between them. As
illustrated in Figure 2, the actuator coordinate system rotates around point O, which is the
center of rotation. Assuming the distance from point O to the center of the LiDAR is r, the
actuator captures a 3D point cloud of the coal pile with each rotation of ∆φ. At each distinct
rotational position (n = 0, 1, . . . ), the 3D points are expressed in the actuator’s coordinate
system (Xs

n, Ys
n, Zs

n) with coordinates (xs
n, ys

n, zs
n). The actuator’s rotation is around the

Xs
n-axis.

Figure 2. Rotation of the servo motor coordinate system.

Then, the coordinates of point cloud in servo coordinate system can be obtained
as follows:

PS
n =

 xS
n

yS
n

zS
n

 =

 xL
n

yL
n

zL
n + r

 = PL
n +

 0
0
r

 (1)

where PL
n represents the coordinates of the point in the LiDAR coordinate system (XL

n , YL
n ,

ZL
n ). During the rotation of the actuator, since the rotation axis is parallel to the X-axis, the

x-coordinate of the point remains unchanged.The relationship of transformation between
the coordinates of the point after the n-th rotation and the coordinates in the initial state
(n = 0) can be expressed as follows:

PS
n =

 xS
n

yS
n

zS
n

 = RS
n

 xS
0

yS
0

zS
0

 (2)
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where the rotation matrix RS
n is:

RS
n =

 1 0 0
0 cos(n · ∆φ) − sin(n · ∆φ)
0 sin(n · ∆φ) cos(n · ∆φ)

 (3)

According to Formula (1), Formula (2) can be expressed as follows:

PL
n +

 0
0
r

 = PS
n =

 xS
n

yS
n

zS
n

 = RS
n

 xS
0

yS
0

zS
0

 = RS
n

PL
0 +

 0
0
r

 (4)

Therefore, we derive the subsequent transformation relation:

PL
n = RS

nPL
0 +

(
RS

n − 1
) 0

0
r

 (5)

PL
0 =

(
RS

n

)−1
PL

n +

((
RS

n

)−1
− 1
) 0

0
r

 (6)

Based on Equation (6), it is feasible to transform the point cloud coordinates from
various scanning angles into the initial state within the LiDAR coordinate system. This
makes it easier to integrate point clouds from various scanning angles on a single LiDAR.
A thorough point cloud of a sizable coal pile can be obtained by using many LiDARs and
matching their coordinate systems into a single global coordinate system.

Given the large area of a coal pile, the comprehensive acquisition of its point cloud data
generally requires the deployment multiple LiDARs positioned above the pile to facilitate
scanning. Following this, it is necessary to integrate the point clouds acquired from several
LiDAR scans. Nevertheless, the accuracy of rotation cannot be assured as a result of the
gravitational impact exerted by the LiDAR on the actuator. Consequently, following the
process of coordinate transformation, the point clouds exhibit an inability to be effectively
integrated. Given the aforementioned concern, it is evident that Equation (3) is no longer
capable of accurately depicting the rotation matrix of the point clouds. Consequently, it is
restructured in the following manner:

Rs′
n =

 1 0 0
0 cos(n · ∆φ + θn) − sin(n · ∆φ + θn)
0 sin(n · ∆φ + θn) cos(n · ∆φ + θn)

 (7)

where θn denotes the error in the nth rotation of the actuator. The rotation deviation is
assumed to follow a uniform distribution with a range of [0, △θ], where △θ represents the
range of rotation error from 0 to 5 degrees. Consequently, the new point cloud coordinates
can be expressed as follows:

PL′
0 =

(
RS′

n

)−1
PL

n +

((
RS′

n

)−1
− 1
) 0

0
r

 (8)

2.2. RPCS-CPF Method

This study introduces a rapid point cloud registration approach called RPCS-CPF to
tackle the problem of inadequate robustness in point cloud stitching caused by LiDAR
rotation deviation. The algorithm assumes that the rotation plane remains constant. The
formula can be expressed as follows:

Pm = {MLS(GS(Gv(Pi)))}N
i=1 (9)
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where Pi represents the original point cloud, Pm denotes the point cloud after undergoing
particle filtering, GV signifies voxel filtering, GS indicates statistical filtering, and MLS
represents the moving least square.

