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Abstract: Unanimous action to achieve specific goals is crucial for the success of a robotic swarm.
This requires clearly defined roles and precise communication between the robots of a swarm. An
optimized task allocation algorithm defines the mechanism and logistics of decision-making that
enable the robotic swarm to achieve such common goals. With more nodes, the traffic of messages
that are required to communicate inside the swarm relatively increases to maintain decentralization.
Increased traffic eliminates real-time capabilities, which is an essential aspect of a swarm system.
The aim of this research is to reduce execution time while retaining efficient power consumption
rates. In this research, two novel decentralized swarm communication algorithms are proposed,
namely Clustered Dynamic Task Allocation–Centralized Loop (CDTA-CL) and Clustered Dynamic
Task Allocation–Dual Loop (CDTA-DL), both inspired by the Clustered Dynamic Task Allocation
(CDTA) algorithm. Moreover, a simulation tool was developed to simulate different swarm-clustered
communication algorithms in order to calculate the total communication time and consumed power.
The results of testing the proposed CDTA-DL and CDTA-CL against the CDTA attest that the
proposed algorithm consumes substantially less time. Both CDTA-DL and CDTA-CL have achieved
a significant speedup of 75.976% and 54.4% over CDTA, respectively.

Keywords: swarm robotics; swarm intelligence; clustered dynamic task allocation; communication
optimization for swarm

1. Introduction

With the advancement of automation in the industrial world, such as flying drones [1],
autonomous driving [2–4], biomedical engineering [5,6], and agriculture [7], many re-
searchers have shown interest in different strategies for centralized computations due to the
lack of computational power, as in [8,9]. One of the approaches to decentralized problem-
solving is swarm intelligence. Studies on social insects have shown different aspects of
swarm intelligence, for example, maintaining equilibrium, issuing orders, and evolving
plans [10–16]. In a colony, social insects are the workers who perform tasks like explor-
ing, foraging, hunting, defending, constructing, etc. However; a single worker doesn’t
usually perform all tasks. Therefore, in order to coordinate all tasks, a lot of sensory in-
put is required and communicated between insects to be able to sustain self-organization
(SO) [17–19].

Studies have shown that to apply swarm intelligence to a robotic system, the main
characteristics of this system should allow the allocation of autonomous robots as well as a
cooperative method of operation between robotic members, while preventing the existence
of centralized communication or a single external unit of control [20–27]. Meanwhile,
the behavior of any robot in a swarm should reflect robustness, scalability, and flexibility.
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The robustness of a swarm is the ability to cope with the loss of a node or a leader [28], flex-
ibility is the ability to operate in different environments and perform different tasks, while
scalability is the ability of the swarm to perform regardless the size of the group as well as
the number of tasks to be performed by the swarm. The number of applications that utilize
swarm intelligence is exponentially increasing, hence its communication problems [29–32].
Given the increase in the need to use swarm intelligence, the Particle Swarm Optimization
(PSO) technique was introduced, in which a swarm of particles is modeled and moved
in a virtual search space to present a potential solution to a given swarm problem. This
technique was inspired by the interactions and movements between birds in a flock [33–37].

The motivation of this research is to improve the capabilities of densely populated
robotic swarms to perform more complex tasks while reducing both power consumption
and communication delays between swarm members.

This research aims to improve the efficiency and effectiveness of robotic swarms
through the use of a decentralized derivation from the Clustered Dynamic Task Allocation
algorithm with better efficiency in execution time and less power consumption for the
robots in the swarm.

The objectives of this research are twofold: firstly, to develop a decentralized swarm-
based algorithm for task allocation. Secondly, to develop a simulation tool (Pyswaro) that
can simulate and accurately test the proposed algorithms’ execution time and battery level
over the previous algorithm.

The article is structured as follows. In Section 2, related work to the proposed work is
reviewed. In Section 3, we state the problems in previously described methods regarding
communication overhead and a centralized approach followed by the proposed methods,
and algorithms. In Section 4, the results of the simulation of the proposed algorithm
are compared to a related work algorithm simulated on the same tool, which was also
especially developed and presented for simulating the communication between swarm
groups. In Section 5, a discussion about the results is presented, followed by Section 6
to conclude the conducted work.

2. Related Work

Many decentralized algorithms have been developed in order to optimize the commu-
nication between swarm entities. Authors in [38,39] proposed an ant algorithm that was
used in the context of node cooperation to solve a given task. The algorithm was inspired
by social insects as a colony and used to allocate colony specialists using the Ant Colony
Optimizer (ACO).

Another study inspired by the bee hive, refs. [40–42], used a Distributed Bee Algorithm
(DBA). The algorithm was proven to be scalable in terms of the number of nodes, and also
adaptive to a non-uniform organization of nodes’ qualities.

In [43], the authors proposed a decentralized strategy for task allocation problems by
creating a task selection probability function without any communication or messaging
between robots. In [44], a multi-task allocation model for mobile crowd-sensing was
designed to maximize the overall sensing quality of all tasks. The algorithm has shown a
speed-up in execution compared to previous algorithms.

In the research proposed by [45], the aim was to prolong the network lifetime using a
novel energy-efficient clustering mechanism. Their algorithm used an artificial bee colony
(ABC) and PSO. However, ABC is used for global optimization problems but Clustered
Dynamic Task Allocation (CDTA) (which is the base algorithm for the proposed research)
is used specifically for task allocation in swarm robotics by measuring the execution time
and power consumption of the tasks, not only fitness of the solution.

The next iteration of research is the Dynamic Task Allocation algorithm (DTA). Accord-
ing to [46], all robot members of a swarm are equally able to perform a specific task, but the
problem lies in specifying which tasks should be performed by each robot member, as well
as the priority of some tasks over the others given the circumstances of the environment.
Robot members of a swarm being idle is also not permitted, since, ideally, all robots should
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execute tasks as long as they are capable. The DTA algorithm aims to optimize the selected
tasks for each robot so as to enhance the overall performance of the swarm as well as to
reduce execution time. The main idea of DTA is to constantly adapt to changes to the
state of the swarm by reallocating tasks to different robots based on several factors like the
addition of new tasks with higher priority values and the addition or removal of robots
from the swarm for any reason. The problem that arises is the capability limits of the
robots themselves. Robot members of the swarm may have limited communication abilities
that prevent them from fetching global swarm information or being forced to physically
traverse the environment to reach suitable proximity for communications, which hinders
performance and increases execution time.

Another approach driven by DTA was developed to manage task allocation as a dy-
namic task allocation algorithm with a global approach (GDTA). The algorithm was initially
based on PSO. If the task was segmented, then decision assembling results were robust and
beneficial in terms of efficiency. The algorithm relies on decentralized decision-making.
On the other hand, GDTA uses a full-mesh approach, which leads to communication
overhead with the increasing number of nodes [47,48].

In [49], authors proposed the Clustered Dynamic Task Allocation (CDTA) algorithm.
The goal of CDTA is to perform by means of dividing the robotic swarm into clusters, where
each cluster’s objective is to aggregate the best in-cluster value, which represents a decision
to take based on the swarm’s objective, which is denoted by Cbest. Afterward, all Cbest
values are compared to derive a final and global decision that all swarm members will
execute, which is denoted by global best allocation Gbest. According to [49], a clustered
topology is flexible as it has no rules compared to the star and tree topologies, which
explains why it can be adapted to different use cases. Each cluster in the CDTA algorithm
has designated informant and non-informant robots. Informant robots are responsible
for aggregating the value of Cbest, which is the best solution in the respective cluster.
The proposed algorithms were inspired by the CDTA algorithm.

As discussed by [49], the CDTA algorithm can be chosen for robotic swarms over more
common and well-studied algorithms like Particle Swarm Optimization (PSO) due to its
ability to adapt to dynamic environments where parameters of the optimization problem
change over time, requiring quick, diverse, and efficient adaptability. The clustered nature
of the CDTA algorithm also optimizes the task allocation process, which results in better
performance regarding execution time, as opposed to more traditional algorithms.

