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Abstract: Crowdsourced spatial analytics is a rapidly developing field that involves collecting and
analyzing geographical data, utilizing the collective power of human observation. This paper explores
the field of spatial data analytics and crowdsourcing and how recently developed tools, cloud-based
GIS, and artificial intelligence (AI) are being applied in this domain. This paper examines and
discusses cutting-edge technologies and case studies in different fields of spatial data analytics and
crowdsourcing used in a wide range of industries and government departments such as urban
planning, health, transportation, and environmental sustainability. Furthermore, by understanding
the concerns associated with data quality and data privacy, this paper explores the potential of
crowdsourced data while also examining the related problems. This study analyzes the obstacles and
challenges related to “geospatial crowdsourcing”, identifying significant limitations and predicting
future trends intended to overcome the related challenges.
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1. Introduction

Geospatial data have become important issues in the research community since they
play an essential role in shaping the world. Geospatial data that include geolocations
have become leading forces in many fields rather than a niche area. The optimization of
urban planning and healthcare, the monitoring of environmental sustainability, and the
improvement of transportation are a few areas where geospatial data have been applied,
indicating their importance in today’s world [1,2]. In addition, spatial data analytics and
crowdsourcing are combining human input with information science and geology, which
will impact many dynamic and influential fields that span several disciplines [3,4]. It is
becoming vital to recognize the spatial connections among diverse data points that have
been collected from many sources, resulting in large volumes of spatial data. Therefore, this
paper explores this multidisciplinary intersection and highlights its great value in today’s
data-driven society. This combination of crowdsourcing data with spatial data analytics
has opened up many new possibilities in several areas such as disaster management, social
sciences, urban planning, and traffic management. The paper aims to show that this
combination has become essential to decision-making procedures, community engagement,
and innovative solutions to real-world problems.

With advanced analytical tools, the field of spatial data analytics is becoming in-
creasingly essential due to the integration of numerous data sources. The combination of
geospatial data analytics and crowdsourcing has led to significant developments in data
science and urban planning [5,6] involving geographic information systems (GISs) and
cartography techniques pt1, ptB3, Extrw. With the introduction of digital mapping, GPS-
enabled devices have completely transformed the collecting, processing, and managing of
spatial data [3,7]. This advancement in technology has, without a doubt, made it possible to
integrate crowdsourced data, contributed to by the general public, thereby achieving more
dynamic and up-to-date information [8,9]. The field of spatial data analytics has evolved to
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include diverse data sources, cutting-edge analytical tools, and participatory data collection
methods. Crowdsourcing has not only enriched the depth of the data but has also led to
the development of more effective data processing and analysis techniques [10,11]. The
utilization of integrated data has contributed significantly to the decision-making in crucial
fields such as traffic flow and transportation, environmental sustainability, city infrastruc-
ture and planning, and urban development. All the advancements made in these areas of
human activity have been facilitated by modern technologies, such as machine learning
algorithms and cloud-based platforms that can achieve unprecedented levels of accuracy
and efficiency when processing and interpreting complex spatial datasets [9,12].

The scope of this research extends beyond explaining the new technologies and their
impact on crowdsourcing data and spatial data analytics; it comprises a more thorough
investigation of spatial data analysis and public engagement and the potential that this
collaboration offers. Furthermore, what motivates this research is the fact that although
this new development has advantages, it also gives rise to several problems that need to be
addressed. Handling the technological difficulties of various sizes of datasets, guaranteeing
inclusiveness in data contribution, and negotiating moral implications of data privacy
protection are some examples of the advantages. Moreover, this research investigates
technological developments such as artificial intelligence (AI) and the Internet of Things
(IoT), and how these can be applied to give us a better understanding of geographical data
and how it can be utilized. Apart from examining the current state-of-the-art technology, in
this study, we also identify and analyze the complex issues that still need to be addressed
by investigating several case studies comprising cities around the world. These include
problems associated with spatial data privacy, ethical data usage, and equal involvement
in crowdsourcing efforts in the context of healthcare, transportation, environment, and
urban development.

This paper is structured as follows: Section 2 explores state-of-the-art spatial data
analytics for crowdsourcing, covering current technologies such as AI and cloud-based GIS,
along with a discussion on emerging technologies in geospatial data. In Section 3, critical
factors shaping methodologies are discussed, focusing on data quality and reliability and
addressing concerns associated with privacy and security and factors influencing the trends
of crowdsourced spatial analytics. In Section 4, this paper explores several case studies
on urban planning, public health, environmental monitoring, traffic congestion analysis,
and disaster response and management. Section 5 presents a discussion of the challenges,
limitations, and future trends in the field. Section 6 concludes this work.

