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Abstract: Sterol homeostasis in mammalian cells and tissues involves balancing three fundamental
processes: de novo sterol biosynthesis; sterol import (e.g., from blood-borne lipoproteins); and sterol
export. In complex tissues, composed of multiple different cell types (such as the retina), import
and export also may involve intratissue, intercellular sterol exchange. Disruption of any of these
processes can result in pathologies that impact the normal structure and function of the retina. Here,
we provide a brief overview of what is known currently about sterol homeostasis in the vertebrate
retina and offer a proposed path for future experimental work to further our understanding of these
processes, with relevance to the development of novel therapeutic interventions for human diseases
involving defective sterol homeostasis.
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1. Introduction

Sterols are ubiquitous cellular constituents throughout the animal kingdom and across
phyla. Cholesterol is by far the predominant sterol found in mammalian cells and tis-
sues, including the vertebrate retina, under normal circumstances [1]. However, under
circumstances where the normal synthesis of cholesterol is genetically or pharmacologi-
cally disrupted, alternative sterols can replace cholesterol, leading to serious, often lethal,
pathologies [2,3]. Conversely, the excessive and aberrant deposition of cholesterol, typically
in the form of esters and/or oxidized derivatives, in tissues has been associated with differ-
ent pathologies, such as atherosclerosis [4], age-related macular degeneration (AMD) [5],
and diabetic retinopathy [6]. Maintenance of normal steady-state levels and distribution of
cholesterol in the vertebrate retina is essential for promoting and maintaining the normal
structure and function of the retina. This is achieved via “cholesterol homeostasis”: the
balance between local (in the retina per se) cholesterol de novo synthesis, lipoprotein uptake
from extraretinal sources (e.g., blood-borne lipoproteins), and its export from the retina
(to the blood). The reader is directed to recent, more expansive review articles that have
addressed this topic previously [7–9]. Here, our intent is to focus on some of the essential
facts regarding cholesterol homeostasis and functions in the vertebrate retina, to discuss
the current challenges in measuring retinal sterol synthesis and turnover rates, and to point
the way toward future experimental approaches that may be applied toward filling in the
knowledge gaps that currently exist with regard to this topic.

A summary schematic depicting the localization of the various molecular players
(enzymes, receptors, transporters) involved in cholesterol homeostasis in the retina is
shown in Figure 1. Additionally, Figure 2 is a simple schematic diagram to illustrate
cellular cholesterol homeostasis mechanisms in a stylized, “generic” mammalian cell. The
interested reader is referred to the prior review articles cited above [7–9] for a more fulsome
discussion of mechanisms and the specific molecular “players” involved.

Biomolecules 2024, 14, 341. https://doi.org/10.3390/biom14030341 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom14030341
https://doi.org/10.3390/biom14030341
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0003-1029-1051
https://orcid.org/0000-0002-2557-142X
https://doi.org/10.3390/biom14030341
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom14030341?type=check_update&version=2


Biomolecules 2024, 14, 341 2 of 13Biomolecules 2024, 14, x FOR PEER REVIEW 2 of 13 
 

 
Figure 1. Schematic representation of cholesterol homeostatic processes involved in the vertebrate 
neural retina. Retinal pigment epithelium (RPE) cells and Müller glia may serve as major hubs for 
lipoprotein efflux and uptake from/to the neural retina. They also may play a key role in intraretinal 
distribution of lipoproteins to maintain neuronal sterol demands [8]. 

 
Figure 2. A simplified schematic of intracellular cholesterol homeostasis mechanisms in a “generic” 
mammalian cell. Cholesterol de novo synthesis occurs in the endoplasmic reticulum (ER) through 
the mevalonate pathway. ApoE/J-containing lipoproteins are taken up by cells through receptor-
mediated endocytosis, followed by lysosome–ER exchange of free cholesterol. Enzymatic and non-
enzymatic mechanisms are involved in the generation of hydroxylated and oxidized cholesterol, to 
enable easy sterol efflux from the cell. An ATP-binding cassette (ABC) transporter system is in-
volved in cellular cholesterol efflux, by sequestering sterols and oxysterols into ApoA1-containing 
HDL particles. Cells also may sequester cholesterol (and its esters) into lipid droplets. 