The exploration of synchronization phenomena in complex dynamical networks,
as demonstrated by [50,51], offers valuable insights into the communication and coordi-
nation challenges faced in swarm robotics. The investigation led by [50] highlights the
importance of nonlinear control schemes in ensuring synchronization in the presence of
external disturbances. By conceptualizing synchronization as a communication process
between distinct network components, similarities with the clustered nature of the CDTA
algorithm, and its variants, can be observed.

Similarly, ref. [51] explored master–slave outer synchronization in diverse inner–outer
network topologies. Their research sheds light on the role of single nodes as bridges
between subnetworks. Through their analysis of coupling strategies and network stability,
they provide insights into how information flows between network components and how
synchronization can be achieved across interconnected systems, which aligns as well with
communication in CDTA (see Section 2.1). The conceptualization of synchronization as a
communication process between subnetworks offers a valuable perspective on how swarm
members exchange information and coordinate their actions in a clustered configuration.

2.1. CDTA Stages

The CDTA algorithm consists of five main stages:

1. Initialization stage,
2. Tuning stage,
3. Identification stage,
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4. Updating stage,
5. Stopping stage.

In the CDTA algorithm, robots are divided into two groups: informants and non-
informants. Informant robots are responsible for communicating and exchanging informa-
tion about the best solutions within their cluster and across clusters. Non-informant robots,
on the other hand, rely on the information provided by informants to update their own
best solutions.

In the initialization stage, the initial parameters of the CDTA algorithm are set. Such
parameters include the total number of robots for each cluster, the number of tasks, the role
of each robot, which is either informant or non-informant, as well as initial values for
the suggested solution by each robot and their perceived cluster best value Cbest and
Gbest values.

In the tuning stage, for each cluster, each robot calculates its value for the suggested
solution for the dynamic task allocation problem. The robots then begin communicating
with other robots in the same cluster by sending their identifiers as well as their suggested
solutions. Each robot receives multiple potential values for Cbest from other robots and
decides to keep the best value before communicating with other robots. When each robot
holds the potential values of all other robots in the same cluster, then this stage is completed
and each robot knows the true value of Cbest.

In the identification stage, after each cluster knows its respective Cbest value, it is
desirable to compare the Cbest values of all clusters and compare them in order to evaluate
the value of Gbest, which is the absolute best solution for the given task for the entire
robotic swarm. Only informant robots are responsible for this stage. The informant robots
of each cluster communicate with each other, exchanging multiple values of Cbest. When
this stage concludes, all the informant robots will have acquired the true value of Gbest.

Up until the updating stage, only the informants have acquired the value of Gbest.
In the updating stage, all non-informant robots of each cluster await communication from
the informant robot, so that they can update their Cbest value to the Gbest value. This
stage ends when all non-informant robots have acquired the value of Gbest.

In the stopping stage, it is determined whether the optimal solution has been reached
or not, thus determining whether another iteration of the CDTA algorithm is needed or
not. Once the optimal solution has been reached, the CDTA algorithm is successful and all
robots can start executing the task.

It is important to acknowledge the effect of tuning parameters in the PSO algorithm
and other algorithms inspired by it, like the CDTA algorithm. Some of the parameters that
affect the algorithms’ operation are the inertia weight (w), the cognitive learning rate (c1),
and the social learning rate (c2). The inertia weight (w) in PSO-based algorithms balances
exploration and exploitation during optimization. It dictates the tendency of particles to
retain their current velocities, influencing the degree to which particles can explore, as
opposed to exploiting promising solutions. Additionally, the cognitive learning rate (c1)
represents a particle’s confidence in its own best-known position, while the social learning
rate (c2) represents its confidence in the best-known position among its neighbors in the
cluster. During the experiments and simulations, certain values for w, c1, and c2 were
selected based on [52]. As a result, a value of 0.6 was set for w to allow for a balanced mode
of operation between exploration and exploitation. Similarly, a value of 1.8 was selected for
both c1 and c2. The stages of the CDTA algorithm can be presented as pseudo-code in the
following Algorithm 1, as implemented by [49].

The CDTA algorithm suffers from slow execution time as well as inefficient power
consumption in large swarm populations due to its communication method, which, in turn
leads, to the reliance on a base station for inter-swarm communications.
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Algorithm 1 CDTA: main steps executed by a robot

1: Initialization ▷ Setting initial parameters
2: repeat
3: Tuning ▷ Adjusting parameters for optimization
4: Identification ▷ Determining local best solution
5: if informant_robot then ▷ Check if robot is an informant
6: Updating ▷ Updating local best to global best
7: end if
8: Stopping/Executing Task ▷ Check termination condition
9: until A valid allocation is found

2.2. Hardware Configuration and Applications

According to [49], the CDTA algorithm was carried out by ELISA-3 robots. An ELISA-
3 robot contains embedded devices that facilitate communication with other ELISA-3
robots. Such embedded devices include an 8 MHz ATmega 2560 microcontroller with
8 KB of RAM [53]. The program of each ELISA-3 robot is stored in a 4 KB EEPROM.
All communications that occur in the CDTA algorithm pass through a radio base station
of type nRF24L01+ [54]. This base station is connected to a computer via a USB cable.
The rate of transmission of communication packets between the swarm robots and the
antenna is 250 KB/s. It is worth noting that the proposed novel algorithms CDTA-CL and
CDTA-DL did not utilize ELISA-3 robots. Both algorithms were tested on Yanshee robots
(see Section 4.3) as well as the simulation tool Pyswaro (see Section 3.3).

By utilizing the hardware capabilities and mobility of robots such as ELISA-3 and
Yanshee, various applications of CDTA, which is PSO-based, can be implemented to solve
real-world problems.

Such implementations cover many fields. For example, the field of engineering could
benefit from the integration of robots equipped with PSO-based algorithms in tasks such
as the inverse modeling of leakage in earth dams to improve infrastructure stability and
prevent potential disasters [55].

In the medical field, the deployment of robotic systems leveraging PSO-based algo-
rithms can assist medical professionals in the early detection of cancerous pulmonary
nodules, thereby significantly improving patient outcomes [56].

In security and controlling crowded events, robotic systems equipped with PSO-based
algorithms excel in tracking targets with high precision in images and videos. Powering
different types of robots by PSO-based algorithms offers solutions to various real-world
problems [57,58].

For CDTA-based applications, in [59], the problem of dynamic task allocation is
addressed in the domain of UAV swarms. Their research introduced a clustered approach
to the problem where swarm members are assigned different roles in complex combat
scenarios. The UAV swarm is clustered according to the different roles of a single top leader,
group leaders, and followers. Such time-critical multi-target combat applications apply a
great cost to execution time.

Applying algorithms like CDTA enhances the process of organizing and optimizing
communication between the top leader and group leaders, between group leaders and
followers, as well as between members of the same cluster to accomplish the task of
engaging with multiple targets simultaneously. The characteristics of multi-target combat
swarms align with the CDTA algorithm, owing to its dynamic role-based clustered nature.

3. Methodology

The Clustered Dynamic Task Allocation (CDTA) algorithm is better than the Global
Dynamic Task Allocation (GDTA) algorithm in terms of scalability, robustness, and adapt-
ability [49]. CDTA divides the swarm into smaller clusters, allowing for better management
of the swarm and avoiding congestion, which improves the overall performance of the
swarm. Additionally, if a robot fails, the swarm can continue to function, as the other
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robots in the cluster can take over the tasks, making CDTA more robust. CDTA is also
more adaptable, as it can handle changes in the environment and task requirements more
effectively. The swarm can adjust to new tasks and changes in the environment by redis-
tributing tasks among the clusters. Building on top of that, the proposed CDTA-CL and
CDTA-DL algorithms offer complete decentralization, as members of the swarm do not
need to rely on a base station, as well as optimized communication modes that reduce
latency and power consumption.