2. State-of-the-Art in Spatial Data Analytics for Crowdsourcing

In this section, we explore the most current technologies that are transforming the
field of geospatial data analysis. This includes a thorough examination of both established
technologies that are poised to revolutionize our use of geospatial data: AI-enhanced
cloud-based GIS and the rapidly growing Small Outline Automated Reporting Systems, as
well as emerging technologies.

2.1. The Rise of AI

The landscape of GIS is being reshaped by the powerful duo of AI and machine
learning (ML). These technologies are enabling us to derive deeper insights from vast
geospatial datasets, automate tedious tasks, and even predict future scenarios based on
patterns emerging from the data. Imagine vast satellite images being analyzed in seconds,
revealing subtle changes in land cover or pinpointing illegal deforestation activities. This is
the power of AI-powered image recognition [13,14].

Additionally, imagine being able to rapidly assess years of satellite images to detect
deforestation activities or make very precise and timely predictions about agricultural
yield. These are the AI capabilities of predictive modeling and image recognition [12,14].
However, image analysis is just one capability of AI and ML. By automating laborious
chores like data cleaning and feature extraction, AI and ML enable human professionals
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to concentrate on higher-order tasks such as model construction and interpretation [15].
In addition to analyzing images, machine learning techniques are being used to automate
repeated functions such as feature extraction and data cleaning [12]. The predictive power
of ML and AI is genuinely revolutionary, especially in regard to monitoring the environment
and preparing communities for emergencies. For instance, the technology enables experts
to forecast a wide range of phenomena, including crop yields, by analyzing patterns of
space-related correlations and historical trends [16].

Moreover, AI and ML are promoting collaboration by obtaining democratizing access
to geographic insights. By enabling both experienced professionals and scientists to facil-
itate AI tools for analysis and data prediction, platforms such as “Mapbox ML” reduce
the gap between enthusiasts and experts. Hence, information exchange and enhanced
development are increasingly being applied in various disciplines, giving us a better under-
standing of the planet as a whole [13]. AI and ML will have a significant influence on GIS
as they further develop [12]. Apart from working in collaboration to inform the direction
of geospatial analysis, these technologies also enable us to make better decisions, create
sustainable cities and environments, and navigate a constantly changing globe. They can
reveal hidden patterns based on historical data and make increasingly precise predictions
for the future. Therefore, when machine intelligence and human skill collaborate, there is
great potential to create a stronger and better-informed society [13].

AI has made a significant impact in terms of improving data collection processes, as
well as data quality and validation. For example, recent developments in AI techniques,
together with software and hardware improvements, have led to greater accessibility to
high-quality data, transforming decision-making in a range of domains including traffic
management, disaster response, and healthcare [17]. The new AI developments make it
possible to analyze large datasets which will facilitate the identification of spatial patterns,
enable predictive modeling, and detect change in real-time, all of which are important for
successful decision-making in time-sensitive areas such as traffic management and disaster
response, to name just two among many other time-sensitive fields [17]. Moreover, through
the automatic determination of geographic features, new AI tools can use images for more
efficient data collection, which will be highly beneficial for areas such as urban planning
and environmental monitoring for various purposes [4,17].

2.2. Cloud-Based GIS Soars

Cloud computing has helped conventional GIS to be freed of hardware constraints
and geographic limits. Geospatial analysis has been utilized by cloud-based technologies
that involve unique scale and collaboration and the democratization of accessibility [11,18].
Enabled by the cloud, there will be no need for a high-specification computer that is
required to run the data layers and simulation. Instead, a light laptop can be used for these
functions, and findings can be shared in real time with a worldwide team. Any conventional
boundaries can usually be overcome by cloud services and technologies, enabling higher
scalability and greater collaboration. Nowadays, global teams can collaborate on real-
time projects, interacting with data layers and executing highly complex simulations
from various locations. Moreover, cloud-based technologies can reduce maintenance
expenses and free up resources that can be utilized, instead, for data collection or hardware
upgrades [11,19].

Urban planning and spatial data processing are the fields that have benefited the
most from the use of cloud GIS technology: regardless of location, solutions such as
Mapbox Vector Tiles and Apache GIS Stack offer simple data accessibility and collaboration
tools [13,20]. This technological development enables personnel across various industries
to collaborate more easily and in real time. For instance, an expert in urban planning in one
region of the world can now easily collaborate with environmental scientists in another,
utilizing platforms that are widely used to explore significant issues, such as flood hazards,
in real time. This technical advancement is a substantial leap for the future, ushering in a
new era of geographic analytical connection and cooperative problem-solving. Numerous
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studies, including [21–23], have demonstrated that cloud-based spatial data analysis can
improve cooperation and collaboration.