Figure 1. Schematic representation of cholesterol homeostatic processes involved in the vertebrate
neural retina. Retinal pigment epithelium (RPE) cells and Müller glia may serve as major hubs for
lipoprotein efflux and uptake from/to the neural retina. They also may play a key role in intraretinal
distribution of lipoproteins to maintain neuronal sterol demands [8].
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mevalonate pathway. ApoE/J-containing lipoproteins are taken up by cells through receptor-
mediated endocytosis, followed by lysosome–ER exchange of free cholesterol. Enzymatic and
non-enzymatic mechanisms are involved in the generation of hydroxylated and oxidized cholesterol,
to enable easy sterol efflux from the cell. An ATP-binding cassette (ABC) transporter system is
involved in cellular cholesterol efflux, by sequestering sterols and oxysterols into ApoA1-containing
HDL particles. Cells also may sequester cholesterol (and its esters) into lipid droplets.

2. Functions of Cholesterol in the Retina

Cholesterol is required for retinal development, maturation, and functioning. Choles-
terol plays a morphogenic role via the Sonic Hedgehog signaling pathway, which is required
for proliferation of retinal neuronal precursor cells [10]. The distribution of cholesterol
in the vertebrate neural retina has been demonstrated and discussed elsewhere [8]. Here,
we will discuss some known functions of the cholesterol-rich liquid-ordered (Lo) phase of
retinal plasma membrane. The plasma membrane Lo phase serves as a critical cell signaling
and regulatory hub due to preferential partitioning of several membrane proteins into
the Lo phase. Proteomic and lipidomic analysis of purified bovine rod outer segment
(ROS) disk membranes, ROS plasma membranes, and detergent-resistant membrane (DRM)
fractions has provided key insights into the protein and lipid constituents of these sepa-
rate membrane compartments of photoreceptors [11]. A significant protein constituent of
the DRM fraction of bovine ROS plasma membranes is caveolin-1 (CAV-1). CAV-1 also
interacts with transducin-α, another DRM-enriched protein, in a cyclodextrin-sensitive,
cholesterol-dependent manner [12]. Other ROS DRM fraction residents include glucose
transporter-1 (GLUT-1), ROM1, and cyclic nucleotide-gated channel subunits alpha-1 and
beta-1 (CNGα-1 and CNGβ-1, respectively). Very low abundance of rhodopsin (RHO)
also was found to colocalize in DRMs, while a majority of RHO and other proteins such
as ABCA4 were enriched in the non-DRM plasma membrane fraction of ROS disks [11].
RHO is selectively sequestered to the disk membrane Lo phase only when in complex with
GTP-bound (activated) transducin-α [13]. These findings independently agree with the
known distribution of cholesterol in photoreceptors (PRs) [14,15] and suggest a critical role
for cholesterol in efficient PR signal transduction and subsequent synaptic transmission.

The retinal pigment epithelium (RPE) phagolysosomal pathway is necessary for main-
taining PR outer segment homeostasis [16]. Cholesterol modulates the functioning of
lysosomal acid sphingomyelinase, thereby regulating RPE lysosomal function [17]. Freeze–
fracture electron microscopy studies of RPE cells treated with filipin clearly have demon-
strated cholesterol enrichment in degradative phagosomes in the RPE [18]. In addition,
independent studies have demonstrated a critical role for phagosome membrane cholesterol
in phagosome maturation [19,20].