Proposed enhancements to the CDTA algorithm involve major modifications to the
core communication processes. The proposed algorithm consists of two variations CDTA–
Centralized Loop (CDTA-CL) and CDTA–Dual Loop (CDTA-DL) (see Figure 1a,b). Both
variations share the same starting conditions; hence, the leader of each swarm cluster
knows the identifiers of its subordinates. Also, each subordinate inside a cluster knows the
identifiers of other subordinates of the same cluster as well as the identifier of the leader.

(a) (b)
Figure 1. The mechanism of the CDTA-CL and CDTA-DL algorithms. Green arrows highlight the
communication topology used between leaders and subordinates. Red arrows indicate ring topology
communication applied between leaders. (a) The mechanism of the CDTA-CL algorithm. Green
arrows indicate star topology. (b) The mechanism of the CDTA-DL algorithm. Green arrows indicate
ring topology.

3.1. CDTA-CL and CDTA-DL

All robots of the swarm are expected to communicate directly without the need for a
central base station due to the knowledge of other cluster members’ identifiers. In order to
allocate a task (in both variations), the following stages are needed:

1. Leader synopsis,
2. Leaders’ congregation,
3. Result circulation.

3.1.1. Objective Function and Optimization Goal

The CDTA-CL and CDTA-DL algorithms aim to optimize task allocation within a
robotic swarm; this optimization involves minimizing both power consumption and com-
munication delays, which are interconnected factors affecting swarm efficiency.

Mathematically, the optimization objective can be stated as follows in Equation (1):

Minimize f (P, D) (1)

where f represents the objective function of minimization, P represents power consumption,
and D represents communication delays. This function describes the trade-off between
both energy and communication efficiency in the robotic swarm.
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Higher communication delays lead to increased power consumption due to longer
periods of active communication, thereby impacting energy efficiency negatively. Oppo-
sitely, minimizing power consumption can decrease the effects of communication delays
by reducing the energy burden on individual swarm members, and enhancing overall
system performance.

To quantify the relation between power consumption, communication delays, and swarm
performance, we introduce the following Equation (2):

f (P, D) = α · P + β · D (2)

where α and β are coefficients representing the importance of power consumption (P)
and communication delays (D), respectively. This objective function f (P, D) aims to
minimize the combined effect of power consumption and communication delays on swarm
performance, which, in turn, optimizes task allocation in the robotic swarm.

To maintain consistency with the parameters used in the PSO-based algorithms, the val-
ues chosen for α and β were aligned with those for c1 and c2 and w. Specifically, α and
β were set to 1.8 and 0.6, respectively, matching the values selected for c1 and c2 and w,
respectively. This alignment ensures a balanced consideration for the trade-off between
power consumption and communication delays in the optimization process, facilitating
effective task allocation in the robotic swarm.

3.1.2. Leader Synopsis

The goal of this stage is to calculate Cbest, which is the responsibility of the leader of
each cluster. Since the leader already knows the identifiers of their subordinates, communi-
cation can be done directly between the leader and the subordinates without further inquiry
involving a base station making the task allocation process fully autonomous, independent,
and decentralized.

For example, if we consider a cluster of particles of size N, each particle Pi formulates
a candidate value for Cbest that can be denoted by Ai. The value of Ai is based on the
type of task (raiding, foraging, exploration, . . . etc.). The cluster leader has to aggregate
N values for A: A0, A1, . . . , AN-1, to achieve the value of Cbest and conclude the leader
synopsis stage.

In the CDTA-CL variation, the leader of the cluster is considered to be the central
point of communication. In a traditional star network topology, there exists a central hub or
networking device that receives and relays all communications (see Figure 2). However, In
the CDTA-CL variation, a novel network structure is applied to capitalize on the properties
of the robotic swarm; this structure is referred to as the Centralized Loop. Using the
Centralized Loop structure, the leader communicates with each subordinate (i) of its cluster
asking for their value of Ai, which is the perceived allocation of the task according to
the respective subordinate. Subsequently, the addressed subordinates reply to the cluster
leader with the required values. It is then the leader’s responsibility to calculate Cbest,
which is the best allocation for the task according to the leader’s cluster (see Figure 3).
The steps of operation of the leader synopsis stage for the CDTA-CL algorithm can be
formulated as pseudo-code in Algorithm 2.

The CDTA-DL variation addresses this stage in a different manner. The ring network
topology has been adapted into a complex and novel structure that utilizes the properties
of robotic swarms for maximum performance; this novel structure is referred to as the dual
loop. The dual loop structure is applied where communication starts with the leader of the
cluster. The leader sends for the first available subordinate the inquiry to calculate Cbest as
well as a bit-masked integer where, in binary form, each bit Bi indicates that the subordinate
with the identifier i is available and still has not contributed to the synopsis stage. This
state is defined by the value of B, which is either 0 or 1. In this variation, the responsibility
of calculating Cbest is distributed among all members of the cluster, which reduces the
energy drain of the cluster leader (see Figure 4a). Each subordinate calculates Equation (3).
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Algorithm 2 Leader synopsis for CDTA-CL

1: Input: Cluster leader (L), Subordinates (S)
2: Output: Cbest
3: procedure LEADERSYNOPSISCDTACL(L, S)
4: Cbest ← 0 ▷ Initialize the best allocation
5: for s← 1 to Size(S) do ▷ Iterate through subordinates
6: As ← FORMULATECANDIDATE(s) ▷ Each subordinate formulates a candidate

value As
7: Cbest ← max(Cbest, As) ▷ Aggregate N values of A
8: end for
9: return Cbest ▷ Return the best allocation

10: end procedure
11: procedure FORMULATECANDIDATE(s)
12: As ← TASKALLOCATIONFUNCTION(s) ▷ Based on the type of task
13: return As
14: end procedure
15: procedure TASKALLOCATIONFUNCTION(s)
16: Perform calculations and operations to determine As based on the task type
17: return As
18: end procedure

Figure 2. Traditional Representation of Star Topology.

Figure 3. Leader synopsis in the CDTA-CL variation. Green arrows indicate star topology applied
between the leader and the subordinates.

Cbesti = max(Ai, Cbesti−1
) (3)

where Cbesti−1 is the best-accumulated value of A before reaching the current subordinate
in the dual loop structure. The current subordinate in question compares the best between
the two values and passes its own value of Cbest to the next subordinate after setting its
own bit in the sub-mask to the value 0.
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(a) (b)
Figure 4. Multiple usages of the dual loop structure in the variations. (a) Leader synopsis in the
CDTA-DL variation. Green arrows indicate ring topology applied between the leader and the
subordinates. (b) Leader congregation in both variations. Red arrows indicate ring topology applied
between leaders.

When the entire integer sub-mask has a value of 0, it means that all subordinates have
been inquired and that the current subordinate should report directly to the leader the final
value of Cbest and, with this, the dual loop would be closed and the leader would have
received the true value of Cbest. At the end of the leader synopsis stage, the value of Cbesti
of the last subordinate of the dual loop should be equal to the value of Cbest of the whole
cluster. The steps of operation of the leader synopsis stage for the CDTA-DL algorithm can
also be written in the form of pseudo-code in Algorithm 3.