2.2.1. Voxel Filtering

The expanded number of laser emission lines in a 16-line LiDAR system enhances
the spatial resolution of the resultant point set, yielding a densely populated point cloud.
However, this results in an escalated computational load and a reduction in processing
efficiency. To address this, we employed voxel filtering to downsample the point cloud of
the coal pile, while preserving its geometric integrity.

Voxel filtering is a method used for downsampling point clouds, wherein the density
of the point cloud is reduced by partitioning it into individual cubic cells. This partitioning
process ensures that just one representative point is retained within each cell. The process
of voxel filtering involves dividing an original point cloud, represented as P = (xi, yi, zi)

N
i=1,

into cubic cells of size 0.3 m3. The centroid of each cell is used to replace the points within
that cell. The point cloud obtained following the application of voxel filtering can be
expressed as follows:

Pv =
{(

x′i , y′i, z′i
)}

=

{(
1
n

n

∑
j=1

xij,
1
n

n

∑
j=1

yij,
1
n

n

∑
j=1

zij

)}Mv

i=1

(10)

where Pv represents the filtered point cloud after the application of the statistical method,
Mv denotes the number of points remaining after the filtering process.

2.2.2. Statistical Filtering

The point cloud obtained from LiDAR scanning displays slight positional discrepan-
cies attributed to imprecisions in the rotation angle of the actuator during each rotation.
As a result, the stitched point cloud contains an increased number of outlier points, which
adversely affects the reconstruction of the coal pile surface. To alleviate the presence of
outlier points and improve the overall smoothness of the point cloud surface, this study
employs a statistical filtering technique for point cloud processing.

The process of statistical filtering entails assessing the point cloud by calculating
the statistical attributes of individual points and their neighboring points to identify any
outliers. The method commences by computing the mean µi and standard deviation σi for
each point, assuming that the set of the nearest 100 points for each point is represented as
Ni. Subsequently, it ascertains if a given data point is classified as an outlier. After applying
statistical filtration, the resulting point cloud may be expressed as follows:

Ps = {(xi, yi, zi)||zi − µi |< k · σi}Ms
i=1 (11)

where Ps represents the filtered point cloud after the application of the statistical method,
Ms denotes the number of points remaining after the filtering process, and k is the threshold
value that controls the criteria for identifying outlier points.

2.2.3. Moving Least Squares

Following voxel and statistical filtering, the point cloud tends to exhibit sparsity and
local point cloud voids. Hence, a two-step moving least squares method was employed
to upsample the point cloud and fit smooth surfaces, thereby enhancing the continuity
and smoothness of the coal pile point cloud surface and achieving a desirable point cloud
density. For each point i in the point cloud Ps, a neighbor set Ns

i is selected within a 0.5 m
radius, and a plane is fitted using the moving least squares method:

zi = axi + byi + c (12)
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The projection coordinates on the plane for each point i can be determined as (x̂i, ŷi, ẑi).
To fill gaps in the point cloud, we incrementally move 5 cm along the x- and y-axes, using
Formula (12) to generate new points for the surface. The resultant point cloud is commonly
represented as follows:

Pm = {x̂i, ŷi, ẑi}Mm
i=1 (13)

where Pm represents the point cloud after being fitted by the least squares method, and Mm
denotes the number of points in the fitted Pm.

2.3. Edge Detection Algorithm Based on Gradient Clustering

This study introduces a novel approach to address the complex terrain of coal piles
by employing a gradient-based region-expanding clustering algorithm for edge detection.
The method begins with the calculation of local normal vectors for the point cloud repre-
senting the coal pile surface. Subsequently, the local slope is determined based on these
normal vectors.

The initial step involves constructing a KD-tree structure, followed by loading the
point cloud data into the KD tree to facilitate nearest neighbor searches. Within a radius of
r = 0.5 m, the nearest neighbors for point p are determined.

The covariance matrix is then computed using Equation (14). Utilizing Equation (15),
the covariance matrix is decomposed, leading to the determination of eigenvalues and
eigenvectors. The eigenvector corresponding to the minimum eigenvalue provides an
approximation of the normal vector at the given point .