Cholesterol regulates synaptogenesis and synaptic function in the central nervous sys-
tem (CNS), including the neural retina [21]. Cyclodextrin-mediated depletion of membrane
cholesterol increases the lateral motility of voltage-gated calcium channels in cone PRs and
bipolar cells [22,23]. We have previously discussed in detail the neuronal dependency on
glia-synthesized lipoproteins for synaptogenesis elsewhere [8]. Briefly, results obtained
using a retinal ganglion cell (RGC)–Müller glial co-culturing strategy suggested that glia-
secreted low-density lipoprotein (LDL) is essential for neuronal synaptogenesis [21]. Ample
in vivo evidence also suggests uptake of glia-synthesized LDL by neurons, and such uptake
may be necessary for axonal growth [24,25]. This reflects the importance of neuronal–glial
interactions in order to maintain neuronal sterol homeostasis and function.

3. De Novo Sterol Synthesis in the Retina

Early studies (reviewed in [26]) that demonstrated the ability of the vertebrate retina
to synthesize sterols and sterol pathway intermediates de novo (e.g., using radiolabeled
mevalonate as substrate) were performed using cell-free homogenates prepared from
bovine retinas [27] and, subsequently, with intact bovine retinas in short-term organ cul-
ture [28]. However, it was found that the formation of cholesterol was very inefficient in
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those systems, resulting in accumulation of radiolabel primarily in cholesterol pathway
intermediates (sterols and also non-sterol isoprenoids (e.g., squalene)). The first demon-
stration of the ability of the vertebrate retina to efficiently synthesize cholesterol from
de novo substrates was achieved by intravitreal injection of [3H]acetate in rats [29] and
frogs [30]. Subsequently, it was shown that [3H]farnesol could be converted to cholesterol
and other sterol products upon intravitreal injection in rats [31]. The first estimates of
the absolute rates of cholesterol synthesis, as well as dolichol synthesis (an off-shoot of
the mevalonate pathway), were obtained by incubation of frog retinas in vitro in medium
containing [3H]water [32]. It was concluded from those studies that de novo cholesterol
synthesis by the retina was insufficient to account for even the steady-state cholesterol
content of retinal ROS membranes, not to mention the cholesterol requirements of the
multiple other cell types of the retina. Hence, it became evident, contrary to the “con-
ventional wisdom” at the time, that the vertebrate retina (despite being part of the CNS)
is quite unlike the brain, which synthesizes essentially all of its own cholesterol without
reliance upon uptake of blood-borne cholesterol (see [33]). More recent studies, using mice
fed [2H]water and [2H]cholesterol, have concluded that 72% of the cholesterol found in
the vertebrate retina arises from local de novo synthesis (i.e., by resident retinal cells); by
contrast, it was calculated that 97% of cholesterol found in the brain is synthesized de novo
by the brain [34] [see Section 4, below].

Zheng et al. [14] reported on the spatial distribution of key enzymes involved in
cholesterol homeostasis in the human neural retina (also including the RPE and choroid)
using qualitative immunohistochemistry, with correlative PCR and qRT-PCR analysis of
expression levels of relevant genes in the pathway. Most relevant to de novo cholesterol
synthesis, HMG-CoA reductase (HMGCR; the major rate-limiting enzyme of the pathway)
was found to localize to multiple histological layers of the retina, most prominently the
inner and outer nuclear layers (INL and ONL, respectively), the nerve fiber layer (NFL), and
the ganglion cell layer (GCL). Less prominently labeled were the PR inner segment layer,
inner and outer plexiform layers (IPL and OPL, respectively), and the RPE. Other molecular
players relevant to de novo cholesterol synthesis were found to colocalize with HMGCR,
including SREBPs (sterol regulatory binding proteins), INSIGs (insulin-induced gene 1
protein), and SCAP (SREBP cleavage-activating protein). These findings are generally
consistent with those of other studies using rat or monkey retinas [35]. Analysis of the
protein level distribution of sterol homeostatic machinery in the neural retina suggests
expression of the mevalonate pathway in essentially all retinal cell types [14]. Below,
we show results obtained by analysis of publicly available single-cell transcriptomic data
obtained from the developing mouse retina (between E11 and P8), using a freeware platform
(“Spectacle”) (Figure 3); this reveals that RGCs express the highest transcript levels of
mevalonate pathway genes [36,37]. These findings, taken together with the neuronal–
glial interaction for sterol homeostasis in the mature retina, suggest dynamic changes in
cell-specific de novo synthesis of cholesterol in the developing and mature neural retina.

