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Abstract: Autonomous robotic teams have been proposed for a variety of lost-person searches in
wilderness and urban settings. In the latter scenarios, for missing persons, the application of such
teams, however, is more challenging than it would be in the wilderness. This paper, specifically,
examines the application of an autonomous team of unmanned aerial vehicles (UAVs) to perform
a sparse, mobile-target search in an urban setting. A novel multi-UAV search-trajectory planning
method, which relies on the prediction of the missing-person’s motion, given a known map of the
search environment, is the primary focus. The proposed method incorporates periodic updates
of the estimates of where the lost/missing person may be, allowing for intelligent re-coverage of
previously searched areas. Additional significant contributions of this work include a behavior-
based motion-prediction method for missing persons and a novel non-parametric estimator for
iso-probability-based (missing-person-location) curves. Simulated experiments are presented to
illustrate the effectiveness of the proposed search-planning method, demonstrating higher rates of
missing-person detection and in shorter times compared to other methods.

Keywords: urban search and rescue; multi-UAV robotic search; probabilistic search planning

1. Introduction

Autonomous vehicles (aerial and/or ground) have commonly been proposed for urban
search and rescue (USAR) [1–9] and wilderness search and rescue (WiSAR)
applications [10–18]. They have also been suggested for city searches [19–24], although,
with limited scale or autonomy. Namely, most city-search approaches require human
guidance or teleoperation of the robot searchers [19,20], while some also search only a small
portion of an area relative to what the mobile missing person can actually cover [21–24].

The work presented herein considers the application of an autonomous team of aerial
unmanned vehicles (UAVs) for a coordinated search of a missing person in an urban/city
environment. The search is characterized by (i) an expanding and sparse search area,
which cannot be fully explored with the provided resources during the search time, and
(ii) the structure and topography of the urban environment, which guides the lost-person
movement. Accordingly, the search method employed must predict the behavior of the lost
person to best utilize the available limited resources.

Typical approaches to urban/city search for a missing person are reviewed below in
Section 1.1, including autonomous robotic search techniques. Due to similarities between
the USAR and WiSAR scenarios, several approaches for the latter are also discussed.

One need also note that in a crowded urban environment, the remote identification of
a missing/lost person can be challenging. In order to address this problem, several works
examining person reidentification from (remote) images are discussed in Section 1.2.

Lost/missing-person behavior is discussed in Section 1.3, including methods for
estimating the missing person’s location.
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The novelty and contributions of our work are briefly outlined in Section 1.4, prior to
detailed discussions in Sections 2–4. Comparison and robustness studies are subsequently
presented in Section 5. Concluding remarks are discussed in Section 6.

1.1. Urban Search for a Missing/Lost Person

Typical approaches to finding a lost (or, missing) person in an urban/city environment
involve using teams of SAR professionals and volunteers to coordinate and perform a
search [25]. These employ the use of a variety of locomotion methods, such as motor
vehicles, bicycles, and helicopters, as well as non-human resources such as canines. It has
also recently been suggested that other aids such as UAVs could be useful in conducting
searches for lost people [26].

UAV-based approaches rely on expert input to guide the UAVs’ trajectories, as well
as the use of an operator to identify the lost person [19,20]. Most focus on mapping
the unknown environments [3,5,22] and are typically limited to small areas. They are
more suited for disaster-rescue scenarios than to a missing-person search where the area
containing the lost person is significantly larger, crowded, and would include private and
public transportation vehicles.

While autonomous UAVs have seen limited use in urban searches, they have been
widely proposed for mobile target searches in other environments [10–17,27]. These have
included both homogeneous teams of UAVs [17,27,28], as well as heterogeneous teams
with different UAVs and UGVs [10,12]. Central to these methods is the generation and use
of probabilistic maps of the lost person’s potential location, using predicted behavior to
produce density maps [10,27–29] and other representations [11,12,15,17] of a lost person’s
location for guiding the search. Further details on the lost-person behavior used to motivate
such probability maps are examined below in Section 1.3.

1.2. Lost-Person Identification

When searching for a lost person in an urban environment, the ability to detect and
identify the missing/lost person is paramount to success. The identification of a person
from images falls under the general class of person re-identification problems, for which
solutions have been proposed using classical computer-vision approaches [30–33] and,
more recently, deep-learning approaches [34]. These allow an unseen person to be identified
from a text description [35,36]. Other works have examined re-identification in crowds [37]
and from moving UAVs [38]. These methods have shown that person re-identification
can be achieved in crowded areas and using moving UAVs in addition to or instead of a
fixed-camera network.

1.3. Lost-Person Behavior in An Urban/City Environment

City environments are characterized by a high density of structures and well-defined
pathways that a lost person can follow. Such environments have a profound impact on
lost-person behavior. For example, [39] notes different statistics for how far and where a
lost-person would travel in a city as compared to other environments. Furthermore, [25,39]
both categorize lost-person behaviors into different movement strategies some of which,
such as route following, are of particular interest to city environments where there can be
large networks of interconnected pathways offering easy traversal for a lost-person.

Past studies have proposed approaches that simulate lost-person behavior based
on historical rescue locations taken by previously rescued lost persons, for guiding the
searchers. Several such basic geography-based methods were presented in [40]. These
methods predict the potential position of a lost person using such techniques as distance
travelled or watersheds. However, they only predict where the lost person might be and do
not consider the trajectory they could have taken to get there. Other methods incorporate
the different behaviors identified in [39] and grid-based maps of the environment to
predict either a general density using diffusion [41,42] or simulate individual lost-person
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trajectories [27,43,44]. Thus, it is commonly accepted that methods that can produce
potential lost-person trajectories are desirable for planning searches.

1.4. Contributions

The work presented herein considers the application of an autonomous team of UAVs
for a coordinated search of a missing person in an urban/city environment. The main novel
contribution of the proposed method of searcher trajectory generation is in the intelligent
re-coverage of previously searched areas. In scenarios such as an urban search for a missing
person, which consider a sparse search with mobile targets that can move back into areas
that searchers have previously covered, continual re-coverage of those areas is necessary
for high search performance.

The proposed search method uses iso-probability curves, further discussed in
Section 2.2, in a dynamic manner to iteratively generate search trajectories, allowing
for the intelligent re-coverage of previously searched areas. When re-covering areas, the
iso-probability curves are updated to reflect the likelihood that the target could be in those
areas and search trajectories are planned accordingly. Furthermore, this re-computation
of the iso-probability curves allows for new information to be easily incorporated into the
search during its execution.