Moreover, cloud-based GIS represents a paradigm for a geospatial future that is more
connected and cooperative as well as being more adaptable, effective, and inclusive. Cloud
platforms offer enormous potential for revolutionary insights and data-driven solutions
as long as they maintain their connection with cutting-edge technologies like AI and
ML [13,18–20].

Many research studies have focused on cloud environments, the role of crowdsourced
data, and its utilization and enhancement [11,24]. For example, in [24], could computing
predominantly facilitate the (ELT), which is the extract, load, transform approach, allowing
fast data loading transforming as necessary in the cloud. This has huge advantages,
especially for spatial data, which usually requires fast processing and updates to retrieve
real-time changes in the landscape. In /cite, it focuses on the integration of cloud computing
and big data to develop the monitoring and tracking of sustainable development goals
(SDGs). This is used by utilizing crowdsourced and public earth observation data. Wu,
Bingfang et al. illustrate how these technologies provide cost-effective solutions that are
very beneficial for low-income countries. It also discusses the crucial role of quality control
and validation for more reliability of the data that is used for SDGs. The challenges and
opportunities in utilizing cloud services and spatial data for SDG monitoring are discussed
intensively in the research. The research emphasizes the need for data validation by global
collaboration and the customization of cloud services.

In [25], Guo W et al. (2022) considered the enhancement of crowdsourced data within
vehicular networks by the integration of blockchain technologies and cloud computing.
Their research focused on evaluating the role of cloud services in managing large-scale
data in vehicular networks, which basically require scalable and flexible data processing
capabilities. The result of this combination (cloud computing and blockchain) shows a
significant development in data reliability and security alongside integrity, which will
enable more capability of real-time navigation with other important related applications. It
is important to have robust data management in place to facilitate the decentralization of
the operations and also prevent system failures, which will be achieved by this combination
(cloud computing and blockchain) and by distributing data processing across multiple
cloud servers. Many works in different disciplines highlighted the importance of the role
of crowdsourced data in the cloud for more capabilities and scalability [26–28].

2.3. Emerging Technologies in Geospatial Data

In this section, we explore alternative technologies such as 3D GIS and digital blockchain,
edge computing, federated learning, digital twins, open-source tools, and cloud-native
platforms used for spatial data analytics related to crowdsourcing. Edge computing has
revolutionized the maintenance of large-scale geospatial information, specifically in the
areas of environmental monitoring, sustainability, and urban planning [29,30]. This tech-
nology enables enormous volumes of data to be acquired (LiDAR scans or drone footage)
rather than pushing metadata to centralized servers. This process will allow the source data
to be processed immediately [3,30]. Therefore, edge computing can significantly reduce
the amount of time and resources needed for the processing of large datasets. It can also
reduce latency by handling data such as LiDAR scans or drone footage locally, eliminating
the need to transmit large data through the networks to central servers. Furthermore, the
major advantage is the technology’s ability to analyze data in real time [30]. For instance,
sensors that mark the level of floodwater can immediately transmit data for analysis. In
case of emergencies such as flooding, when prompt data analysis is required to successfully
direct a rescue involving certain activities, the real-time processing capability is essential.
Scalability is another important feature of edge computing; as data needs increase, more
edge computing resources can be quickly added. Additionally, it allows flexibility concern-
ing the location and data processing mode, which is essential in locations that are difficult
to access [30,31].
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In order to bridge the gap between the actual and virtual worlds, and overcome the
conventional mapping techniques, crowdsourced spatial data analytics and the combi-
nation of the digital twins with 3D GIS will offer an optimal solution. This technique
signals the beginning of a new chapter in geographic knowledge [32]. This technology
will make it possible to build complex 3D models of cities, which will offer experiences
that are designed for urban planning and management. By using the visualization of
navigating around these digital twins, users can analyze the complexity of the details of
energy networks, traffic flow, and urban planning, in order to improve the decision-making
processes [33]. In addition, these technologies are used not only to evaluate the infrastruc-
ture but also to adapt new methods to manage it. For example, the integration of real-time
data obtained from several sensors will facilitate efficient resource allocation and promote
proactive decision-making [32]. Furthermore, 3D GIS and digital twins can discover hidden
patterns and connections that will transform our knowledge and management of urban
and environmental systems, thereby making a substantial contribution to the fields of
crowdsourcing and spatial data analytics [33,34].