Taken together, there is compelling evidence to demonstrate that the vertebrate retina
has the capacity to synthesize cholesterol de novo. While apparently multiple cell types in
the retina have this capacity, including PRs, RGCs, RPE cells, and Müller glia, it has yet
to be determined, quantitatively, what their individual relative contributions are to the
total sterol pool in the retina, either under normal conditions or under conditions involving
diseases that impact the structure and function of the retina. Also, although the studies
involving [2H]water in mice (see above) suggest that 72% of the total cholesterol pool in
the neural retina arises from de novo (local) synthesis, it remains to be demonstrated that
this holds true for other species, including humans.
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4. Biological Considerations in Measuring Tissue Sterol Synthetic Rates Using a
Radioisotope Approach

Isotopic approaches using deuterated water ([2H]water) have been utilized to deter-
mine the relative contributions of de novo cholesterol synthesis to the total tissue sterol
pool. This approach involves feeding [2H]water (typically at 4–10% enrichment), followed
by mass spectrometric quantification of [2H]labeled cholesterol (or other metabolites) in
the tissue of interest [38–43]. Here, we discuss several important biological factors that
can affect the [2H]water-based approach with regard to accurately estimating de novo
cholesterol biosynthetic rates in tissues.

The dilution of [2H]water administered (in % by vol.) affects its serum enrichment
(which needs to be experimentally determined) [43]. Sterol synthetic and turnover rates
(often expressed as half-lives) are highly variable between different tissues. For instance,
the synthetic rate in liver is extremely high, while the half-life of cholesterol in the brain is
extremely long. Therefore, the time period needed for serum equilibration of [2H]water
should be considered. Typically, serum enrichment of [2H]water reaches a plateau rapidly
within 6 h [42]; however, the serum enrichment is much lower than the [2H]water fraction in
the food source [41,42]. Naturally occurring 13C and 18O isotopes may also be incorporated
during cholesterol synthesis in animals fed with unlabeled water, and applying appropriate
correction factors for the same is necessary.

The average number of deuterium atoms incorporated per cholesterol molecule is
termed “molecular enrichment” (ME). Of the 46 protons in cholesterol (C27H46O), between
21 and 27 protons are derived from water, in a species-dependent manner [40,44]. Therefore,
the dilution of [2H]water in the food, its subsequent serum enrichment, and the species and
tissue of interest determine the cholesterol isotopomer (isotopic isomer) species distribution.
The “molar fraction” (MF) of individual mn species is calculated as mn/Σmn [45]. For
reliable assessment of sterol synthetic rates, essentially every newly synthesized cholesterol
molecule should incorporate at least one deuterium atom. Ideally, the tissue mo species
would represent unlabeled cholesterol present in the tissue prior to administration of
[2H]water, while all sterol molecules synthesized during the experimental period fall in mn
species [40]. However, if the ME is low, wherein the dominant mn species contains only one
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deuterated atom (i.e., n = 1), then a significant proportion of newly synthesized cholesterol
during the experimental period would still contain mo species [40]. Hence, a correction
factor for unlabeled, newly synthesized mo species should be determined based on the
frequency distribution of mn species, to accurately determine the tissue sterol synthetic
rates [40]. Measuring retinal sterol synthetic rates using this isotopic approach is very
challenging due to the above discussed factors.