Algorithm 3 Leader synopsis for CDTA-DL

1: Input: Cluster leader (L), Subordinates (S)
2: Output: Cbest
3: procedure LEADERSYNOPSISCDTADL(L, S)
4: Cbest ← 0 ▷ Initialize the best allocation
5: B← 2|S| − 1 ▷ Initialize the bit-mask with all bits set to 1
6: while B ̸= 0 do ▷ Loop until all subordinates have contributed
7: s← GETNEXTAVAILABLESUBORDINATE(B) ▷ Find the next available

subordinate
8: As ← FORMULATECANDIDATE(s) ▷ Each subordinate formulates a candidate

value As
9: Cbest ← max(Cbest, As) ▷ Aggregate N values of A

10: B← B⊕ (2s) ▷ Set the bit corresponding to s to 0 in the bit-mask
11: end while
12: return Cbest ▷ Return the best allocation
13: end procedure
14: procedure GETNEXTAVAILABLESUBORDINATE(B)
15: s← 0 ▷ Initialize the index of the next available subordinate
16: while B mod 2 = 0 do ▷ Find the next bit set to 1 in the bit-mask
17: B← ⌊B/2⌋
18: s← s + 1
19: end while
20: return s ▷ Return the index of the next available subordinate
21: end procedure
22: procedure FORMULATECANDIDATE(s)
23: As ← TASKALLOCATIONFUNCTION(s) ▷ Based on the type of task
24: return As
25: end procedure
26: procedure TASKALLOCATIONFUNCTION(s)
27: Perform calculations and operations to determine As based on the task type
28: return As
29: end procedure
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3.1.3. Leader Congregation

This stage aims to find the value Gbest, which is the global best allocation among all
clusters. Both CDTA-CL and CDTA-DL variations follow the same algorithm in this stage.
The leaders of all clusters utilize a dual loop structure in the same way that occurred in
the leader synopsis stage in the CDTA-DL variation, with the difference that the integer
sub-mask represents other available cluster leaders instead of subordinates. Additionally,
when the leader that initiated the dual loop communication receives the value of Gbest, it
initiates another dual loop congregation in order to inform the other leaders of the final
value of Gbest (see Figure 4b). The pseudo-code in Algorithm 4 shows the steps of operation
of the leader congregation stage for both CDTA-CL and CDTA-DL algorithms.

Algorithm 4 Leader congregation for CDTA-CL

1: Input: Cluster leader (L), Other cluster leaders (Lother)
2: Output: Gbest
3: procedure LEADERCONGREGATION(L, Lother)
4: for l ∈ Lother do ▷ Loop through other cluster leaders
5: Gbest ← max(Gbest, LeaderSynopsisCDTADL(l)) ▷ Find the global best

allocation
6: end for
7: for l ∈ Lother do ▷ Inform other leaders of the final value of Gbest
8: Inform(l, Gbest)
9: end for

10: return Gbest ▷ Return the global best allocation
11: end procedure
12: procedure INFORM(l, Gbest)
13: Send message to leader l with the value of Gbest
14: end procedure

3.1.4. Result Circulation

By this stage, all leaders should already know the value of Gbest. In this stage, each
leader ensures that all of their subordinates in their respective clusters are informed of
the same value of Gbest so that it becomes swarm-wide knowledge. Each variation (see
Figure 5a,b) follows the same algorithm that was executed in its leader synopsis stage,
whether it was a centralized or dual loop communication. The difference is that the goal
of communication becomes to inform the subordinates of the value of Gbest, rather than
inquiring to calculate Cbest.

(a) (b)
Figure 5. Result circulation in both variations. (a) Result circulation in the CDTA-CL variation. Green
arrows indicate star topology applied between the leader and the subordinates. (b) Result circulation
in the CDTA-DL variation. Green arrows indicate ring topology applied between the leader and
the subordinates.
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After evaluating the CDTA-CL and CDTA-DL variations, it is important to emphasize
that, while Equations (4) and (5) provide quantitative insights into the algorithms’ perfor-
mance, they do not fully describe the entire process. These equations offer performance
estimates primarily in controlled environments, such as simulations. However, it is crucial
to acknowledge that real-world swarm behavior is influenced by various parameters and
environmental conditions that cannot be fully captured or predicted by mathematical
formulations alone.

Equation (4) represents the total time consumed in the operation of CDTA-CL, where
S represents the size of the swarm, L represents the number of leaders in the swarm, and C
is a value representing the communication delay between swarm robots.

t =
(

2 ·
⌊

S− L
L

⌋
· C

)
+ (2 · L · C) +

(
2 ·

⌊
S− L

L

⌋
· C

)
(4)

Similarly, Equation (5) describes the total time consumed in the operation of CDTA-DL.
These equations offer valuable insights into the efficiency of the algorithms, but should not
be interpreted as exhaustive descriptions of their performance.

t = 2 · L · C +

(⌊
S− L

L

⌋
+ 1

)
· C +

(⌊
S− L

L

⌋
+ 1

)
· C (5)

In addition, the flowcharts in Figure 6a,b illustrate an overview of the whole process
for both variations.

(a) (b)
Figure 6. Flowcharts illustrating the process of both variations. (a) Flowchart for the CDTA-CL varia-
tion. (b) Flowchart for the CDTA-DL variation.
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To reiterate the method of operation, see the following:

1. The leader of each cluster calculates the best allocation for the task (Cbest) using
information from its subordinates.

2. The leaders of all clusters then find the global best allocation (Gbest) among all clusters
using the dual loop structure.

3. The leaders then ensure that all their subordinates are informed of Gbest, so it becomes
swarm-wide knowledge.

4. The process follows a centralized or dual loop communication topology, depending
on the variation (CDTA-CL or CDTA-DL) being used.

3.2. Self-Organization

As stated in Section 1, self-organization (SO) is one of the core concepts of swarm
robotics. The SO concept ensures that the robotic swarm can efficiently and autonomously
coordinate its actions without the need for centralized control or explicit communication
between individual robots. Self-organization mechanisms include the following:

• Setting the initial formation of the swarm and its clusters.
• The optimal selection of leader robots for each cluster of the swarm.
• Flexibility and fault tolerance, as follows:

– Interchanging cluster subordinates when they fail or shut down, so that the
CDTA-CL and CDTA-DL stages resume normally.

– Re-selection of leader robots for a cluster in case of failure or shutting down.

The capability of achieving different SO mechanisms is crucial for the scalability,
robustness, and adaptability of swarm systems, allowing them to perform complex tasks in
dynamic conditions and environments.

Furthermore, it is important to highlight the significance of self-organization in swarm
robotics. As the field progresses, the effective implementation and enhancement of self-
organizing mechanisms will remain a focal point for researchers. Thus, the exploration
of self-organization in swarm robotics represents a direction for future research, with the
potential to unlock new capabilities and applications, as mentioned in Section 6.

3.3. Pyswaro Simulation Tool

In order to test the proposed algorithm, a proposed simulation tool “Pyswaro” was
developed to create an accurate execution of these stages of operation for both the CDTA-CL
and CDTA-DL variations. Pyswaro allows the user to set values for swarm and cluster sizes,
leaders and their coordinates, battery levels for all robots, values for the rate of depletion
of battery levels, as well as network latency values for each operation. Pyswaro produces
detailed logs for each stage of the process, and it also generates graphs and histograms for
the battery consumption of each robot following each stage. An open-source version of
Pyswaro is publicly available on GitHub as well [60]. The simulation was developed in
Python language. The simulation experimentation was performed on a PC with core-i7
10th generation, Windows 10, 16 GB of RAM, and Python 3.9.

Pyswaro calculates the total time consumed for each experiment by setting a timer
variable with an initial value of 0. Pyswaro imports the user-set configurations, which are
modeled after real swarm robots. Pyswaro then applies the imported configurations on the
timer variable, which is incremented during the different stages of the experiments based
on the type and quantity of sent and received communications.

Users can also copy values from real swarm robot data sheets to model and configure
battery consumption rates in Pyswaro, which reacts to different operations using the same
mechanism as Pyswaro’s timer. Pyswaro’s mechanism of calculating battery consumption
also facilitates generating heat maps and histograms, which gives users more insights on
the tested algorithm’s performance.
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4. Results

All experiments were executed inside the Pyswaro simulation environment. In all
experiments, the swarm followed a clustered formation instead of a full mesh formation,
as [49] proved that a clustered formation reduces execution time by about 50% compared
to a full mesh formation. This research compares the results of the proposed CDTA-CL
variation and the proposed CDTA-DL variation with the original CDTA algorithm.