With the introduction of open-source tools, a major revolution in the discipline of
spatial data analytics has occurred. A powerful open-source server, GeoServer, enables
users to exchange, view, and manage geospatial data obtained from multiple sources [19].
Moreover, QGIS is a user-friendly desktop GIS program, which is a comprehensive toolkit
that can manage, analyze, and visualize spatial [35]. This enables people to share method-
ologies, and create a collaborative environment. For the management and handling of
massive datasets, PostGIS functions as a spatial database extender of PostgreSQL, facil-
itating the effective storage and retrieval, analysis, and manipulation of the geospatial
data [36]. As a further improvement, GeoPandas, a Python library, combines spatial data
with Pandas’ analytical capabilities, for simplifying spatial data management and analysis
within well-known data science processes [37].

At the same time, there has been a revaluation of large-scale spatial data analytics by
cloud-native systems. For example, Google Earth Engine, which is a cloud-based platform,
can conduct comprehensive geospatial analysis as it has robust processing capabilities
and gives users access to a huge collection of satellite imagery [20]. Maps, machine learn-
ing, and scalable computing resources are just a few examples of the capabilities of the
geospatial analytic applications that Amazon Web Services (AWS) provides through its
cloud-based services. It also includes Amazon Location Service, Amazon Elastic Compute
Cloud (EC2), and Amazon SageMaker [38]. Furthermore, Microsoft Azure offers a selection
of geospatial cloud services, including Azure Databricks, Azure Maps, and Azure Machine
Learning. These services enhance data processing, interactive mapping, and AI-driven
geospatial model building [39,40]. Through these platforms, the field of spatial data analyt-
ics can be enhanced and expanded by fostering creative teamwork to provide scalability
and accessibility.

3. Critical Factors Shaping Methodologies

The utilization of crowdsourced spatial data analytics holds immense promise as it
offers the ability to revolutionize the methods by which we collect, analyze, and interpret
location-based information, resulting in significant and meaningful insights. However,
strong and innovative approaches are required to create this complex structure. In this
analysis, we thoroughly explore four crucial factors that are having a strong influence on
the future trajectory of this field.

3.1. Data Quality and Reliability

Within the domain of crowdsourced data, guaranteeing dependability and precision
is important especially in fields such as traffic mapping and navigation since it affects
the quality of people’s daily lives. The existence of any irregularities and noise in these
spatial data such as traffic lanes and congestion patterns, might result from incorrect
and occasionally misleading data. Hence, the importance of having data verification and
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augmentation techniques. Several researchers have focused on improving the dependability
of crowdsourced data for road maps and navigation [41–44]. For instance, the authors
of [45] investigate the caliber of OpenStreetMap (OSM), which serves as a prominent
illustration of geospatial data supplied by the population. The researchers evaluate the
comprehensiveness and precision of OSM data from many perspectives, providing valuable
information about its dependability for navigation applications. In Ref. [46], the authors
examine the data quality of OpenStreetMap (OSM) and analyze the characteristics of
the contributors. The main aim of this research is to offer comprehensive insight into
contributor behavior and look into how it influences the trustworthiness of the data.

In addition, Ref. [47] explores the integration of volunteered geographic information
(VGI) into navigation systems, and examines the difficulties and approaches for effectively
using crowdsourced data in real-time traffic and navigation systems, while emphasizing
the importance of data filtering and validation techniques. In addition, the authors of [48]
discussed the issue of erroneous road data and proposed a new crowdsourcing method
known as RoadSense. They utilized the latent potential of smartphone sensors such
as accelerometers and gyroscopes, carefully gathering data during regular daily trips.
RoadSense has two operation stages: auto-tuning and main detection. The device employs
a sophisticated rotating approach to automatically adapt its sensitivity according to the
specific positioning of the phone and the driving habits of each user. Furthermore, the
determining of bumps or uneven parts of the roads, and speed bumps is accomplished
using linear regression analysis of sensor data. The second step involves the classification
and location of events. The features that have been extracted from the noted events are
inputted into machine learning models to improve accuracy. The outcomes are noteworthy:
RoadSense demonstrates 98% accuracy in detecting speed bumps and 92% in identifying
potholes, even when uneven road surfaces are encountered.