5. Technical and Biological Challenges in Achieving Tissue/Cell Type-Targeted
Inhibition of Cholesterol Synthesis

An alternative strategy to study sterol biosynthetic rates in the tissue of interest, with-
out the use of radioisotopes, involves tissue-specific inhibition of mevalonate pathway
enzymes (e.g., HMGCR, SQLE, DHCR14, DHCR7 etc.) and measurement of the rate of
accumulation of the relevant enzyme substrate. Such an “enzyme blockade” approach was
employed by Keller et al. [46] to measure the absolute rate of cholesterol synthesis in the
rat brain (which was validated, in parallel, by monitoring [3H]acetate incorporation into
brain cholesterol). However, there are no currently available regimens to reliably inhibit
mevalonate pathway flux pharmacologically specifically in the retina per se (i.e., not per-
turbing systemic cholesterol synthesis as well). Intravitreal injection of a statin (inhibiting
HMGCR) has been found to cause retinal degeneration and inhibition of the pre-squalene
pathway [47,48]. The best available strategy to inhibit cholesterol synthesis is genetic abla-
tion of Kandutsch–Russell or Bloch pathway enzymes. Global knockout of DHCR7 leads to
neonatal death, thereby necessitating the development of novel conditional models [49].
The first available conditional DHCR7 model to allow tissue-specific assessment of function
was only recently generated [50]. Surprisingly, tissue-specific (liver) deletion of DHCR7
only led to partial (and relatively modest) inhibition of cholesterol synthetic flux [49]. The
molecular basis for partial inhibition of flux may be due to functional redundancies between
post-squalene pathway enzymes. Evidence for functional redundancy in cholesterol path-
way enzymes was first observed between DHCR14 and a nuclear membrane protein called
Lamin B receptor (LBR) [51]. Global deletion of DHCR14 only led to partial buildup of
14-dehydrocholesterol, while DHCR14/LBR double knockout led to complete inhibition of
sterol synthesis [51]. Interestingly, the sterol reductase domain is fully conserved between
DHCR7, DHCR14, and LBR [52]. Similar screening for functionally redundant partners of
DHCR7 remains to be reported. Upon identification of other redundant enzymatic partners
involved in cholesterol synthesis, retina-specific double knockout of genes encoding them
may be necessary for effective targeted and complete inhibition of cholesterol synthesis in
the retina.

Preliminary testing of functional redundancy between sterol reductases may be per-
formed using in vitro transcriptional silencing experiments, as well as in silico molecu-
lar simulation [53–55]. Once candidate redundant reductases are identified, transgenic
approaches using conventional Cre-LoxP methodology would be necessary to generate
double/triple-knockout mouse lines to achieve successful targeted inhibition of sterol
synthesis. Care must be taken in the application of Cre-LoxP transgenic approaches to
ensure cell type-specific onset of Cre recombinase activity [56,57]. Cre recombinase lines
often exhibit unanticipated (and unintended) germline recombination, as well as “leaky”
(ectopic) expression in non-target cell types [56–59]. We have recently described a simple
workflow approach using a fluorescent reporter mouse line to maintain retinal cell type-
specific Cre mouse lines, such as RPE65-Cre, CRX-Cre, GFAP-Cre, and Rho-iCre [60–64].
We propose that reporter-verified, cell type-specific, double-gene knockout is the only
available tractable and reliable method to investigate the role of cellular de novo synthesis
of sterols.