The simulation tool Pyswaro was introduced in Section 3.3; Pyswaro was developed
to evaluate the performance of different swarm configurations against CDTA, CDTA-CL,
and CDTA-DL.

The performance of the CDTA, CDTA-CL, and CDTA-DL algorithms are examined
in two different experiments in Sections 4.1 and 4.2. The first experiment examined the
algorithms’ performance on a small swarm population of 36 robots with four leaders,
operating for one iteration. The second experiment scrutinized their performance on a
large swarm population of 400 robots with four leaders, operating for 10 iterations.

Section 4.3 states the hardware specifications of the Yanshee robot that was used to
evaluate the algorithms outside of the Pyswaro simulation environment. Different swarm
configurations were tested on the Yanshee robot as well.

The performance of the three algorithms is examined in Section 4.4 against other
various swarm sizes with a different number of leaders.

In the following experiments, each of the heat maps illustrates a two-dimensional
grid, with each square representing a member of the swarm. The squares with yellow
outlines signify the leaders of each cluster, who, as per the initial conditions, possess an
initial battery level of 100%. The color of each square corresponds to the battery level of the
corresponding swarm member. The histograms illustrate the frequency of battery levels
during the different stages of the operation of CDTA, CDTA-CL, and CDTA-DL.

4.1. Experiment 1

All simulations in this experiment shared the same starting conditions in Pyswaro,
which were as follows:

1. A swarm consisting of 36 robots.
2. A minimum initial battery of 60%.
3. A maximum initial battery of 100%.
4. A minimum operable robot battery of 2%.
5. All leaders start with 100% battery.
6. All subordinates start with a random battery value between 60% and 100%.
7. There are four leaders in the swarm, each leader is responsible for its cluster.
8. Each leader has eight subordinates in each of the four clusters.
9. Communication delays and battery drainage rates were modeled after the Yanshee

robot (see Section 4.3).

4.1.1. Original CDTA Algorithm

With the starting conditions stated earlier, the following heat map and histogram (see
Figure 7a,b) illustrate the initial swarm state before executing the original CDTA algorithm,
where the tiles with a yellow outline are the leaders of each cluster.
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(a) (b)
Figure 7. The initial battery states for the CDTA algorithm. (a) Initial heat map for the CDTA algorithm.
Battery levels are indicated with a gradient from dark green to white descendingly. (b) initial
histogram for the CDTA algorithm.

As stated in [49], the ELISA-3 robots communicate with the base station in order to
execute all stages of the task allocation process. This type of communication was recreated
using the Pyswaro simulation tool. The heat map and histograms (see Figure 8a,b) illustrate
the battery levels after the stage of calculating Cbest.

(a) (b)
Figure 8. Calculating Cbest for the CDTA algorithm. (a) Heat map after calculating Cbest for the
CDTA algorithm. Battery levels are indicated with a gradient from dark green to white descendingly.
(b) Histogram after calculating Cbest for the CDTA algorithm.

After the process of leaders calculating Gbest and communicating the final value of
Gbest to all subordinates, the battery levels became as stated by Figure 9a,b. The total
execution time of the original CDTA algorithm in the Pyswaro environment was 0.333 s.

(a) (b)
Figure 9. Final state of the CDTA algorithm. (a) Final heat map for the CDTA algorithm. Battery
levels are indicated with a gradient from dark green to white descendingly. (b) Final histogram for
the CDTA algorithm.
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4.1.2. Proposed CDTA-CL Algorithm

With the same starting conditions stated earlier in Section 4.1, the heat map and
histogram (see Figure 10a,b) illustrate the initial swarm state before executing the CDTA-
CL variation.

(a) (b)
Figure 10. The initial battery states for the CDTA-CL algorithm. (a) Initial heat map for the CDTA-
CL algorithm. Battery levels are indicated with a gradient from dark green to white descendingly.
(b) Initial histogram for the CDTA-CL algorithm.

After executing the leader synopsis stage, Figure 11a,b represent the battery levels of
the swarm. Next, the leader congregation stage contributed to the battery level drainage of
the swarm, as indicated by Figure 12a,b. Finally, as the stage of result circulation concluded
and the whole swarm knew the value of Gbest, the final battery levels of the swarm are
represented in Figure 13a,b. The whole experiment in Pyswaro took 0.152 s to execute.

(a) (b)
Figure 11. The battery states after the leader synopsis stage for the CDTA-CL algorithm. (a) Heat
map after the leader synopsis stage for the CDTA-CL algorithm. Battery levels are indicated with a
gradient from dark green to white descendingly. (b) Initial histogram after the leader synopsis stage
for the CDTA-CL algorithm.
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(a) (b)
Figure 12. The battery states after the leader congregation stage for the CDTA-CL algorithm. (a) Heat
map after the leader congregation stage for the CDTA-CL algorithm. Battery levels are indicated with
a gradient from dark green to white descendingly. (b) Histogram after the leader congregation stage
for the CDTA-CL algorithm.

(a) (b)
Figure 13. Final state of the CDTA-CL algorithm. (a) Heat map after the result circulation stage
for the CDTA-CL algorithm. Battery levels are indicated with a gradient from dark green to white
descendingly. (b) Histogram after the result circulation stage for the CDTA-CL Algorithm.

4.1.3. Proposed CDTA-DL Algorithm

With the same starting conditions stated in the other experiments, the heat maps and
histograms in Figures 14a,b, 15a,b, 16a,b, and 17a,b, illustrate the battery levels of the
swarm during all stages of the CDTA-DL variation. This experiment took 0.08 s to execute
in the Pyswaro environment.

(a) (b)
Figure 14. The initial battery states for the CDTA-DL algorithm. (a) Initial heat map for the CDTA-
DL algorithm. Battery levels are indicated with a gradient from dark green to white descendingly.
(b) Histogram after the initial result histogram for the CDTA-DL algorithm.
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(a) (b)
Figure 15. The battery states after the leader synopsis stage for the CDTA-DL algorithm. (a) Heat
map after the leader synopsis stage for the CDTA-DL algorithm. Battery levels are indicated with a
gradient from dark green to white descendingly. (b) Histogram after the leader synopsis stage for the
CDTA-DL algorithm.

(a) (b)
Figure 16. The battery states after the leader congregation stage for the CDTA-DL algorithm. (a) Heat
map after the leader congregation stage for the CDTA-DL algorithm. Battery levels are indicated with
a gradient from dark green to white descendingly. (b) Histogram after the leader congregation stage
for the CDTA-DL algorithm.

(a) (b)
Figure 17. Final state of the CDTA-DL algorithm. (a) Heat map after the result circulation stage
for the CDTA-DL algorithm. Battery levels are indicated with a gradient from dark green to white
descendingly. (b) Heat map after the result circulation stage for the CDTA-DL algorithm.

4.2. Experiment 2

In this experiment, the starting conditions for all algorithms were as follows:

1. A swarm consisting of 400 robots.
2. The swarm operates for 10 iterations.
3. A minimum initial battery of 60%.
4. A maximum initial battery of 100%.
5. A minimum operable robot battery of 2%.
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6. All leaders start with 100% battery.
7. All subordinates start with a random battery value between 60% and 100%.
8. There are four leaders in the swarm, each leader is responsible for its cluster.
9. Each leader has 99 subordinates in each of the four clusters.
10. Communication delays and battery drainage rates were modeled after the Yanshee

robot (see Section 4.3).

4.2.1. Original CDTA Algorithm

The initial battery levels of robots in the CDTA algorithm can be observed in Figure 18.

Figure 18. The initial battery states for the CDTA algorithm. Battery levels in the heat map are
indicated with a gradient from dark green to white descendingly.

In the first iteration, heat maps and histograms for battery levels of the robots in the
stages of calculating Cbest and Gbest can be observed in Figures 19 and 20, respectively.

Figure 19. Calculating Cbest for the CDTA algorithm in the 1st iteration. Battery levels in the heat
map are indicated with a gradient from dark green to white descendingly.