Our work also includes novelties in the prediction and estimation of the lost person’s
location. A novel parametric behavior-based method for lost-person trajectory prediction
is presented. Furthermore, we propose a novel estimation method for iso-probability
curves using kernel-based methods to produce an estimate from predicted mobile target
trajectories. This estimation method produces smoother curves than prior histogram-based
methods [45] and can be used whenever target (i.e., missing-person) position predictions
are available.

2. Problem Statement: Robotic Urban Search for a Lost Person

This paper examines a lost- (or missing-) person search scenario, via autonomous
UAVs, in an urban/city environment. The search proceeds over a fixed time horizon
from tstart to tend, where tstart is some time after the lost person has been reported missing.
This proposed aerial search is to be conducted parallel to a ground search, which is not
modeled in this paper, and the subsequent rescue of the lost person, after the identification,
is left to the ground team. The search is assumed to be sparse, namely it is not possible to
fully search the area that could be covered by the mobile target (in motion) and guarantee
that the target (i.e., lost person) will be found with the resources provided. As such, the
objective herein is to maximize the probability that the target will be found, with additional
consideration to how quickly they are likely to be found.

2.1. Search Assumptions

Several assumptions about the behavior of the lost person, the search agents, and the
planning of the search are made in this paper. Also, it is envisioned that the search method
itself is decoupled from the modeling of the lost person; thus, it would still function if
different assumptions about the lost person’s behavior are made.

2.1.1. The Lost Person

One of the first steps in conducting a lost-person search is to create a (demographic)
profile of that person [25], in order to plan an effective search. This paper assumes that
such information is available in order to predict the motion of the lost person, in terms of
route-traveling, direction-traveling, backtracking, and random-wandering behaviors.

2.1.2. The Searchers

Herein, it is assumed that the UAVs, employed as search agents, can follow arbitrary
trajectories at their rated speeds. Additionally, it is assumed that the UAVs have a long
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enough flight time to complete their assigned search trajectories, while moving at their
rated speeds, and return for retrieval, without needing refueling or recharging.

All UAVs are assumed to be outfitted with cameras and other sensing equipment
sufficient to allow for the lost person to be detected, provided an unobstructed view to the
lost person exists. This is modeled using a binary-disk detection model which is obstructed
by obstacles in the environment.

During the search, all UAVs are capable of accurate global positioning. They are
also communicating with a central controller, which provides the UAVs with their search
trajectories throughout the search.

2.1.3. Search Planning

A common framework for evaluating the search part of a search and rescue (SAR)
operation [46] involves maximizing the probability of success (PoS) of the search. This is
measured by combining two probability distributions: the probability of area (PoA) and the
probability of detection (PoD). The former describes the likelihood of the search target to be
at any given position. The latter, on the other hand, describes how likely the search target
is to be found, assuming that it is at the location that is being searched. In this context, the
probability of success, PoS, is obtained by combining the PoD at all points along the search
trajectory with the PoA at those points, resulting in an overall probability of how likely the
search is to be successful.

Optimal search trajectories are ones that maximize the PoS, resulting in the highest
likelihood of a successful search, while observing searcher constraints, such as always mov-
ing at their rated speed. Using the above description of the PoS, such optimal trajectories
will be ones that balance exploiting high-PoA areas with full coverage of the search area.
One method of obtaining such paths is by leveraging iso-probability curves [12], which
provide a means of planning search trajectories that balance the search effort in proportion
to the likelihood of the search objective being in a certain location, while spreading the
search effort out across the entire search area. Further information on iso-probability curves
is briefly provided below in Section 2.2.

When conducting the search, it is assumed that there is a centralized base location
from which the search is being coordinated. It is also assumed that, following standard
practice, there is an SAR team operating out of this location and performing a ground
search in conjunction with the proposed aerial search. Thus, when the location of the lost
person is potentially identified by the aerial search team, a ground team can be dispatched
to confirm and to ‘pick up’ the lost person.

2.2. Iso-Probability Curves

First introduced in [17], iso-probability curves provide a description of a lost person’s
movement away from an initial location over time and they have been used for several
WiSAR multi-robot search planning applications [11,12,17,18,45]. In a set of iso-probability
curves, each curve is associated with a quantile; the qth curve describes the radial position
of the qth furthest location the lost person may have gone in any given direction. The
full set of curves corresponding to quantiles from 0 to 1 provides a complete description
of where the lost person might be located. The curves are time varying and centered
around the last known position (LKP) of the lost person, growing outward from the LKP as
time progresses.

As shown in [11], each qth percentile iso-probability curve has the following polar
coordinate description: (

F−1(q |θ , t), θ
)
∀θ ∈ [0, 2π], (1)

where F−1(q |θ , t) is the inverse cumulative distribution function for the probability density,
f (r |θ , t), of a lost person being located at some distance, r, along a ray leaving the LKP in
direction θ, at time t.
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3. Proposed Methodology

In this section, the proposed methodology for the urban-search problem outlined
above is described. An overview of the methodology is shown in Figure 1. First, the sub-
problem of lost-person motion prediction, Lost-Person Motion Model Simulation, in Figure 1,
is detailed in Section 3.1. Then, the sub-problem of search planning for the lost person,
Search Initialization and Trajectory Generation, in Figure 1, is detailed in Section 3.2.
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3.1. Lost-Person Motion Modelling and Prediction in an Urban Environment

Several methods for lost-person behavior modeling have been reported in [27,41–44].
However, they mostly focus on predicting motion in wilderness environments. Several
methods adapt the behaviors into grid-based methods for lost-person prediction [39].
However, in order to be applicable to urban environments, due to the high density of
‘obstacles’ as well as nearby roads going in different directions, an approach that is not
limited to a simple grid representation of the environment and lost-person trajectory would
be desirable. Herein, such a model is presented, first, using a description of the environment,
which implements key features for lost-person motion modelling in an urban environment,
in Section 3.1.1. The proposed lost-person motion model is detailed, next, in Section 3.1.2.
It employs a Monte-Carlo simulation approach to estimate the possible trajectories that
the lost person may have taken. The simulated trajectories are then used to construct an
estimate of the iso-probability curves corresponding to the missing person’s location by
means of a kernel-based iso-probability curve estimation method described in Section 3.1.3.

3.1.1. The Urban Environment

In order to effectively model and predict the motion of a lost person in an urban
environment, the relevant features of that environment need to be incorporated into the
model for the lost person. This, in turn, leads to a need for a representation of urban
environments that can be used for the purpose of lost-person motion prediction. The
lost-person behaviors considered, herein, are route-traveling and direction-traveling, which
require both linear features in the environment for the lost person to follow, as well as the
modeling of obstacles that can impede motion in a given direction. Figure 2 shows such
an environment.