C =
1
k

k

∑
i=1

·(pi − p) · (pi − p)T (14)

C · −→vj = λj · −→vj , j ∈ {0, 1, 2} (15)

where C denotes the covariance matrix, k represents the size of the set of nearest neighbor
points, Pidenotes the i-th nearest neighbor point, P̄ denotes the centroid of the set of nearest
neighbor points, which is the average of all nearest neighbor points, λj represents the j-th
eigenvalue, and −→vj corresponds to the eigenvector associated with λj.

In order to maintain consistency in the acquired normal directions, all normals are
oriented towards the view vector Vp, as depicted in Figure 3.

−→n i ·
(
vp − pi

)
> 0 (16)

where −→ni represents the normal vector of the i-th point, Vp denotes the view vector, which
is aligned with the positive Z-axis direction in this paper, and Pi indicates the coordinates
of the i-th point.

Figure 3. Part of the point cloud normal vector.
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After obtaining the normal vectors for each point, the approximate gradient for each
point can be calculated using the finite difference method:

∇ f (Pi) = (
f (Pi + h∆x)− f (Pi)

h
,

f (Pi + h∆y)− f (Pi)

h
) (17)

where h is the step size parameter, ∆x and ∆y are the unit vectors along the x- and y-axes,
respectively. f (Pi + h∆x) represents the corresponding height at point Pi after moving h
along the x-axis direction.

Once the gradient for each point is obtained, we proceed with clustering using a
method that relies on the growth of the gradient region. The first step involves establishing a
neighborhood connection, where each point is designated as the center and a neighborhood
radius r is defined. Points that are located within a distance of less than r from a certain
point are regarded as constituents of the neighborhood of that point. The procedure
proceeds to cycle through all seed points, denoted as Si ∈ S, within the set S. For every
seed point Si, it verifies if the points Pj in its vicinity meet the following criteria:

cos
(
θij
)
=

Gi · Gj

∥Gi∥
∥∥Gj

∥∥ > cos(θthreshold ) (18)

∣∣∣∣Mi − Mj

Mi

∣∣∣∣ < ε, Mi = |Gi| (19)

where Gi and Gj represent the gradient direction vectors of points Gi and Gj, respectively,
θij is the angle between the two direction vectors, θthreshold is the maximum allowable angle
of gradient direction variation which is set to 15 degrees, Mi and Mj are the magnitudes of
the gradients for Pi and Pj, respectively, and ε is the maximum allowable relative change in
gradient magnitudes, which is set to 2.

Point Pj is incorporated into the same region as Si if it meets the stated conditions, al-
lowing for a smooth merging process. By means of consecutive iterations, this methodology
utilizes gradient information to efficiently propagate the process of region growth.

3. Experiments
3.1. Hardware System

To validate the efficacy of the RPCS-CPF and the gradient-based region-growing
clustering algorithm, experimental validation was conducted at Guoneng Ningxia Lingwu
Power Generation Co., Ltd., Yinchuan, China. Four LiDARs were deployed across a
significant coal pile measuring 200 m by 50 m, ensuring extensive coverage of the coal pile
area, as depicted in Figure 4.

Figure 4. Multiple LiDAR arrangement scheme. Four LiDARs are evenly spaced and fixed above the
coal pile.
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We employed 16-line 3D LiDARs as our primary sensors. LiDARs are instrumental in
acquiring precise three-dimensional positional data, allowing for the determination of an
object’s position, size, external morphology, and even material composition. The LiDARs
chosen for this study possess a horizontal field of view spanning 360◦ and a vertical field
of view of 30°. To facilitate the scanning of large coal piles, we mounted the LiDARs on
servo actuators, thereby expanding their vertical scanning range. These actuators rotate the
LiDARs to scan the entire coal pile.

The installation setup of the LiDARs is depicted in Figure 5. Initially, the servo
actuators were securely affixed beneath the I-beams of the coal storage facility’s canopy,
while the LiDARs were mounted on the rotating structures of these actuators. With a
maximum rotation angle of 180◦, the LiDARs could capture a comprehensive point cloud
of the coal pile.

Figure 5. Installation diagram of LiDAR and servo motor.

3.2. Single LiDAR Particle Filter Results

The coal pile under investigation is illustrated in Figure 6. However, owing to the
restricted field of view of the camera utilized, the representation is confined to a segment
of the entire coal pile.

Figure 6. Coal pile.