Many studies have concentrated on several aspects of the dependability of spatial
data obtained through crowdsourcing [49–52]. For instance, several studies have focused
on aspects of urban planning and public engagement [53]. For instance, Ref. [5] investi-
gates the incorporation and impact of crowdsourcing in the development of smart cities.
The paper explores the characteristics of crowdsourcing with the theoretical foundation
beside primary application areas, in order to address both the difficulties and potentials
of crowdsourcing. Furthermore, the paper provides recommendations for improving the
efficiency of crowdsourcing regarding urban infrastructure and it concludes with a recapit-
ulation of the findings and potential influences on urban development. Other studies have
concentrated on the purpose of disaster management and emergency response and how
the dependability of crowdsourced spatial information influences the actions taken [54].
When disasters occur, people will urgently seek information and services. However, con-
ventional response methods usually encounter many obstacles, especially when it comes
to handling a large amount of data. Fortunately, a novel approach has emerged: relevant
data can be accumulated through the efforts of a large group of people working together.
As an illustration, in [55], In the context of disaster management, the rapid dissemination
of information via social media has both advantages and disadvantages. The approach
in [55] also offers suggestions for strengthening the accuracy of crowdsourced spatial data,
including verifying and corroborating it with official data, as well as the adaptation of
new methodologies such as the VGI protocol for data quality assurance. It is essential to
evaluate important data obtained through volunteer participation ( an example Hurricane
Sandy). In addition, in the realm of public health and environmental monitoring, there is an
obvious focus on enhancing crowdsourcing spatial data to improve information gathering,
quality, and availability. Here are several recent studies and projects that have proposed a
range of new solutions and tools to overcome these difficulties [56–58].

3.2. Privacy and Security: Fortressing the Data within

Privacy and security issues are considered to be among the main challenges in the
domain of crowdsourced spatial data. Spatial data have the potential to improve many areas
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such as environmental monitoring, urban planning, traffic navigation, and management, to
name a few [59,60]. However, it can also affect the private data pertaining to users, places,
and infrastructure, by making them available to the public. Hence, it is important to find a
middle ground between these competing goals. The following are some of the main issues
associated with the security and privacy of crowdsourced geographical data. The question
is—what is the right amount of data to be collected and disseminated, in terms of both
granularity and data aggregation, without including personal privacy? Aggregation can
play an important role in anonymizing the data to a certain extent. However, it might also
conceal significant regional patterns and trends [60,61]. Monitoring and tracking are two
critical areas where the availability of crowdsourced data displaying movement patterns
and real-time locations raises concerns about potential misuse by individuals, governments,
or businesses. Concerning data identifiability and anonymization, even data that has been
anonymized can potentially be re-identified through various methods, underscoring the
need for robust anonymization algorithms and ethical data-handling practices [60].

As mentioned previously, the practice of people using smart devices for spatial crowd-
sourcing might raise the issue that workers are required to reveal their whereabouts to
organizations that might not be trustworthy. Therefore, concerns such as identity theft,
physical surveillance, and the revealing of private data, will be among many other concerns
that may discourage people from using geographical crowdsourcing applications [62]. As
a potential solution to this issue, frameworks that use differential privacy and geocaching
to protect the worker’s location have been presented. These frameworks protect privacy
while assigning tasks, and allow employees to provide information directly to requesters
according to their permission status [62]. In addition, to encourage widespread imple-
mentation, maintaining anonymity in the context of crowdsourcing and IoT is essential.
Although the crowdsourcing server is usually trusted by task requesters and participants,
the data may contain private personal information. Regarding this issue, recent work has
concentrated on privacy-protection methods for the phases of task allocation and data
aggregation [60,63,64]. Methods such as multi-hop routing and homomorphic encryp-
tion have been proposed to protect privacy without compromising the integrity of the
crowdsourcing procedure [62].

Two aspects of crowdsourcing security are safeguarding against data breaches and
preserving the integrity of the process. For example, Ref. [62] proposes the application of
obfuscation techniques to safeguard workers’ location privacy in spatial crowdsourcing.
However, these methods may add uncertainty to standard location data, either geographi-
cally or temporally, in order to prevent sensitive behavior inference. These methods make
it harder to distinguish between real data and spam, despite being improved in order to
increase location uncertainty and privacy [63]. A major area of current research interest
is this trade-off between data quality data privacy and security that are collected from
crowdsourcing [60,63].

3.3. Factors Influencing the Trends of Crowdsourced Spatial Analytics

Since many factors need to be considered in different regions around the world,
such as the rate of adoption of new technologies, the availability of adequate technology
infrastructure, and cultural impacts on data sharing, data governance, and data privacy,
there will be different trends across different regions [4,42,65]. For example, in regards to
the technological infrastructure, the availability of a reliable internet together with well-
developed geospatial data infrastructure and high smartphone adoption rates, usually
tends to have more advanced use of crowdsourced spatial analytics. For example, in the
U.S., crowdsourced spatial analytics are largely used in traffic navigation and management,
environmental monitoring, and disaster response since there is a high rate of technological
adoption [65].