The environment is modeled as a collection of obstacles, primarily buildings, and
linear features, such as roads, paths, and trails. It is assumed that the environment is
sufficiently flat to not impact the lost person’s behavior; thus, changes in altitude are
ignored, considering only a 2-dimensional map. Obstacles are represented as a sequence of
points that are connected to form closed polygonal chains. Linear features are represented
as a sequence of points that are connected to form open polygonal chains. In order to
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model intersections, all linear features are split at locations where they cross each other,
and additional breaks are included to provide more decision points when traveling along
linear features.
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3.1.2. Urban Lost-Person Behavior Model

In order to perform lost-person motion prediction in an urban environment, the wilder-
ness lost-person model used in [12] was adopted herein and extended by incorporating
common behaviors such as random-traveling, route-traveling, direction-traveling, and
backtracking. The proposed motion-prediction method is based on the descriptions of
these behaviors from [39], as well as the way that several of these behaviors have been
modeled in grid-based motion-prediction methods [41,42], incorporating them into the
pre-existing model. The generated lost-person trajectories are modeled as a sequence of
trajectory segments, in the form of open polygon chains, each generated in an iterative
manner by the proposed motion-prediction method. The method employs a parametric
approach where, for each generated trajectory segment, the lost person follows one of two
locomotion strategies and uses one of two decision-making strategies, with transitions
between these strategies being controlled by the model parameters. An overview of the
transitions between these strategies is shown in Figure 3. It omits the backtracking be-
havior since it modifies the other strategies. However, it is not directly used to determine
lost-person motion.

The two locomotion approaches are the direction and route strategies, shown on the
right in Figure 3. For the former, the lost person heads in a given direction with pertur-
bations in heading, navigating around obstacles in the environment. For the latter, the
lost person follows existing linear features in the environment such as roads and trails.
The two decision-making strategies are random and traveling, shown on the left in Figure 3.
When traveling, the lost person tries to keep a consistent heading, and, when moving
randomly, the lost person moves in the environment in a less structured manner. Between
each generated segment, the model has some probability of switching between the different
locomotion and decision-making strategies as well as possibly backtracking and attempting
to reverse direction for the next segment.
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The method for producing each trajectory segment depends on the currently employed
strategies. When under the direction and traveling strategies, the segment takes the form
of a line of varying length, d, that is uniformly sampled to be between the distances
dmin and dmax:

d ∼ U(dmin, dmax). (2)

The heading of the line, θ, is determined by

θ ∼ N
(

φ, σ2
)

, (3)

where N
(
φ, σ2) is a normal distribution from which θ is sampled with a mean of φ, the

direction that the lost person was heading when this strategy was switched to, and the
standard deviation of σ, a model parameter. If the line segment intersects with any obstacles
in the environment; then, the lost person goes around the obstacle and continues along
the segment. This is achieved by temporarily switching to the route-locomotion method
and treating the edge of the obstacle as a linear feature to follow. While going around the
obstacle, the distance traveled is counted towards the length of the line, decreasing the
distance travelled along that line. If the length of the line is reached while avoiding an
obstacle, then the step terminates. Since the line segment may intersect linear features in
the environment, at each intersection point the model may decide, by means of a Bernoulli
trial, to stop the current step and start the next step following that linear feature using the
route-locomotion strategy:

eroute ∼ Bernoulli(proute), (4)

where proute is the probability that this occurs, and eroute is the event that the model
changes behaviors.

Whenever a step is completed using the traveling strategy, there is some probability
that the random strategy will be switched to. This is modelled by a Bernoulli trial:

erand ∼ Bernoulli(prand), (5)

where prand is the probability of this event, erand, occurring.
There is also a chance that the decision will be made to backtrack at the end of the

step, which is modeled by another Bernoulli trial:

eback ∼ Bernoulli(pback), (6)

where pback is the probability of doing so, and eback is the event that the model
changes behaviors.

If a decision to backtrack is made, the current and desired headings are reversed before
the next step.
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When using the direction and random strategies, the generated segment is constructed
in a similar manner to when using the direction and traveling strategies, with two distinct
changes. One difference is that the heading is determined using the heading of the previous
segment instead of a fixed direction:

θ ∼ N
(

θ, σ2
)

, (7)

which leads to trajectories that slowly drift over time. The other difference is that once a
step has been completed, instead of a chance to switch to the random strategy, there is a
chance that the traveling strategy is used for the next step, modeled by a Bernoulli trial:

etrav ∼ Bernoulli(ptrav), (8)

where ptrav is the probability of this event, etrav, occurring.
When using the route and traveling strategies, the lost person moves along linear

features in the environment, trying to keep moving in the same direction when multiple
linear features intersect. This produces trajectory segments that follow the polygonal chains
of linear features in the environment. When starting a step with this strategy, all linear
features within a user-defined distance parameter, droute, are considered, and a random
heading is chosen based on the previous heading, in the same manner as Equation (7),
and the linear feature which best aligns with the new heading is selected. The trajectory
segment starts by connecting the lost person’s current location to the closest point on the
linear feature and moving along that linear feature in the direction best aligning with the
desired heading. The linear feature is followed until the end of the feature is reached,
producing a sequence of points for each intermediate segment of the linear feature. When
reaching the end of the trajectory segment, there is a chance that the next step will use the
direction strategy, which is modeled by a Bernoulli trial:

edir ∼ Bernoulli(pdir), (9)

where pdir is the probability of that event, edir, occurring. Additionally, there is the same
chance of switching to the random strategy and to backtrack as above, with the same
backtracking effect on heading. Normally, the feature that had just been followed is not
considered as an option for the next step; however, if the decision is made to backtrack,
then it would be considered. If there are no available linear features to follow for the next
step, then a switch to the direction strategy is made.

When using the route and random strategies, the next trajectory segment is constructed
in a similar manner to the route and traveling strategies, with two differences. The first is
that the desired heading is chosen without regard to the current heading:

θ ∼ U(−π,π). (10)

The second is that, instead of having a chance to switch to the random strategy, there
is a chance to switch to the traveling strategy after a step, using Equation (7).

3.1.3. Kernel-Based Iso-Probability Curve Estimate

Prior work involving the estimation of iso-probability curves has been categorized into
two types [11,12,17,45]: (1) parametric estimation, where an underlying distribution is fitted
and used to compute iso-probability curves, and (2) non-parametric estimation, which uses
histogram-based estimation of the density function to compute the iso-probability curves.
Since the distributions produced by the lost-person motion model may not be accurately
modeled by a known distribution, a non-parametric estimation method is preferred herein.