The point clouds of the coal pile acquired from the four lidar scans are shown in
Figure 7.
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Figure 7. Point clouds obtained from four LiDAR scans. From left to right, the point clouds obtained
from the four LiDAR scans are designated as cloud1, cloud2, cloud3, and cloud4.

To achieve seamless and continuous point cloud data, we initially employ the RPCS-
CPF algorithm on the point cloud generated from a single LiDAR scan. Subsequently, the
same RPCS-CPF algorithm was applied to the point cloud 3 of the coal pile, yielding the
point cloud depicted in Figure 8.

Figure 8. Comparison of point cloud 3 before and after the RPCS-CPF algorithm.

3.3. Point Cloud Registration

We first conducted a coordinate transformation on the point cloud depicted in Figure 7
to align it with the coordinate system of the coal yard. Subsequently, a straightforward
stitching operation was performed on the point cloud. Following the stitching process, we
filtered the point cloud corresponding to the greenhouse section based on their coordinates.
The resulting stitched point cloud is illustrated in Figure 9.

Figure 9. Concatenated point cloud.

Figure 9 indicates that the point cloud of the coal pile obtained from the 16-line LiDAR
scan is highly dense, witch leads to a significant computational load for subsequent point
cloud processing. The objective of our study is to perform downsampling on the point
cloud while maintaining the integrity and smoothness of the surface. To achieve this,
we proceeded with voxel filtering. The point cloud after voxel filtering is presented in
Figure 10a.

Statistical filtering. Figure 10a reveals that the merged point cloud contains a signif-
icant number of outlier points. This is attributed to the overlapping regions scanned by
two adjacent LiDARs, where the presence of servo actuator rotation errors prevented the
proper alignment of the point clouds within these areas. To mitigate this issue, statistical
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filtering was implemented to eliminate the outliers, with the post-filtering results displayed
in Figure 10b.

Figure 10. A rendering of the point cloud filtering process, where the red arrow represents statistical
filtering, the blue arrows represent least squares surface fitting, and the pink arrows represent
upsampling. (a) The point cloud; (b) the point cloud after statistical filtering; (c,d) are the point
cloud with moving least squares technique; (e) the point cloud after iteration of moving least
squares upsampling.

Moving least squares. After using voxel and statistical filtering procedures, a signifi-
cant decrease in point cloud density was observed, resulting in a notably smoother surface
characterized by a minimal presence of outlier points. The utilization of a moving least
squares technique was employed for surface fitting in order to improve the continuity and
smoothness of the resultant point cloud. The results of this fitting procedure are depicted
in Figure 10c,d. The point cloud of the coal pile surface obtained after the application of
the moving least squares approach demonstrates enhanced smoothness, as there are no
observable outliers in the merged sections. Nevertheless, following the process of voxel
downsampling and statistical filtering, the point cloud underwent a reduction in density,
resulting in the presence of several regions with localized point loss. In order to tackle this
issue, an additional iteration of moving least squares upsampling was implemented, and
the outcomes are illustrated in Figure 10e.

As depicted in Figure 10, the RPCS-CPF algorithm demonstrated noteworthy outcomes.
The combined point cloud preserves the coherence and uniformity while precisely represent-
ing the topographic arrangement of the coal pile’s surface. In contrast to alternative techniques
like point cloud registration, this particular approach exhibits reduced computing complexity,
thereby indicating its wide-ranging potential for various applications.

Smoothness comparison. To compare the point cloud stitching effects before and
after the application of the particle filtering algorithm, we extracted the point cloud at the
stitching areas and voxelized them with a size of 0.5 × 0.5 along the x- and y-coordinates.
The standard deviation of the height values and the maximum height difference were
subsequently computed for each point cloud. The mathematical expression used to get the
standard deviation is as follows:
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σ =

√
∑n

i=1(zi − µ2)

n
(20)

where σ represents the standard deviation of the Z-values within the same voxel, zi is the
height value of the i-th point within the voxel, and µ is the average height value of the points
within the same voxel. The average standard deviation and average maximum difference
of all voxels near the same stitching boundary are used to measure the smoothness at the
stitching site, as shown in Table 1.

Table 1. Comparison of smoothness at the stitching before and after the RPCS-CPF algorithm.