Figure 20. Final state of the CDTA algorithm after the 1st iteration. Battery levels in the heat map are
indicated with a gradient from dark green to white descendingly.

In the fifth iteration, heat maps and histograms for battery levels of the robots in the
stages of calculating Cbest and Gbest can be observed in Figures 21 and 22, respectively.
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Figure 21. Calculating Cbest for the CDTA algorithm in the 5th iteration. Battery levels in the heat
map are indicated with a gradient from dark green to white descendingly.

Figure 22. Final state of the CDTA algorithm after the 5th iteration. Battery levels in the heat map are
indicated with a gradient from dark green to white descendingly.

In the 10th iteration, heat maps and histograms for battery levels of the robots in the
stages of calculating Cbest and Gbest can be observed in Figures 23 and 24, respectively.

Figure 23. Calculating Cbest for the CDTA algorithm in the 10th iteration. Battery levels in the heat
map are indicated with a gradient from dark green to white descendingly.

Figure 24. Final state of the CDTA algorithm after the 10th iteration. Battery levels in the heat map
are indicated with a gradient from dark green to white descendingly.

After 10 iterations, the swarm consumed a total time of 41.89 s.
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4.2.2. Proposed CDTA-CL Algorithm

The initial battery levels of robots in the CDTA-CL algorithm can be observed in
Figure 25.

Figure 25. The initial battery states for the CDTA-CL algorithm. Battery levels in the heat map are
indicated with a gradient from dark green to white descendingly.

In the first iteration, heat maps and histograms for battery levels of the robots in
the leader synopsis, leader congregation, and result circulation stages can be observed in
Figures 26, 27, and 28, respectively.

Figure 26. The battery states after the leader synopsis stage in the 1st iteration for the CDTA-
CL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.

Figure 27. The battery states after the leader congregation stage in the 1st iteration for the CDTA-
CL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.
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Figure 28. Final state of the CDTA-CL algorithm after the 1st iteration. Battery levels in the heat map
are indicated with a gradient from dark green to white descendingly.

In the fifth iteration, heat maps and histograms for battery levels of the robots in the
three stages can be observed in Figures 29, 30, and 31, respectively.

Figure 29. The battery states after the leader synopsis stage in the 5th iteration for the CDTA-
CL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.

Figure 30. The battery states after the leader congregation stage in the 5th iteration for the CDTA-
CL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.

Figure 31. Final state of the CDTA-CL algorithm after the 5th iteration. Battery levels in the heat map
are indicated with a gradient from dark green to white descendingly.
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In the 10th iteration, heat maps and histograms for battery levels of the robots in the
three stages can be observed in Figures 32, 33, and 34 respectively. Pyswaro executed the
10 iterations in 18.791 s.

Figure 32. The battery states after the leader synopsis stage in the 10th iteration for the CDTA-
CL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.

Figure 33. The battery states after the leader congregation stage in the 10th iteration for the CDTA-
CL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.

Figure 34. Final state of the CDTA-CL algorithm after the 10th iteration. Battery levels in the heat
map are indicated with a gradient from dark green to white descendingly.

4.2.3. Proposed CDTA-DL Algorithm

The initial battery levels of robots in the CDTA-DL algorithm can be observed in
Figure 35.
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Figure 35. The initial battery states for the CDTA-DL algorithm. Battery levels in the heat map are
indicated with a gradient from dark green to white descendingly.

In the first iteration, heat maps and histograms for battery levels of the robots in
the leader synopsis, leader congregation, and result circulation stages can be observed in
Figures 36, 37, and 38, respectively.

Figure 36. The battery states after the leader synopsis stage in the 1st iteration for the CDTA-
DL algorithm. Battery levels in the heat map are indicated with a gradient from dark green
to white descendingly.

Figure 37. The battery states after the leader congregation stage in the 1st iteration of the CDTA-
DL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.

Figure 38. Final state of the CDTA-DL algorithm after the 1st iteration. Battery levels in the heat map
are indicated with a gradient from dark green to white descendingly.
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In the fifth iteration, heat maps and histograms for battery levels of the robots in the
three stages can be observed in Figures 39, 40, and 41, respectively.

Figure 39. The battery states after the leader synopsis stage in the 5th iteration of the CDTA-
DL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.

Figure 40. The battery states after the leader congregation stage in the 5th iteration of the CDTA-
DL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.

Figure 41. Final state of the CDTA-DL algorithm after the 5th iteration. Battery levels in the heat map
are indicated with a gradient from dark green to white descendingly.

In the 10th iteration, heat maps and histograms for battery levels of the robots in the
three stages can be observed in Figures 42, 43, and 44 respectively. The simulation took
9.897 s to execute the 10 iterations.
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Figure 42. The battery states after the leader synopsis stage in the 10th iteration of the CDTA-
DL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.

Figure 43. The battery states after the leader congregation Stage in the 10th iteration of the CDTA-
DL algorithm. Battery levels in the heat map are indicated with a gradient from dark green to
white descendingly.

Figure 44. Final state of the CDTA-DL algorithm after the 10th iteration. Battery levels in the heat
map are indicated with a gradient from dark green to white descendingly.

4.3. Testing on Yanshee

In addition to the experiments executed in Pyswaro’s simulation environment, simpli-
fied versions of the experiments were conducted using the Yanshee humanoid robot, refer-
ring to the user manual [61]. Five Yanshee robots were provided by the Arab Academy for
Science and Technology’s facilities in order to conduct the experiments (see Figure 45). The
Yanshee robot is powered by the ARMv8 Cortex-A53 which offers four cores at 1.2 GHz. It
also has an onboard memory of 16 GB and 1 GB of RAM. Yanshee also supports 802.11b/g/n
2.4 G Wi-Fi as well as Bluetooth 4.1, which facilitates robot-to-robot communication im-
mensely, which, in turn, supports decentralized communication. Yanshee’s battery capacity
is 2750mAh, which is the basis of Pyswaro’s battery consumption rate modeling.

Yanshee comes packed with other features and sensors, but they are irrelevant to
the scope of this research. Pyswaro’s results were scaled and verified by the experiments
conducted on the Yanshee robots as the results were accurate with minimal error.

Table 1 shows the execution times of the CDTA, CDTA-CL, and CDTA-DL algorithms
applied on a swarm of five Yanshee robots with two different swarm configurations:
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• One cluster with one leader and four subordinates.
• Two clusters where one cluster has one leader and two subordinates, while the other

has one leader and one subordinate.

Due to the limited availability of Yanshee robots for experimentation, restricted to only
five robots, it is important to note that these results may not perfectly represent the perfor-
mance of the algorithms with larger swarm sizes, keeping in mind the presence of overhead
delays related to the robot hardware, as well as the communication interfaces. However,
the execution times observed in these experiments align with the data produced by the
Pyswaro simulation tool, which serves as a promising indicator of the algorithms’ behavior.

Figure 45. Yanshee robots used in the experiments.

Table 1. Execution times for different swarm configurations of Yanshee robots.

Algorithm Swarm Configuration Time Unit

Original CDTA 1 leader, 4 subordinates 2.31 seconds

Original CDTA 2 leaders, 3 subordinates 2.08 seconds

CDTA-CL Variation 1 leader, 4 subordinates 1.076 seconds

CDTA-CL Variation 2 leaders, 3 subordinates 0.84 seconds

CDTA-DL Variation 1 leader, 4 subordinates 0.577 seconds

CDTA-DL Variation 2 leaders, 3 subordinates 0.468 seconds

4.4. Calculating the Optimal Number of Leaders in CDTA-CL and CDTA-DL

Pyswaro was used to test both CDTA-CL and CDTA-DL variations against different
swarm sizes and numbers of leaders. In this specific simulation environment, a number
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of different starting conditions were introduced in order to evaluate execution time solely
based on communication time. The introduced conditions are as follows:

1. No battery drainage occurs.
2. No communication timeouts occur.
3. All leaders have an equal number of subordinates.
4. Communication delay was set to 1 ms.