6. Sterol Uptake by the Retina

Unlike the capillaries that constitute the main elements of the blood–brain barrier,
which excludes circulating lipoproteins [33] from entering the brain, the choroidal vascula-
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ture has a fenestrated capillary network (the choriocapillaris) [65] that can allow passage
of blood-borne lipoproteins from the blood to the RPE—the cellular interface between
the choroidal blood supply and the outer neural retina. The basal surface of the RPE is
populated by multiple lipoprotein receptor subtypes, which can facilitate uptake of those
lipoproteins [66–71]. The ability of cholesterol carried by blood-borne lipoproteins to be
taken up by the retina was first demonstrated by Tserentsoodol et al. [35] in rats [see also
below]. In a series of unrelated studies, the ability of diet-derived cholesterol to alter the
steady-state sterol composition of the rat retina was demonstrated [72], again implicating
blood-borne lipoprotein uptake as a significant factor contributing to cholesterol home-
ostasis in the retina. The subsequent study by Mast et al. [34], referenced above, provided
important additional quantitative information in this regard, where it was estimated that
nearly 30% of the sterol content of the mouse retina arises from uptake of cholesterol from
the blood. More recent studies, performed using mice [73] and hamsters [74,75], have
validated and extended those results.

The Tserentsoodol et al. [76] study employed intravenously injected human-derived
LDL “doped” with cholestatrienol (cholesta-∆5,7,9(11)-trien-3β-ol), a naturally fluorescent
cholesterol analog, to monitor lipoprotein uptake by the rat retina, as a function of time
post-injection, using confocal fluorescence microscopy analysis of ocular tissue sections.
Fluorescence first appeared in the choroid and RPE, then sequentially in the outer retina
(PR layer), and then spread to the inner retinal layers to the vitreoretinal interface. This
suggested intraretinal transport of circulating lipoprotein-borne cholesterol that was ini-
tially taken up by the RPE. A companion study by the same group validated that such
a mechanism is present in the neural retina, primarily involving HDL (as the vehicle
for cholesterol transport) and a host of other molecular players (e.g., ABCA1, scavenger
receptors (SR-I and SR-III), CD36, CETP (cholesteryl ester transfer protein), and LCAT
(lecithin-cholesterol acyl transferase)) [76]. These findings were generally corroborated
(and extended significantly) by Zheng et al. [76].

Hence, there is compelling evidence to demonstrate the capacity of the vertebrate
retina to take up exogenous (extraretinal) cholesterol from blood-borne lipoproteins, using
a receptor-mediated mechanism. How that pool of cholesterol is utilized by the various cell
types of the retina, what percentage of that pool is taken up by each retinal cell type, and
exactly how it becomes distributed throughout the different histological layers of the retina
remain to be elucidated.

7. Sterol Efflux from the Retina

Having considered the “supply side” of cholesterol homeostasis in the retina, we now
turn our attention to how the retina gets rid of excess cholesterol. Cholesterol typically
undergoes enzymatic hydroxylation and oxidation (by CYP27A1 and CYP46A1) to generate
relatively less hydrophobic oxysterols which may be easily effluxed from the cell [77]. The
predominant hydroxy- and oxysterols generated by CYP27A1 and CYP46A1 include 24-,
25-, and 27-OH-cholesterol [77]. Other enzymatic players involved in generating oxysterols
are TSPO (translocator protein) and NADPH oxidases [78]. Cellular stressors such as
Fenton reaction products can also contribute to the generation of oxysterols [79]. The
primary players involved in cellular sterol efflux as HDL particles are ABCA1 and ABCG1
in most tissues, including the retina, with the exception of the brain, which utilizes ABCG1
and ABCG4 for sterol efflux (reviewed in [8,33]). ABCA1/ABCG1 sequesters cellular
oxysterols into ApoA1-containing HDL particles and thereby regulates HDL formation
and cholesterol efflux from cells. The expression of these ABC transporters is regulated by
LXRα and LXRβ, in rod PRs and RGCs, respectively (reviewed in [8]). ABCA1 was found
to be enriched in the RGC layer, RPE, as well as PR inner segments [76]. Concomitant
deletion of ABCA1 and ABCG1 from rod PRs led to the accumulation of cholesterol, 24-,
25-, 27-OH-cholesterol [80]. Similarly, ABCA1/G1 deletion in RPE cells also leads to lipid
efflux defects and retinal dystrophy [81]. Global concomitant deletion of sterol-oxidizing
enzymes CYP27A1 and CYP46A1 causes retinal dysfunction as early as PN 3 months and
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is characterized by a significant increase in retinal cholesterol content [82]. Together, these
studies suggest a critical role for lipid efflux mechanisms in appropriate maintenance retinal
structure and function as well as to overall retinal cholesterol homeostasis.