Due to the binning of the lost-person information into a polar histogram, the existing
methods introduce a tradeoff between a loss of information due to large bins and a rough-
ness from small bins and the stochastic output of the lost-person model. When considering
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density estimation, kernel-based methods are frequently preferred over histogram methods
for their generally better estimation performance. Additionally, since these do not rely
on an underlying grid and contain inherent smoothing through the selection of kernel
bandwidth, they allow for smoother iso-probability curves to be produced without a large
degradation of the estimation accuracy.

As such, a kernel-based estimation scheme for iso-probability curves is employed
herein. It employs the following formulation for the cumulative distribution of a lost person
being located at distance r in a given direction θ at time t:

F(r|θ, t ) =
1

nhθ

∑n
i=1

(
Kθ

(
θ−θi(t)

hθ

) ∫ r
0 Kr

(
r̃−ri(t)

hr

)
dr̃
)

∑n
i=1

(∫ ∞
0 Kr

(
r̃−ri(t)

hr

)
dr̃
) , (11)

which uses a polar representation of the lost-person position trajectories, (ri(t), θi(t)). It
takes a product kernel approach, with an individual Epanechnikov kernel applied on
each variable in the polar trajectory, Kθ and Kr, with bandwidth parameters, hθ and hr,
respectively. Similar to the bin size in a histogram, the bandwidths are chosen to provide
smoothing and accuracy in the estimator. For the radial coordinate, since the distribution
of interest is bounded by [0, ∞], the reflection technique is applied to avoid the distribution
artificially decreasing as the lower bound is approached. Furthermore, since iso-probability
curves correspond to the cumulative probability in the radial direction, the integral of the
kernel is used, and the overall result is normalized. For the angular coordinate, to account
for the fact that angles wrap around every 2π, the difference between values is wrapped to
the range (−π,π) before applying the kernel.

As shown in Section 2.2, this CDF estimate can be inverted, F(q |θ , t), and used to
describe the qth percentile iso-probability curve using Equation (1).

3.2. Target Search

The proposed target search method is one where (searcher) robots follow a dynamic
iso-probability curve guided search for the lost person (i.e., target). It is executed as a
sequence of steps, shown in Figure 4 and Algorithm 1, which are repeated until the lost
person is found or some other termination condition is reached.
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The search algorithm is divided into two sections, the pre-search optimization
(Section 3.2.1), shown in Line 1 of Algorithm 1, and the iterative search process
(Section 3.2.2), shown in Lines 3–21 of Algorithm 1, respectively. The pre-search opti-
mization utilizes the iterative search process as part of the optimization, as shown in
Figure 4, where the inner optimization for robot assignments utilizes a search to evaluate
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candidate assignments to iso-probability curve partitions. The search process, trajectory
generation in Figure 4, which constructs the search trajectories for all searchers, referred to
as robot_trajectories in Algorithm 1, is divided into three distinct sections which are repeated
until the search is completed. In the first section (Section 3.2.2, Outward Trajectory), Lines
5–10 of Algorithm 1, all robots search moving outward, bounded by the slowest robot. In
the second section (Section 3.2.2, Inward Trajectory), Lines 12–17 of Algorithm 1, all robots
search by moving back inward, bounded again by the slowest robot. Finally, in the third
section (Section 3.2.2, Information Update), Lines 19–20 of Algorithm 1, the information
used for planning the search is updated before the next iteration.

Algorithm 1. Proposed search-algorithm pseudocode.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

partitions, assignments← OptimizePartitionsAssignments(n_robot)

robot_trajectories← EmptyTrajectory(n_robot)
while not CheckTermination(robot_trajectories)

slowest_trajectory, slowest_robot← ShortestTrajectoryOutward()
append slowest_trajectory to robot_trajectories[slowest_robot]
for each robot that is not slowest_robot

trajectory← SpiralOutward(robot)
append trajectory to robot_trajectories[robot]

end for

slowest_ trajectory, slowest_robot← FixedTrajectoryInward()
append slowest_trajectory to robot_trajectories[slowest_robot]
for each robot that is not slowest_robot

trajectory← SpiralInward(robot)
append trajectory to robot_trajectories[robot]

end for

UpdateIsoProbabilityCurves()
partitions.bounds← CompPartitionBounds()

end while

In order to coordinate the search paths of all robots involved, the iso-probability curves
are divided into different partitions that are searched independently by non-overlapping
subset of robots, the partitioning block in Figure 4. Our proposed search method divides
the iso-probability curves into several contiguous and non-overlapping partitions, which
span the 0% to 100% percentiles. This allows the search method to deploy robots to
search the regions where they will provide the most benefit to the overall performance of
the search.

In our search method, trajectory generation relies on an adapted approach for follow-
ing iso-probability curves from [12], where modifications have been made to allow for
trajectories that spiral inward in addition to the originally produced trajectories that spiral
outward. The process for determining the path of Robot i in polar coordinates around the
last-known position (LKP) of the lost person, when using this adapted method, henceforth
referred to as the curve-following method, is described below.

The curve-following method relates the cumulative angular distance travelled by the
robot to the iso-probability percentile that is being searched at a given time. The relationship
is described as follows:

qi(t|c, qs, ts) = qs + c
∫ t

ts
θi
(
t̃
)
dt̃, (12)

where qs is the starting iso-probability curve quantile for the search trajectory, ts is the
starting time for the search trajectory, θi is the angular position of the ith robot, and c is a
user-provided curve progression rate that determines how much search effort is spent on
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each iso-probability curve percentile. For c > 0, the resulting trajectories spiral outward,
while for c < 0, they spiral inward.

When following a specific set of iso-probability curves, the above approach allows
for the polar coordinates of the trajectory to be obtained by evaluating the curves at the
specific percentile given by Equation (12) and combining it with the angular position:(

F−1(qi(t|c, qs, ts)) |θ i(t)
)

t ≥ ts. (13)

If the searcher robot is always moving at its rated speed, vr, then the angular position
and the corresponding radial position can be determined using an iterative approach. This
is an additional constraint that can be described by

d
dt

F−1(qi(t|c, qs, ts)) + F−1(qi(t|c, qs, ts))
d
dt
θi(t) = vr. (14)

3.2.1. Search Initialization

The proposed search method relies on the selection of a number of parameters in
addition to those provided by the constraints on the search problem. These correspond
to the number and positions of the iso-probability curve partitions used for the search, as
well as how the search agents (i.e., robots) should be allocated among those partitions for
optimal search performance. Thus, the search initialization process involves solving an
(initial) optimization problem to determine the parameters.