Two other factors are privacy concerns and regulations. For example, the European
General Data Protection Regulation (GDPR) impacts the crowdsourced spatial data and
how it is collected, stored, and used [66]. It is worth noting that despite the limitations, in
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these countries, urban planning and public transportation widely utilize crowdsourced
spatial data. Another factor is cultural factors, including cultural values regarding privacy,
community engagement, and technology involvement can greatly affect the success of
crowdsourcing efforts [67]. Considering these values, we can create an environment that
encourages participation and fosters successful outcomes for all.

In addition, in Asian countries, crowdsourced spatial analytics is used to tackle urban
challenges such as population density, traffic congestion, and infrastructure development
in growing cities [4]. Many Asian countries have government programs that encourage
crowdsourcing for urban planning, disaster resilience, and public service delivery. How-
ever, the adoption of this strategy will still vary according to the levels of technological
infrastructure, government regulation, level of individual involvement, and cultural atti-
tudes toward privacy and community participation. Figure 1 shows the several factors that
affect these trends in crowdsourcing spatial data analytics.

Figure 1. Examples of factors that affect trends in crowdsourcing spatial data analytics.

4. Impactful Case Studies

Crowdsourcing and geographic data analytics have been applied in a wide of indus-
tries where they have become an important and influential part of operations. By combining
crowdsourcing information with geographical analysis, data-driven problem-solving and
decision-making have become more accurate and efficient, particularly in areas such as
urban development and environmental sustainability. Although this technology can be
applied for various purposes in a range of fields, including the social sciences, market
research, and agricultural planning, to name a few, in this paper, the focus is on some of
these only in order to highlight the variety and extent of options.

Below, we examine five main areas in this context: public health and epidemiology,
environmental monitoring and conservation, traffic congestion analysis and transportation,
urban planning and development, and disaster response and management. These sectors
have been selected to demonstrate the effectiveness and variety of applications made
possible by combining crowdsourcing information with geographical data analytics, in
addition to their importance and relevance in the current world. It is crucial to remember
that there are countless applications for crowdsourcing and spatial data; these examples
only scratch the surface. But by concentrating on these specific fields, we hope to offer
an insight into the revolutionary potential of these approaches in dealing with difficult,
practical problems. Every case study provides an example that demonstrates not only the
theoretical capacities but also the real-world applications and actual effects of spatial data
analytics in various contexts.
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4.1. Urban Planning and Development

Many researchers have investigated the advancements in geospatial data management
for urban planning [1,68]. For example, they have compared satellite imagery and linked
them with urban changes and urban expansion. Moreover, using satellite imagery, analyses
have been conducted of residential structures, which can help to determine the increase in
urban populations. Also, remote sensing has been used to link different land types inside
urban areas [69]. Therefore, this section will examine some of the case studies on cities
around the world to highlight the importance of using geosensor data sources and the
representation of large geographic features.

Sumari et al. (2019), Morogoro, Tanzania, conducted a case study on urban planning,
with a focus on sustainable urban planning and urban expansion [70]. Using remote
sensing techniques, the study examines the spatiotemporal aspects of urban growth over
a period of eighteen years (2000–2018). It looks at the relationship between land use
and urban land density and finds that as one moves out from the city center, urban land
densities decline, indicating fragmented growth. The article suggests combining urban
social, economic, and environmental imperatives while moving from a modernist to a
communicative planning style. The study emphasizes that in order to meet the challenges
posed by rising urbanization, planning solutions must be flexible enough to change with
the times. In another case study, Benevides et al. (2018) examined the application of 3D
geographic information system (GIS) models in urban planning, with an emphasis on
the city Fortaleza, Brazil [71]. Using 3D GIS models, the study discusses the analysis of
urban parameters and how the city’s landscape is affected by them. The work integrates
parametric modeling and 3D simulations to improve the depiction of urban landscapes and
aid in decision-making processes. It has been demonstrated that this strategy works well
for comprehending and handling the complexity of urban surroundings, especially in cities
like Fortaleza which are expanding quickly. Another example of a case study using 3D GIS
in urban landscapes is research that was conducted on the island [72]. In their research,
Morosini and Zucaro (2019) aimed to evaluate the usage of land and urban sustainability
through GIS technologies. The method that was proposed is a combination of GIS modeling
and a paradigm for performance to ensure equity in the growth of the island and maintain
its environmental sustainability. Another case study conducted in Ili Valley, China by Luan,
Liu, and Peng, reported in [73], uses a GIS-based soft computing approach to evaluate
land-use suitability for urban planning. It employs a variety of multi-criteria analysis
techniques to determine whether a given piece of land is suitable for urban development,
focusing on China’s Ili Valley. This strategy provides a comprehensive framework for urban
planning and development in the region, integrating multiple aspects relating to terrain,
geology, socioeconomic feasibility, ecological constraints, and prohibitive factors.