Tables 2 and 3 show different swarm configurations executed in the Pyswaro environ-
ment. Both tables show that the relation between execution time and the number of leaders
relative to the size of the swarm follows Equation (6).

In Table 2, which tested the CDTA-CL variation, it is observed that with a swarm size
of 32, increasing the number of leaders improves execution time, as the difference between
using four leaders and eight leaders is an improvement of 22.2% in execution time. In a
swarm of size 64 robots, the execution time improvement between utilizing four leaders
and the optimal number of leaders of eight is 35.29%. Similarly, using the optimal number
of leaders of 16 leaders in a swarm of size 128 yields an execution time improvement of
54.5%. The optimal number of leaders in a swarm of size 512 is thirty-two leaders and
yields an execution time improvement of 75.96% over using four leaders. It is observed that
execution times improve significantly with large robotic swarms, as the improvement in a
swarm of 1024 robots with 32 leaders is 81.71%, and, in the case of a swarm of 2048 robots
including 64 leaders, the improvement is 87.72%. Finally, in a large swarm of 4096 robots
that have an optimal number of 64 leaders, the execution time improvement is 90.73%.
These improvements can be further visualized in the form of a bar chart with time scaled
using the natural logarithmic scale (see Figure 46).

The CDTA-DL variation follows a similar pattern as shown in Table 3 and bar chart
depicted in Figure 47, which is also scaled based on the natural logarithmic scale. In a
swarm of size 32 robots, four leaders is already the optimal number, which is similar to
the experiments described in Section 4.1.3, which tested a swarm of size 36 on four leaders,
with a difference that the experiments described in this subsection have different starting
conditions. Moreover, using the optimal number of leaders of eight instead of four on a
swarm of size 64 yields an execution time improvement of 20%. The optimal number of
leaders in a swarm of size 128 is eight as well, and yields a time improvement of 33.3%.
The time improvement in a swarm of size 256 utilizing an optimal number of 16 leaders
is 52.94%. And that of a swarm of size 1024 with an optimal number of 32 leaders is
75.38%. Swarms of sizes 2048 and 4096 utilize an optimal number of leaders of 32 and 64,
respectively. Both swarm configurations experience an execution time improvement of
81.39% and 87.54%, respectively.

The results showed that increasing the number of leaders for both variations did
not necessarily mean that execution times would decrease. That is due to the added
communication overhead that is introduced in the leader congregation stage.

Simulation results showed that for a swarm of 2048 robots following the CDTA-DL
variation, execution times for a different number of leaders followed Equation (6).

y = 0.5684 · e0.001x (6)

where y is the total execution time, and x is the number of leaders. Figure 48 further
illustrates the relation between execution time and the number of leaders in swarms of
sizes 2048 and 4096, following the CDTA-DL variation in order to determine the optimal
number of leaders. The figure shows that for a swarm size of 2048, the optimal number of
leaders is six with an execution time of 0.192 s, while for a swarm size of 4096, the optimal
number of leaders is seven with an execution time of 0.256 s.
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Figure 46. Bar chart for execution times for different swarm configurations in the CDTA-CL variation.

Figure 47. Bar chart for execution times for different swarm configurations in the CDTA-DL variation.

Figure 48. Optimal number of leaders for different swarm sizes following the CDTA-DL variation.

It is observed from both sets of results that, for small swarms, using an optimal
number of leaders yields a less significant improvement than for larger swarms. This data
could be useful when calculating trade-offs and compromises for real-world scenarios in
swarm robotics where communication timeouts and power consumption play a role in the
operation of swarms.

The results also prove the superiority of the CDTA-DL variant, which uses the dual
loop structure over the CDTA-CL variant, which uses the Centralized Loop structure.

It is worth noting that these simulation results should differ slightly when applied to
a real robotic swarm with other factors of time and power consumption.
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Table 2. Execution times for different swarm configurations in the CDTA-CL variation.

32
Robots

64
Robots

128
Robots

256
Robots

512
Robots

1024
Robots

2048
Robots

4096
Robots Time

1 leader 0.126 0.254 0.51 1.022 2.046 4.094 8.19 16.382 seconds

2 leaders 0.064 0.128 0.256 0.512 1.024 2.048 4.096 8.192 seconds

4 leaders 0.036 0.068 0.132 0.26 0.516 1.028 2.052 4.1 seconds

8 leaders 0.028 0.044 0.076 0.14 0.268 0.524 1.036 2.06 seconds

16 leaders 0.036 0.044 0.06 0.092 0.156 0.284 0.54 1.052 seconds

32 leaders 0.068 0.076 0.092 0.124 0.188 0.316 0.572 seconds

64 leaders 0.132 0.14 0.156 0.188 0.252 0.38 seconds

128 leaders 0.26 0.268 0.284 0.316 0.38 seconds

256 leaders 0.516 0.524 0.54 0.572 seconds

512 leaders 1.028 1.036 1.052 seconds

1024 leaders 2.052 2.06 seconds

2048 leaders 4.1 seconds

Table 3. Execution times for different swarm configurations in the CDTA-DL variation.

32
Robots

64
Robots

128
Robots

256
Robots

512
Robots

1024
Robots

2048
Robots

4096
Robots Time

1 leader 0.066 0.13 0.258 0.514 1.026 2.05 4.098 8.194 seconds

2 leaders 0.036 0.068 0.132 0.26 0.516 1.028 2.052 4.1 seconds

4 leaders 0.024 0.04 0.072 0.136 0.264 0.52 1.032 2.056 seconds

8 leaders 0.024 0.032 0.048 0.08 0.144 0.272 0.528 1.04 seconds

16 leaders 0.036 0.04 0.048 0.064 0.096 0.16 0.288 0.544 seconds

32 leaders 0.068 0.072 0.08 0.096 0.128 0.192 0.32 seconds

64 leaders 0.132 0.136 0.144 0.16 0.192 0.256 seconds

128 leaders 0.26 0.264 0.272 0.288 0.32 seconds

256 leaders 0.516 0.52 0.528 0.544 seconds

512 leaders 1.028 1.032 1.04 seconds

1024 leaders 2.052 2.056 seconds

2048 leaders 4.1 seconds

5. Discussion
5.1. Experiment 1

Experiment 1 (see Section 4.1) showed that the CDTA-DL variation executed the fastest
as it was faster than the original CDTA algorithm by 75.976%. The CDTA-DL variation
was also faster than the CDTA-CL variation by 47.37%. On the other hand, the CDTA-CL
variation was faster than the original CDTA algorithm by 54.4%.

Both of the proposed variations performed better in terms of execution time due to
the omission of the base station (see Section 2.2) as a central point of communication and
relying on direct robot-to-robot communication, as well as the novel Centralized Loop
and dual loop structures utilized to organize communication inside each cluster of the
swarm. The presence of a base station decreases the level of autonomy of the swarm, which
should ideally be completely decentralized and independent. Removing the base station
also removes the issue of a single point of failure, as any error in the base station serves all
types of communication and processing for the whole swarm.

In terms of battery loss, (Table 4) shows that the CDTA-DL variation is almost as
efficient as the original CDTA algorithm, while the CDTA-CL is less efficient than the
other two algorithms. In the original CDTA algorithm, the average battery power lost
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by any robot of the swarm is 2.1%. In the CDTA-DL algorithm, the average lost battery
power is 2.2%, which is only a difference of 0.1% from the most battery-efficient algorithm.
The aforementioned table also demonstrates that the CDTA-DL is close to the original
CDTA algorithm in terms of the standard deviation of power consumption where it stands
at 0.64%, while the original CDTA has a standard deviation of power consumption of 0.32%.
The CDTA-CL variation, on the other hand, has a power consumption standard deviation
of 1.73%. Similarly, the original CDTA algorithm and the CDTA-DL variation are close in
terms of power consumption variance where they have values of 0.1 and 0.41, respectively.
The CDTA-CL variation has a power consumption variance of 3 which is much greater
than CDTA and CDTA-DL, which indicates greater power consumption.