The process of determining the optimal number and placement of partitions as well
as the allocation of robots to those partitions can be formulated as a mixed integer opti-
mization problem. The proposed optimization method decouples the optimization of the
partition boundaries leaving an integer programming problem to be solved for the partition
count and robot assignments. When solving the integer program, candidate solutions
are evaluated on a fixed time horizon search, and the optimal parameters can be chosen
based on some metrics, (e.g., the median time to find a target, the overall probability of
finding the target, etc.). The details involved in these optimization steps as well as sensible
initializations for quick convergence are outlined below.

Partition Selection

Partition selection, partitioning in Figure 4, describes the process by which the pro-
posed optimization method selects the number of partitions to use and the locations of the
boundaries between them. This can be further divided into two nested problems. The first
is determining the optimal number of partitions that should be selected for the search, while
the second involves determining the placement of the boundaries between contiguous par-
titions for a given partition count. Herein, each problem is addressed independently, with
the number of partitions being part of the larger optimization process outlined above, and
partition boundaries being optimized independently from this optimization, considering
only the number of partitions and not how robots are allocated between them.

Partition selection, for use in the search, involves two main steps: determining the
number of partitions that should be used, as well as determining the locations of the
boundaries between contiguous partitions.

For the second problem, a partitioning strategy, adopted from [11,12], is employed.
This strategy balances the sizes of each partition by sizing them such that a single robot
could search each partition, spending a similar amount of search effort on each intermediate
percentile in the partition, within some fixed amount of time. Formally, given some number
of partitions, npart, the boundaries of the partitions,

{
qlb,i, qub,i

}npart
i=1 , are optimized with the

following objective and constraints:

min ∑npart
i=1 |ci − c|, (15)
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ci = argmin
c

∣∣∣qi(topt |c, qlb,i , tstart) − qub,i

∣∣∣ ∀i = 1, . . . , npart, and (16)

qlb,0 = 0, qub,npart = 1. (17)

As outlined above, the selection of the number of partitions is achieved via an op-
timization process that includes determining the optimal number robots assigned to the
partitions. The selected number of partitions must be in the range [1, nrobot], where nrobot
is the number of robots available for the search. This ensures that there will always be
a sufficient number of robots to have a minimum of one robot searching each partition.
For large numbers of robots and partitions, this optimization can become computationally
intensive. As such, a heuristic approach is proposed herein to provide a logical initial state
for the optimization. This approach is adapted from [11], where the number of partitions
was set as nrobot/nc, and nc was a value extracted from the environment of the search. The
examined urban environments are much more complex than the environments examined
in [11]; hence, the same information from the environment cannot be used. Thus, the
proposed heuristic approach for determining an initial value for the optimization of the
number of partitions used for the urban search is defined by nrobot/b, where b is a user-
provided parameter. Based on our empirical studies, it was noted that a value of two
for b works well for fast convergence.

Partition Assignment

Given a set number, npart, of contiguous partitions, dividing a set of iso-probability
curves, and number of robots, nrobot, a process which assigns at least one robot to each
partition and assigns each robot to a partition is required. This process, assignment in
Figure 4, is carried out as part of the larger integer programming problem outlined above.
Thus, the partition assignment sub-problem can be described by

argmin
a

s(a), (18)

∑npart
i=1 ai = nrobot, and (19)

ai ≥ 1, (20)

where a is a vector of length npart. Above, each element represents the number of searchers
assigned to the corresponding partition, and s(a) is the performance metric of interest
evaluated using a short time horizon search with the provided partitions and robot as-
signments. For example, when the median time to find the target is used as a metric, it is a
minimization, as shown above; however, if the probability of finding the target is used as the
metric, then it is a maximization.

Similarly, to ensure fast convergence in the optimization process, a good initial value
for the number of partitions is required. Based on our empirical studies, it was noted
that, with the method for determining partition boundaries described previously, the
configuration that places all excess robots in the lowest partition consistently yields the
best results in terms of median time to find the lost person and probability of finding the
lost person. As such the proposed heuristic for initializing the optimization process for
partition assignment was set in our work as a1 = nrobot − npart + 1 and ai = 1, i 6= 1.

3.2.2. Search Execution

The proposed search execution approach comprises three steps, shown in Figure 5,
which are repeated until some termination condition is reached. These are a trajectory
moving outward, Outwards Trajectory in Figure 5, taking each searcher from the lower
bound of its partition to the higher bound; a trajectory moving inward, Inwards Trajectory in
Figure 5, taking each searcher from the upper bound of its partition to the lower bound;
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and an update step, where changes are made to the information guiding the search based
on new information and the overall progress of the search, Information Update in Figure 5.
Additional details on each step are provided in the following sub-sections.
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Outward Trajectory

In the first part of the search execution, each robot must travel from the lower percentile
bound of its partition toward the higher percentile bound, hereafter referred to as the robot’s
lower and upper bounds, respectively, which are calculated following the optimization
procedure outlined in Section 3.2.1, Partition Selection. In the proposed search method, this
outward trajectory is one such that all robots reach their upper bound at the same point in
time, namely,

qi(tout) = qub,i i = 1, 2, . . . , nrobot, (21)

where tout is the end time for all outward trajectories.
An outward trajectory is formulated such that the minimum amount of time is taken

for the search to complete the outward portion while ensuring that the slowest robot can
still reach its upper bound. Namely,

tout = max tout,i i = 1, 2, . . . , nrobot, (22)

where tout,i is the time at which Robot i arrives at its upper bound, when following the
shortest trajectory between its lower and upper bound.

Following the above approach, the outward trajectory for the slowest robot is consid-
ered as the shortest-time trajectory. For the remaining robots, their trajectories are slowed
down by

ci = argmin
c

∣∣∣qi(tout |c, qlb,i , tstart) − qub,i

∣∣∣ ∀i = 1, 2, . . . , nrobot; i 6= islowest, (23)

where the trajectory for each robot is determined by the curve-following rate, ci, which
denotes how much search effort the robot expends on each intermediate iso-probability
curve in its partition.

After all robots have completed moving along their outward trajectories, which corre-
sponds to time tout, they immediately continue to search moving on an inward trajectory.