8. Strategies to Measure Sterol Uptake and Efflux Rates in the Neuronal Retina

Investigation of sterol synthesis using an isotope-based strategy is challenging (as
discussed above), since it requires the use of radiolabeled precursors, such as deuterated
or tritiated water, acetate, or mevalonate. We have previously demonstrated, using a
pharmacologically induced model of Smith–Lemli–Opitz syndrome (SLOS), that dietary
cholesterol (2% w/w in the food) was sufficient to almost fully replace the retinal sterol
pool [72,83]. However, the rate of replacement of retinal sterols in that model may not
be truly reflective of retinal cholesterol turnover rate, due to the significant buildup of
relatively less hydrophobic oxysterols. However, while measurement of retinal cholesterol
uptake and efflux rates using an isotopic approach is technically feasible, unfortunately
it tends to be prohibitively expensive. The strategy involves dietary supplementation
with deuterated cholesterol (d5 or d7, at 1% w/w). Based on the sterol turnover window
observed in the aforementioned SLOS study, animals may need to be placed on this diet
for about one month. Time-dependent enrichment of labeled cholesterol in the retina (at 4
or 5 different time points) will be truly reflective of the sterol uptake profile in the neural
retina of the specific species of interest. A cohort of such special chow-fed animals then may
be weaned, and the time-dependent loss of isotope-labeled cholesterol would be reflective
of the retinal cholesterol efflux rate.

9. Conclusions

From the foregoing discussion, it is clear that the fundamental features of the choles-
terol homeostasis process in the vertebrate retina are known, at least in broad terms.
That knowledge rests upon the published outcomes of animal-based (mostly mice and
rats) in vivo studies as well as in vitro animal cell culture and cell-free tissue homogenate
metabolic studies. However, there remains to be learned further details, at the molecular
and cellular levels, as well as the system level, about the process. The results obtained
to date from lab-based experimental studies are generally consistent with what is known
about systemic and brain cholesterol homeostasis in humans; however, it remains to be con-
firmed that those same findings are quantitatively applicable to human retinal cholesterol
homeostasis as well as more generally across vertebrate species. While there are several
known human hereditary diseases caused by cholesterol biosynthetic defects, they are all
recessive and, thankfully, rare, and none of them are non-syndromic (i.e., all bodily tissues
are affected, not specifically the retina) [2,84]. While pharmacological and dietary supple-
mentation approaches have been tried as therapeutic interventions for clinical management
of patients afflicted with such diseases, in general, those approaches have not proven to be
widely effective [85–88]. With regard to human diseases that involve disruption of choles-
terol homeostasis that involve structural and/or functional abnormalities in the retina,
it is more often the case of having too much cholesterol (and its esters and oxidized by-
products), i.e., deposition and failure to efficiently remove excess cholesterol-rich deposits,
rather than local defective de novo synthesis of cholesterol [89,90]. The use of statins as a
treatment option for AMD has been tried and debated for many years (see [91–93]), with
conflicting results and without current definitive resolution. Also, very recently it has been
proposed that different biological processes may underlie the formation of specific types of
cholesterol-rich deposits associated with AMD (e.g., drusen vs. sub-drusenoid deposits
(SDDs)), resulting in different disease states); hence, different therapeutic intervention
strategies may be required to resolve those distinct pathologies [94]. More effective thera-
peutic interventions in such diseases may require a combination of pharmacological, dietary,
and gene therapy-based interventions, guided in part by data-mining approaches [95] and
application of refined pharmacogenomics [96] as well as use of more recently developed
and emerging pharmaceuticals for improved lipid management [97].
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