The CDTA-CL variation was the smallest in terms of power efficiency among the three
tested algorithms, as the average battery power lost was 2.4%, whereas a single robot in the
experiments lost 12%.

Both of the proposed variations offered less efficient battery consumption than the
original CDTA algorithm, although the CDTA-DL variation was on par with the original
CDTA algorithm. The reason behind this is that both variations do not rely on a base
station, which carries away the heavy and power-consuming processing from the robots in
the original CDTA algorithm. However, both variations were significantly faster than the
original CDTA algorithm, as stated in (Table 4).

By further utilizing the capabilities of Pyswaro, the three algorithms were tested
against colossal swarm populations. As swarm population sizes increased, the two pro-
posed variations executed significantly faster than the CDTA algorithm. For instance, when
the swarm population was 1 million robots divided into four clusters with a leader as-
signed to each cluster, the CDTA algorithm executed in 2.5 h, while the CDTA-CL variation
executed in 1.1 h and the CDTA-DL variation executed in just 33 min (see Table 5).

Table 4. A comparison between the different tested algorithms regarding execution time and battery
consumption in Experiment 1.

Original
CDTA

Proposed
CDTA-CL

Proposed
CDTA-DL

Unit

Execution Time 0.333 0.152 0.08 Seconds

Average Initial Battery Level 82.36% 84% 85.64% Battery Level

Average Final Battery Level 80.25% 81.56% 83.42% Battery Level

Minimum Power Lost
by a Single Robot
During Operation

2% Battery Level

Maximum Power Lost
by a Single Robot
During Operation

3% 12% 4% Battery Level

Average Power Loss
by Any Robot

During Operation
2.1% 2.4% 2.2% Battery Level

Standard Deviation of
Battery Power Loss

0.32% 1.73% 0.64% Battery Level

Variance of Battery
Power Loss

0.1 3 0.41
(Battery
Level)2
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Table 5. Utilizing the power of Pyswaro to test the algorithms’ execution times against large
swarm populations.

Swarm Population Original
CDTA

Proposed
CDTA-CL

Proposed
CDTA-DL Unit

36 robots |4 leaders 0.333 0.152 0.08 Seconds

100 robots|4 leaders 0.909 0.408 0.208 Seconds

10,000 robots|4 leaders 90 40 20 Seconds

1,000,000 robots|4 leaders 2.5 1.1 0.55 Hours

100,000,000 robots|4 leaders 10.4 4.6 2.3 Days

5.2. Experiment 2

Experiment 2 (see Section 4.2) evaluated a much larger swarm population of size
400 for 10 iterations to further enhance the differences between the three algorithms. This
experiment showed that the CDTA-DL variation still had the least execution time, where
it was faster than the CDTA-CL variation and the original CDTA by 47.33% and 76.37%,
respectively. The CDTA-CL variation was faster than the original CDTA by 55.14%.

Both CDTA-CL and CDTA-DL took significantly less time to operate due to the
absence of a base station to delegate communication, which adds overhead time as well as
an increased probability of communication failure. Decentralized communication is proven
to be more effective in terms of execution time for large swarm populations.

In terms of battery loss, the original CDTA algorithm remained the most efficient
with a negligible lead against the CDTA-DL variation. In the original CDTA algorithm,
the minimum and maximum power lost by a single robot in the 10 iterations were 24.75%
and 58.65%, respectively. The CDTA-DL came close with 26.32% and 58.69%, respectively
(see Table 6).

The same pattern could be observed regarding the average power lost by any robot
during the 10 iterations. For this metric, the original CDTA algorithm achieved 27.69%,
while the CDTA-DL variation achieved 28.98%.

While the CDTA-CL variation was considered the least efficient algorithm regarding
power consumption, the results shown in Table 6 provide insights for potential applications
where the CDTA-CL variation exceeds both CDTA and CDTA-DL. The results show that, in
the CDTA-CL variation, the average power lost by any robot is only 9.33%, which exceeds
the other algorithms. The reason for this behavior is that CDTA-CL relies on the star
network topology inside clusters, which means that each leader is considered the central
point of communication. This results in leaders being overworked when communicating
with all the subordinates in their respective clusters. This causes the battery levels of leaders
to drop severely throughout the swarm’s operation. This also means that subordinates
are never overworked, so they retain their battery levels. This can be observed in Table 6,
where the minimum power lost by a single robot is 5.2%, which belongs to a subordinate,
and the maximum power lost by a single robot is 98.81%, which belongs to a leader. This
behavior explains the higher-than-usual standard deviation and variance values of 8.92%
and 79.62%, respectively. This behavior can also be visually observed in Figure 34, where all
leaders are almost completely depleted beyond an operable state, while all the subordinates
succeed in preserving their battery levels.

Such behavior in the CDTA-CL variation can be exploited when the leaders can have
much larger battery reserves than the subordinates or can be easily replaced depending
on the environment and task at hand. This makes CDTA-CL ideal for applications where
the battery health of the majority of the swarm is a priority while maintaining a fast
execution time.

After observing the results of experiment 2, CDTA-DL proved to be the best algorithm
of the three, as it was the fastest and maintained balanced power consumption, making it
applicable in more applications than CDTA-CL and the original CDTA.
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Table 6. A comparison between the different tested algorithms regarding execution time and battery
consumption in Experiment 2.

Original
CDTA

Proposed
CDTA-CL

Proposed
CDTA-DL

Unit

Execution Time 41.89 18.791 9.897 Seconds

Average Initial Battery Level 79.84% 80.38% 80.59% Battery Level

Average Final Battery Level 52.15% 71.05% 51.6% Battery Level

Minimum Power Lost
by a Single Robot
During Operation

24.75% 5.2% 26.32% Battery Level

Maximum Power Lost
by a Single Robot
During Operation

58.65% 98.81% 58.69% Battery Level

Average Power Loss
by Any Robot

During Operation
27.69% 9.33% 28.98% Battery Level

Standard Deviation of
Battery Power Loss

3.15% 8.92% 3.02% Battery Level

Variance of Battery
Power Loss

9.94 79.62 9.15
(Battery
Level)2

6. Conclusion and Future Work

This research proposes the CDTA-CL and CDTA-DL algorithms that accomplish fully
autonomous and decentralized clustered dynamic task allocation. Both CDTA-CL and
CDTA-DL are considered to be an enhancement of the CDTA algorithm, where communi-
cation methods were optimized to be faster. The CDTA-CL variation was tested to operate
in only 45.7% of the time taken by the CDTA algorithm, while the CDTA-DL variation only
took 24.02% of the time taken by the CDTA algorithm.

The CDTA-CL variation fell behind regarding power efficiency, as the average power
lost by any robot during the operation of CDTA-CL was 2.4%, while that of the CDTA
algorithm was 2.1%. On the other hand, the CDTA-DL variation was on par with CDTA’s
power efficiency, as the average power lost by any robot during the operation of a CDTA-DL
was 2.2%.

In conclusion, the CDTA-DL variation is truly an advancement in the field of swarm
task allocation as it is substantially faster than the CDTA algorithm while retaining power
efficiency and adhering to the ideal representation of a robotic swarm that is fully au-
tonomous and decentralized.

Future optimizations for the existing CDTA-CL and CDTA-DL variations could include
an intelligent model that applies different algorithms in order to determine the optimal
physical positions of leaders inside their respective clusters to further reduce the time
consumed in communications as well as power consumption. Additionally, exploring
novel self-organization mechanisms presents another opportunity for future research.
Investigating how these mechanisms can enhance coordination and adaptability within the
swarm could lead to significant advancements in swarm robotics.
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41. Jevtić, A.; Gutiérrez, A. Distributed bees algorithm parameters optimization for a cost efficient target allocation in swarms of

robots. Sensors 2011, 11, 10880–10893. [CrossRef] [PubMed]
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