Inward Trajectory

The inward-trajectory determination follows a similar formulation to the outward-
trajectory generation, going from the upper to lower percentile bound of a robot’s partition.
However, the slowest robot, instead of going straight towards its destination, travels some
cumulative angular distance φ while traveling toward its lower bound. As such, the curve
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progression rate of the corresponding trajectory can be computed as c = φ
qub,i−qlb,i

, which
gives a trajectory that will traverse the desired angular distance when moving from the
upper bound to lower bound of the robot’s partition. Thus, the time that any given robot
takes to travel this path is given by

tin,i = argmin
t

∣∣∣∣q(t
∣∣∣∣ φ

qub,i − qlb,i

)
− qlb,i

∣∣∣∣ i = 1, 2, . . . , nrobot. (24)

The time that bounds the length of this portion of the search is the time taken by the
slowest robot to complete the path outlined above. Namely, the time at which this slowest
robot completes its trajectory is given by

tin = max tin,i i = 1, 2, . . . , nrobot. (25)

The slowest robot takes the trajectory that corresponds to the time tin, while the
remaining robots follow iso-probability curves inward, such that they reach the lower
bound of their partition at the same time that the slowest robot completes its trajectory. This
is achieved by the following equation, describing the computation of the curve-following
rate for all remaining robots:

ci = argmin
c

∣∣∣qi(tin |c, qub,i , tstart) − qlb,i

∣∣∣ ∀i = 1, 2, . . . , nrobot; i 6= islowest. (26)

The trajectories taken by these remaining robots are simply the iso-probability curve-
following trajectories, starting at the upper bound of the robot’s partition, which follow the
curve-following rates computed for each robot.

Once the robots have completed their inward trajectories, they immediately start trav-
eling back outward. However, these new trajectories are now determined using updated
information which is outlined below.

Information Update

During search execution, new information may become available concerning the
missing person. This could include data influencing their probable behavior, which could
come from investigations and interviews, typically conducted at the beginning of a missing
person search, tips from civilians, or unconfirmed sightings from external sources that
influence the current belief of where the lost person may be located. Additionally, as the
search is executed it would be beneficial to focus on regions that contain possible trajectories
that have not previously been encountered during the search, which requires adjusting
which information is used to plan the next iteration of the search. The information used
for the search is updated between each iteration of the search. However, if significant
new information, as determined by the user of the search method, is acquired during the
search, that information could be used immediately and the current iteration ended early
to leverage that information as soon as possible.

In the proposed search method, it is assumed that information is only updated based
on the areas that have been searched during previous portions of the search. This is
achieved by updating the iso-probability curve estimation by excluding any of the sim-
ulated trajectories which would have been found during prior iterations of the search.
Namely, only possible positions that would not have been found are considered in the
kernel-based estimation process.

When new information is incorporated into the search, it is likely that the locations of
the different iso-probability curves change. Since the employed partitioning method is tied
to the locations of those curves, they need to be recomputed after the iso-probability curves
are updated. After the updating of the iso-probability curves, and the re-computation of
the partition boundaries, it is likely that the current positions of the searches will no longer
lie on the iso-probability curve percentiles that correspond to the lower boundaries of their
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partitions. This scenario can be accounted for by changing the lower bound used for the
outward search step, by replacing all qlb,i with F(ri(tstart) |θ i(tstart), tstart).

4. Simulated Experiments—Example Results

In this section, two illustrative examples are provided, capturing the details of the
full process of the proposed approach: Example 1 provides a comprehensive step-by-step
description of the proposed search method, detailed in Section 3.2, for a simple scenario,
followed by Example 2, which details the results of a more complex scenario.

4.1. Example 1
4.1.1. Environment

For this example, a representative urban environment was used. It is shown in Figure 6,
with obstacles in blue and linear features in red. It constitutes an urban environment
20 × 20 km2 in size, which contains a high-density downtown area, a medium-density
suburb areas, and some sparse areas further from the downtown core.
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4.1.2. Lost-Person Motion Prediction

Parameters for the lost-person motion model were obtained via a simple gradient-
based stochastic optimization technique to match the model output to data for people
with dementia noted in [39]. Additional parameter sets were determined for different
demographics to validate the lost-person motion model. A common random-numbers
technique was used to reduce the variance when computing gradients. The lost person’s
speed for each simulated trajectory was sampled from a normal distribution using the
mean and standard deviation obtained from [47], as shown in Table 1.

Table 1. Parameters for the lost-person motion model used in Examples 1 and 2.

σ (rad) prand ptrav pback pdir

0.518 1 0.276 0 0.938

proute µv (m/s) σv (m/s) droute (m)

0.312 1.21 0.0815 10
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For the scenario considered, a total of 50,000 trajectories were simulated for the
lost person. All target trajectories originated at the LKP of the lost person,
at (x, y) = (10, 181.8 m, 10, 068.0 m), with a uniformly sampled initial heading. Each
trajectory contained a potential path taken by the lost person for a 12 h period after they
went missing. Figure 7 shows the first two hours of a representative set of 200 of these
trajectories. In total, 20,000 of these trajectories were used to plan searcher trajectories,
including the optimization of the search parameters, while the remaining 30,000 were used
to evaluate the proposed search method.
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4.1.3. Search

The search for the missing person was carried out with five identical UAVs (nrobot = 5).
The homogenous UAVs were deemed to be capable of following arbitrary paths at a speed
of up to 30 m/s and detecting a person within a distance of 20 m provided that there is a
line of sight not obstructed by obstacles in the environment. The UAVs were also assumed
to be flying at a sufficient height to clear all obstacles. During the search, all times were
measured from the time when the lost person was assumed to have gone missing and
was located at the LKP (t = 0 s). All UAVs were assumed to have arrived at the scene, at
their respective initial deployment locations, 40 min (t = 2400 s) after the lost person was
reported to have gone missing and performed a search that lasted for two hours (from
t = 2400 s to t = 9600 s).

Search Initialization

In order to perform the search, the first step is to determine the partitioning of the
iso-probability curves and the assignment of robots to those partitions. This is determined
using the integer programming problem and partition boundary selection method outlined
in Section 3.2.1. Solving this problem for five robots using iso-probability curves obtained
using the 20,000 lost-person trajectories for search planning and the estimation method
outlined in Section 3.1.3 yields the number of partitions and robot assignments used for
the search. During the optimization process each candidate configuration was evaluated
using a 30 min search and selecting for the minimum median time to find the lost person.
This resulted in three partitions being selected with the robot assignments and boundaries
shown in Table 2. Figure 8 shows a visualization of this starting configuration displaying
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the iso-probability curves corresponding to the boundaries between partitions and the
initial deployment locations of the robots (UAVs).

Table 2. Partitioning and robot assignment used in Example 1.