4.2. Public Health and Epidemiology

In the dynamic realm of public health, a novel approach has emerged: the use of
crowdsourced data. Once mere digital echoes, mobile phone calls, app reports, and social
media murmurs are now woven into powerful analytical insights [74]. Through spatial
data analytics, mobile call patterns can convey strong suggestions of malaria’s lurking
threat, Twitter whispers could pinpoint tuberculosis hotspots, and Google searches could
result in early warnings against unseen public health challenges. In this section, we explore
five examples of impactful research studies where the data-driven interaction between
technology and public health revolutionizes disease surveillance, optimizes interventions,
and empowers communities. Digital data, represented as ones and zeros, can transform
into life-saving knowledge, while the collective pulse of the crowd can become a formidable
shield against invisible threats.

Researchers in Singapore harnessed the capabilities of mobile phones to develop a
method for the proactive and timely detection and prediction of dengue epidemics [74].
By examining the data collected via a dengue-reporting application, researchers were able
to create an ML algorithm that could accurately forecast dengue outbreaks. With this
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technology, public health authorities were able to implement preventative measures such
as public awareness campaigns and the spraying of insecticides in potential breeding areas,
thereby preventing fatalities and reducing the impact of dengue fever on communities and
the health system. Moreover, a study conducted in Uganda, analyzed mobile phone call
data that had been anonymized, revealing previously undiscovered patterns of malaria
transmission [75]. By monitoring the mobility patterns of residents, researchers were able
to identify regions that had a high frequency of phone calls but little movement, indicative
of possible malaria hotspots. This innovative technology enabled the implementation of
highly focused interventions for the prevention and treatment of malaria, offering the
prospect of lower transmission rates in vulnerable populations. In Bangladesh, researchers
used Twitter to monitor the prevalence of tuberculosis, a disease that is often undetected in
resource-constrained areas [76]. By analyzing tweets that contained references to symptoms
and terms related to tuberculosis, researchers were able to pinpoint geographical areas that
conventional surveillance methods had not identified. Hence, this technology facilitated
the identification of tuberculosis and specific cases, thereby aiding in the management of
the disease and ensuring better public health.

In addition, Shearston, Jenni A., et al. (2021) in the United States have shown that
Google Search trends can serve as an effective early warning system for influenza out-
breaks [77]. By examining queries pertaining to influenza symptoms, it was discovered that
the patterns in these searches closely paralleled the official records of reported cases. Timely
dissemination of this information could expedite public health interventions, potentially
curbing the transmission of influenza and minimizing its consequences on communities.
Furthermore, during the COVID-19 pandemic, researchers globally investigated the ca-
pacity of mobile phone data to monitor adherence to social distancing measures [77]. By
analyzing anonymized location data, researchers were able to evaluate the alterations
in individuals’ mobility patterns in response to social distancing measures. This vital
information enabled public health authorities to identify regions with lower compliance
rates, facilitating the implementation of focused interventions aimed at mitigating the
transmission of the virus and safeguarding at-risk populations.

The research conducted by [78] in Greater Hartford, United States, explores the in-
novative method of assessing restaurant nutrition settings through crowdsourced online
food photographs. Using food-image-recognition technology, this approach makes use of
the plethora of food images that people post on social media sites. The aim of the study
was to determine whether it is feasible and valid to use this kind of publicly available
data to learn more about the nutritional value of food served in restaurants—a critical
component of nutrition for public health. The study does, however, also draw attention to
some drawbacks and limitations associated with using only crowdsourced data. It draws
attention to any potential biases in the dataset because the images of the food might not
be an accurate or complete representation of what restaurants have to offer. The study
emphasizes that it is crucial to complement this novel strategy with additional data sources
in order to provide a more complete and precise evaluation of the nutrition environment in
restaurants. This study highlights the increasing importance of crowdsourcing data and
technology in the fields of public health and nutrition.