Standard
Deviation—Before

Maximum
Difference—Before

Standard
Deviation—After

Maximum
Difference—After

0.47 1.75 0.19 0.82
0.35 1.17 0.20 0.85
0.47 1.48 0.21 0.90

Figure 11 displays the point cloud that was extracted in close proximity to the stitching
line. The point cloud’s range in the X direction has been extended to enhance clarity.
Figure 11a,c depict the point cloud from various viewpoints prior to the implementation
of the particle filtering technique. The presence of layering in the up and down regions of
the stitching site is evident, indicating a lack of smooth flow. Figure 11b,d depict the point
cloud pictures subsequent to the implementation of the particle filtering technique. Based
on the presented data, it is apparent that the stitching site exhibits minimal layering and
a seamless transition, suggesting that the RPCS-CPF algorithm, as proposed, has yielded
satisfactory outcomes.

Figure 11. Comparison of point cloud stitching before and after RPCS-CPF algorithm. (a,c) are
the stitched point cloud of different viewpoint without particle filtering; the red cicrle areas in (a)
are the discontinuous point cloud. (b,d) are the stitched point cloud of different viewpoint with
particle filtering.
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3.4. Edge Detection

We conducted algorithm validation within an enclosed coal yard, as depicted in
Figure 12. This paper introduces a region-growing clustering algorithm that leverages
preliminary edge cues derived from gradient information. The algorithm initiates with seed
points exhibiting strong gradient responses and incrementally incorporates neighboring
pixels into the same region, adhering to a predetermined consistency in gradient direction,
until a specified termination condition is met.

Figure 12. Coal yard vehicle operating environment.

The experimental results affirmed the algorithm’s proficiency at defining the bound-
aries of unique features within the coal pile. The algorithm was first utilized to extract the
boundary of the coal pile as shown in Figure 13. Following this, visual inspection revealed
that the algorithm could also identify the edges of critical terrain features, including de-
pressions (Figure 14a), corridors (Figure 14b), and ridges (Figure 14c). This observation
indicates that, although our algorithm is primarily intended for precise extraction of the
coal pile boundary, it effectively captures the boundaries of specific terrain features as well.

Figure 13. Vehicle approaching the danger boundary.
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Figure 14. Boundarys of coal pile. (a) explanation; (b) explanation; (c) explanation.

4. Discussion

Coal piles, as fundamental units of management, allow for the convenient measure-
ment of daily coal usage and the efficiency of coal combustion when their point clouds
are obtained. The current popular methods for acquiring point clouds of large coal piles
involve using drones equipped with LiDARs for scanning or employing movable 2D Li-
DAR devices. Both methods have certain drawbacks. For example, scanning with drones
requires planning complex flight paths, and, if the internal environment of the coal yard
changes, the original path may no longer be suitable. Although 2D LiDAR can capture the
entire point cloud of a coal pile, the scanning speed is slow, and the resulting point cloud is
relatively sparse. Therefore, we propose that using multiple LiDAR devices to scan large
coal piles and then stitching together the obtained segments can both increase the scanning
speed and ensure the completeness of the point cloud.

In the experimental portion of our study, we deployed four LiDAR devices, each af-
fixed to a servo to allow for scanning across the breadth of the coal pile. However, when the
servos operated the LiDAR devices to scan the coal pile, there was a rotational discrepancy
due to the effects of gravity, which introduced noise into the scanned point cloud. This
generated two primary issues: firstly, the point cloud derived from the LiDAR scan was
non-continuous and contained numerous outliers; secondly, the post-stitching point cloud
did not merge seamlessly, as illustrated in Figure 9, where a distinct demarcation line is
visible at the juncture. This demarcation is a direct consequence of the servo’s rotational
error. Consequently, the RPCS-CPF method introduced in this paper is of significant impor-
tance. In this section, we will be comparing the stitching method predicated on CPF with
the original method, which relies on coordinate transformation, from the perspectives of
point cloud smoothness and the number of parameters involved.