Partition # 1 2 3

Lower Bound (%) 0 54.8 81.2
Upper Bound (%) 54.8 81.2 100
Number of Robots 3 1 1
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Search Execution

The search trajectories were generated using the iterative strategy outlined in
Section 3.2.2, comprising an outward, inward, and update step for each iteration. The out-
ward trajectories for each partition during the first step of the search are shown in Figure 9.
Robot 5 in Partition 3 was the slowest robot traveling in a straight line and limiting the time
of the outward step. Figure 10 shows the inward trajectories for each partition during the
first step of the search. Once more, Robot 5 in Partition 3 was the slowest robot traveling
φ = 6.6 radians around the LKP as described in Section 3.2.2, Inward Trajectory.
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and + indicate the trajectory start and end, respectively.
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Figure 10. Robot search trajectories for the inward step during the first iteration of the search:
(a) Robots 1 to 3 in Partition 1; (b) Robot 4 in Partition 2; and (c) Robot 5 in Partition 3. The markers
x and + indicate the trajectory start and end, respectively.

In order to illustrate the information update carried out between iterations, Figure 10
provides a visualization of the changes in the iso-probability curves. Figure 11a shows
the iso-probability curves used for planning the first iteration at t = 2857 s, when the first
iteration is completed. Figure 11b shows the simulated lost-person locations that were
used to build those iso-probability curves, highlighting those that would have been found
during the first iteration of the search. Figure 11c shows the updated iso-probability curves
at t = 2857 s, which is used for the second iteration of search planning and considers only
the lost-person locations that would not have been found during the first iteration. The
majority of the locations that would have been found are located inside the initial 50%
iso-probability curve, in part due to more UAVs searching the first partition, which leads to
those lower percentile curves being larger in the updated iso-probability curves.
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In order to evaluate the performance of the proposed search method, it was utilized to
search for the 30,000 target trajectories that were not used for searcher trajectory planning.
This was performed over the same 2 h search window (t = 2400 s to t = 9600 s) for which the
search was planned. The evaluation determined that 76% (of the 30,000 simulated targets)
were found using the proposed search method with a median find-time of 888 s after the
start of the search (at t = 2400 s). Due to the search being sparse, one cannot expect a 100%
find rate.

4.2. Example 2

In this example, a search is performed with a larger number of, though slower, identical
UAVs/robots: nrobot = 15, maximum (rated) speed of up to 10 m/s, and detection distance
of 20 m. The environment and the lost person are the same as in Example 1.

Table 3 shows the partitions and robot assignments at the start of the search
(t = 2400 s). Figure 12 shows the initial robot deployments and iso-probability curve
partitions.
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Table 3. Partitioning and robot assignment used in Example 2.

Partition # 1 2 3 4 5 6 7

Lower Bound (%) 0 34 53 65 76 85 93
Upper Bound (%) 34 53 65 76 85 93 100
Number of Robots 9 1 1 1 1 1 1
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Figure 12. Partitions and initial robot deployment.

The first iteration of the search is visualized in Figure 13: Figure 13a shows the outward
moving search trajectories from t = 2400 s to t = 2464 s; and Figure 13b shows the inward
moving search trajectories from t = 2464 s to t = 4120 s.
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Using the 30,000 target trajectories that were not used for search planning, the perfor-
mance of the full two-hour search (t = 2400 s to t = 9600 s) was evaluated. The evaluation
determined that 78% (of the 30,000 simulated targets) were found using the proposed
search method with a median find-time of 871 s after the start of the search (at t = 2400 s).

5. Comparison and Robustness Studies

In this section, further results of simulated experiments are presented for (1) a robust-
ness study to determine the effect of estimation errors in assumed lost-person behavior
modelling on the effectiveness of a planned search (Section 5.1), and (2) comparing the
proposed search method to alternative search methods (Section 5.2), respectively.
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5.1. Performance for Different Search Team and Robot Characteristics

The performance of the proposed search method is influenced by the number and
characteristics of the searcher UAVs. This section examines the performance of the method,
in the same search scenario as in Section 4.1, with different numbers of robots moving at
different speeds. Simulations were performed for UAV numbers of 5, 10, and 15, for speeds
of 10, 20, and 30 m/s. The results are summarized in Tables 4 and 5.

Table 4. Targets Found (%) after two hours of searching.

# of Robots
Robot Speed (m/s)

10 20 30

5 51 70 76
10 69 83 90
15 78 90 93

Table 5. Median Find Time (s) after two hours of searching.

# of Robots
Robot Speed (m/s)

10 20 30

5 1488 1323 888
10 1183 684 515
15 871 603 458

As one can note, the results improve both for larger numbers of robots and for faster
robots. However, one can state that deficiencies in searcher speed can be accounted for by
providing a larger number of searchers and vice versa, allowing for the search method to
be implemented with a larger collection of lower-cost and slower robots or to use a small
number of higher-speed robots for comparable results.

5.2. Robustness to Lost-Person Model Inaccuracies

The proposed search method relies on information generated by a lost-person sim-
ulation that requires fitting several parameters based on the predicted behavior of the
lost person. During the search, one of the first steps is information gathering, so if the
search is to be deployed as soon as possible, then it may be deployed with inaccurate
assumptions about the lost person. Further investigation can serve to mitigate these inaccu-
racies; however, it comes at the cost of a later start to the search and will likely still have
some inaccuracies in the lost-person motion model. As such, one cannot expect that the
simulated lost-person trajectories would correspond exactly to the behavior exhibited by
the lost person in question. Thus, a robustness study of the proposed search method was
conducted to determine the impact of this difference in assumed (A) and real lost-person
behavior on search outcomes.

In the simulated experiments, the search path was planned using a predicted lost-
person behavior, labeled as (A), whose parameters were outlined in Section 4.1.2, whereas
the actual search was evaluated/performed on modified/different real lost-person behav-
iors. The modified behaviors were generated by changing the parameters of the assumed
(A) model, resulting in different behavior and lost-person distributions. Six different sets
of parameters were generated: (A---), (A--), (A-), (A+), (A++), and (A+++), respectively,
and the parameters for these models are given in Appendix A. A minus sign indicates a
slower target, whereas a plus sign indicates a faster target, respectively. The slower targets
have smaller iso-probability curves than the set for (A), whereas the faster targets have
larger iso-probability curves, respectively. Figure 14 shows the iso-probability curves for
all targets.
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For all sets of parameters simulations, 30,000 lost-person trajectories were run for
search planning using the parameters for the original target model (A). Thereafter, the
searches for 20,000 trajectories were executed, with the same number and specifications of
robots used in Section 4.1, using the real target models (A---), (A--), (A-), (A+), (A++), and
(A+++), respectively. The results of these evaluations are shown in Table 6 and illustrate
the robustness of the method.

Table 6. Robustness results after two hours of searching.

Evaluation Set Effective Radius (m) Targets Found (%) Median Find Time (s)

A--- 1027 86 444
A-- 1666 89 421
A- 2789 82 779
A 3362 76 888

A+ 3941 71 937
A++ 5264 59 970

A+++ 6051 55 994

For ease of comparison, the first column in the table shows the effective radius of each
set as the mean distance to the 100% iso-probability curve at t = 4000 s. As can be noted in
Columns 2 and 3, for faster targets, one can observe a decline in search performance, which
is expected as the searched distribution gets further away from the planned distribution;
and, for slower targets, one can observe an increase in search performance, which is
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expected as the proposed method favors a large number of searchers for the lower iso-
probability partitions, causing it to be searched near exhaustively.

Overall, the results clearly indicate that the proposed search method is quite robust to
deviations in lost-person behavior modeling for targets that are faster in reality than what
is assumed, naturally, up to certain limits (i.e., < A+, or even < A++). For targets that are
slower in reality than what is assumed (i.e., A-, A--, A---), the method is totally robust.

5.3. Comparison to Alternative Methods

In order to evaluate the effectiveness of the proposed search method, comparative
simulations were conducted for two alternative search methods: a coverage-based search
method [48], typical for searches when target movement is not incorporated into the search,
and an exhaustive search approach [49], which ensures the 100% coverage of an area while
accounting for a target’s potential movement in any direction during the search.

All methods were simulated using the search environment, lost-person behavior
simulations, robot numbers, and specifications from the example in Section 4.1. The
searches were simulated starting at t = 2400 s for the same 2 h search window (t = 2400 s
to t = 9600 s). Additional examples are also included for comparison, which use different
lost-person behavior distributions but are otherwise planned and evaluated in the same
manner, with the same 20,000 trajectories to 30,000 trajectories split in their respective
distributions for planning and evaluation.

The coverage-based search method uses the spiral coverage method presented in [48]
adapted to our search scenario by evenly dividing up the required spiral path into equal
length segments for each robot. The spacing in the coverage spiral is optimized such
that at the end of the 2 h search window the radius matches the maximum distance that
a lost person could have traveled based on the simulated trajectories for planning. All
searchers start the search at the beginning of their respective spiral trajectory segments and
travel along them during the search. Figure 15a shows the overall coverage spiral and the
trajectory segments for each searcher.
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Figure 15. Robot search trajectories for alternative methods: (a) the coverage-based method and
(b) the exhaustive search method. The markers x and + indicate the trajectory start and end, respectively.

The exhaustive search method uses the approach presented in [49] which ensures full
coverage of an area by a team of cooperative UAVs. The area that can be covered by the
method is determined by the number and capabilities of the provided UAVs, which results
in the outwards spiraling search trajectories for each searcher as shown in Figure 15b.
As can be seen, the method starts with all searchers spaced around the same position, in
this case the LKP, and spirals outwards with progressively tighter spirals towards some
maximum radius.

The search trajectories for the alternative methods were evaluated in the same manner
as for the proposed search method, yielding the (averaged) results shown in Table 7 for
three example scenarios. While the first alternative method covers the entire area that
could contain the lost person, it does not account for their potential movement, resulting
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in the lowest probability of finding the lost person and the longest median time to do so.
The second approach performs better with a higher probability of finding the target and
lower median find-time than the exhaustive method. This improvement is due to the full
coverage near the LKP, which has the highest likelihood of containing the lost person and
ensuring that regardless of how the lost person moves within this area they will be found.
The proposed method combines both the overall coverage of the area containing the lost
person and the re-coverage of areas to emulate full coverage over a larger area. This results
in the highest probability of finding the lost person and the lowest median time to do so
out of all of the examined methods.

Table 7. Results after two hours of searching averaged over three example scenarios.

Method Targets Found (%) Median Find Time (s) Find Time IQR (s)
Proposed (ours) 84 509 1317

Exhaustive 53 854 1967
Uniform-coverage 27 2230 2817

6. Conclusions

In this work, a novel multi-UAV cooperative search-planning method is presented.
This method utilizes a parametric-based simulation, which considers the behavior of a
given demographic and the layout of a city, to predict lost-person trajectories. From these
trajectories, a novel kernel-based estimator is used to produce smooth iso-probability curve
estimates that are suitable for robot-trajectory planning. Search trajectories are planned
using an iterative planner that updates the estimates of the lost-person’s potential location
based on past search performance, and intelligently re-searches areas where the lost person
may have re-entered a searched area.

Simulated experiments were presented to verify the effectiveness of the proposed
method. Comparative simulations showed the proposed method outperforming several
alternative methods in the task of finding a missing person in an urban environment,
demonstrating a higher probability of finding the target while having a lower median time
to do so. Additionally, robustness experiments showed that the proposed method performs
well even with reasonable amounts of error in the predicted lost-person behavior.

Future work will consider the incorporation and cooperation with an autonomous
vehicular ground team or the use of heterogenous UAV search teams.
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Appendix A

This Appendix provides the parameters used for the lost-person motion models in
Section 5.1. They are presented in Tables A1–A6.



Robotics 2024, 13, 73 24 of 26

Table A1. Parameters for the lost-person motion model A---.

σ (rad) prand ptrav pback pdir

0.932 1 0.0551 0 0.938

proute µv (m/s) σv (m/s) droute (m)

0.312 0.242 0.0815 10

Table A2. Parameters for the lost-person motion model A--.

σ (rad) prand ptrav pback pdir

0.829 1 0.110 0 0.938

proute µv (m/s) σv (m/s) droute (m)

0.312 0.484 0.0815 10

Table A3. Parameters for the lost-person motion model A-.

σ (rad) prand ptrav pback pdir

0.621 1 0.221 0 0.938

proute µv (m/s) σv (m/s) droute (m)

0.312 0.968 0.0815 10

Table A4. Parameters for the lost-person motion model A+.

σ (rad) prand ptrav pback pdir

0.414 0.800 0.331 0 0.938

proute µv (m/s) σv (m/s) droute (m)

0.312 1.45 0.0815 10

Table A5. Parameters for the lost-person motion model A++.

σ (rad) prand ptrav pback pdir

0.207 0.400 0.441 0 0.938

proute µv (m/s) σv (m/s) droute (m)

0.312 1.94 0.0815 10

Table A6. Parameters for the lost-person motion model A+++.

σ (rad) prand ptrav pback pdir

0.104 0.200 0.496 0 0.938

proute µv (m/s) σv (m/s) droute (m)

0.312 2.18 0.0815 10
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