4.1. Smoothness Comparison

To verify the effectiveness of our CPF (Conditional Point Filtering) filter, we conducted
comparative experiments by applying the CPF filter to both individual point clouds and
the entire point cloud, as shown in Table 2. We have compiled and presented the mean
values of the standard deviation and the maximum difference at three coal pile point
cloud stitching locations. It is evident from the table that, prior to the CPF process, the
point clouds were merely stitched together through coordinate rotation transformations.
However, due to the presence of servo rotational errors, it was nearly impossible to ensure
a successful stitch at every junction. After applying our CPF method to filter the individual
point clouds followed by the entire point cloud, this approach substantially lessened the
influence of servo rotational errors during the stitching process of point clouds. Therefore,
it is essential to apply CPF filtering to individual point clouds as well as to the entire point
cloud ensemble.
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Table 2. Comparison of smoothness between CPF and the original method.

Standard Deviation Maximum Difference SP EP

Original method 0.43 1.47
CPF (ours) 0.31 1.22

√

CPF (ours) 0.26 1.05
√

CPF (ours) 0.2 0.85
√ √

“SP” denotes the application of CPF to an individual point cloud, whereas “EP” signifies its application to the
concatenated point cloud.

4.2. Comparison of Parameters

As can be observed from Figure 9, the point cloud immediately after scanning is ex-
tremely dense, containing a significant amount of noise and outliers. To reduce the density
of the point cloud and enhance computational speed, downsampling was initially applied
to the point cloud. This was followed by upsampling to achieve a better presentation. To
facilitate a more comprehensive demonstration, statistics on the quantity and density of the
point clouds at each step were compiled, as shown in Table 3. It can be seen from the table
that, after downsampling the initial point cloud, the number of parameters was reduced
by 90%, and the processing time was also reduced by the same percentage. Upon final
upsampling, the density of the point cloud was similar to that before processing, yet the
smoothness and integrity of the point cloud were significantly improved, which indicates
that our method has yielded satisfactory results.

Table 3. Comparison of density between CPF and the original method.

Number Density Voxel
Filtering

Statictical
Filtering

MLS-
Upsample

Original
method 1,057,584 105

CPF (ours) 100,510 10
√

CPF (ours) 99,689 9
√ √

CPF (ours) 797,512 80
√ √ √

4.3. Limitations

This study still has several limitations in the acquisition and processing of coal pile
point cloud data. Due to the mechanical structure, it is challenging for multiple LiDAR
devices to achieve fully synchronized scanning, which may lead to temporal errors during
point cloud stitching. These temporal discrepancies could potentially impact the consis-
tency and accuracy of the point cloud data. Although the CPF proposed in this study
has demonstrated satisfactory performance in practical applications, there is scope for
improvement in terms of algorithmic precision and the extent of surface detail restoration
of the coal pile point cloud. The current approach may not fully recover all the details of
the coal pile surface, particularly in instances where significant discontinuities are present
on the coal pile surface. We intend to explore more efficient and accurate algorithms in
future research to replicate the surface characteristics of the coal pile point cloud as closely
as possible.

5. Conclusions

This paper focused on addressing the efficient stitching of coal pile point cloud data
and the precise detection of boundaries, with the aim of enhancing safety and efficiency in
the coal mining industry. The primary contributions of this study are as follows:

(1) The RPCS-CPF (Rapid Point Cloud Stitching–Constrained Particle Filter) algorithm is
proposed, specifically optimized for integrating point cloud data in large-scale coal
pile environments. Experimental validations conducted on real large-scale coal piles
demonstrated the unique advantages of this algorithm. It not only facilitates smooth
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transitions in stitched areas, but also ensures the consistency and integrity of the
overall point cloud data while preserving the detailed geometric features of the coal
pile surface.

(2) Proposal of an edge detection algorithm based on gradient region expanding cluster-
ing to address the complex surface characteristics of coal piles. Experimental results
validated the capability of this method to accurately identify boundaries, thereby sig-
nificantly contributing to safety assessments and guidance in coal mining operations.

In conclusion, this study has not only presented the novel RPCS-CPF algorithm for
point cloud stitching and edge detection, but also provided a foundation for future research.
The outputs of this research have immediate practical applications in the coal mining
industry, improving both the safety and efficiency of operations. For future work, we
suggest exploring the integration of these algorithms with real-time monitoring systems
and expanding the study to include a wider range of coal pile environments and conditions.
Additionally, we will continue to explore more efficient and precise algorithms to replicate
the surface characteristics of coal pile point clouds as closely as possible.
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