4.3. Environmental Monitoring and Conservation

With the increasing impact of human activities on the environment, there is an urgent
need for thorough monitoring and aggressive conservation efforts. Fortunately, the sit-
uation is changing in a positive direction. We are currently experiencing a revolution in
environmental stewardship by utilizing crowdsourcing, which involves the collective activ-
ity of members of the public in gathering data, and spatial data analytics, which converts
these data into actionable insights. Here we provide illustrations of ongoing environmental
projects, including the protection of sensitive coral reefs from the detrimental effects of
bleaching, the transformation of tweets into early warning signals, and the utilization of
community feedback as a defense against environmental hazards.
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Boonnam et al. (2022) [79] discuss the detrimental impact that an increase in ocean
temperatures has on the health and survival of diverse coral reefs. Nevertheless, this project
provides a glimmer of optimism. Integrating satellite data on water temperatures with
crowdsourced assessments of coral health, scientists utilize a machine learning model to
forecast the occurrence of coral bleaching. With this early warning system, conservation-
ists can effectively prioritize operations and protect vulnerable reefs from the damaging
effects of bleaching. Unbeknownst to us, we frequently breathe in imperceptible dangers.
The study conducted by [80] involves the integration of mobile sensors into automobiles
and smartphones, effectively converting them into tools for citizen research. The aggre-
gated data exposes the concealed disparities in air quality among different areas, enabling
communities to understand the specific air pollution issues they face in their local surround-
ings. Equipped with this information, they can actively support the cause of improving
air quality and ensure that those who pollute are held responsible. Wildlife poachers
frequently engage in illicit activities while benefiting from the anonymity provided by
the Internet. However, Ref. [81] reverses the situation. Researchers utilize the analysis
of wildlife-related tweets to pinpoint areas of concentrated poaching and illicit wildlife
commerce. The real-time intelligence provided helps direct law enforcement activities,
providing crucial protection to endangered animals by countering the covert danger posed
by internet discussions.

In a case study in Riyadh, Saudi Arabia, the authors investigated the accessibility
of green areas and parks for residents in various neighborhoods and multidisciplinary
zones [82]. The study determined the residents’ access to green spaces, considering their
significance in promoting environmental sustainability, as outlined in the country’s Vision
2030. Our analysis revealed complex interdependencies among urban factors, including
population density, park area size, and the number of parks. The findings indicated that
some neighborhoods and municipalities have significant gaps in park access for the majority
of their residents. However, municipalities with higher population densities had greater
access to parks. Figure 2 shows an example of Riyadh city and its neighborhood rate of
accessibility of parks and areas covered.

Figure 2. Riyadh city and percentage park accessibility.

4.4. Disaster Response and Management

In [83], the authors focused on a case study in New York City; it included events such
as Hurricane Sandy. The research proposes a novel method for crowdsourcing incident
information for disaster response by utilizing publicly available data sources in smart cities.
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It basically focused on the X platform during the emergency cases. The method adopted
the latent Dirichlet allocation (LDA) model, which basically used an unsupervised learning
tool that facilitated the classification of these posts (s) by incident types without the need
for data preparation, which classifies the related spatial locations. The results of the study
show that the latent Dirichlet allocation (LDA) method could efficiently have high spatial
calcification accuracy through the posts related to emergency incidents.

Kim and Shahabi [84] focused on improving disaster response by leveraging mobile
video data gathered by crowdsourcing. The case study involved an area of Los Angeles,
California. One major challenge the proposed framework focused on is prioritizing the
visual data for any action that can be done during these emergencies. The proposed
framework introduces a novel method for gathering and analyzing videos, which uses
spatial metadata for the current situations and awareness. Here, the metadata are uploaded
before the video content to speed up the analysis processing and decision-making in cases
where the communication infrastructures might affected or damaged. Therefore, this
approach shows a pentagonal use for decision-making in emergency cases or data, where
crowdsourced mobile video data help significantly in these critical situations.

Many case studies highlight the use of crowdsourcing and spatial data analysis in
disaster response and management [54,85,86].

4.5. Traffic Congestion Analysis and Transportation
4.5.1. Traffic Analysis with Crowdsourced Data

This section specifically addresses the utilization of crowdsourced data for the analysis
of traffic patterns, congestion points, and commuter behavior. It examines case studies
that demonstrate the efficacy of utilizing real-time data from diverse sources such as social
media, GPS data, and community inputs to identify traffic patterns and areas of concern.

In this study, Ref. [87] utilizes crowdsourcing smartphone-based traffic data to perform
a technical analysis of the influence of various weather conditions on traffic dynamics. The
case study was conducted in Boulder-Longmont, Colorado. The analysis involves crucial
traffic parameters, including volume, speed, trip length, and duration, in different weather
situations such as clear, wet, and snowy scenarios. The study offers a comprehensive
perspective on the impact of bad weather conditions on road traffic flow and driver decision-
making by quantifying these characteristics. Utilizing this technological data, the research
categorizes traffic patterns based on various weather conditions. This methodology enables
a sophisticated comprehension of the correlation between meteorological conditions and
fluctuations in traffic behavior. The results are crucial for the formulation of traffic control
plans and improving road safety in various weather conditions, providing vital knowledge
for urban planners and transportation authorities.

The study conducted in [88] examines the occurrence of traffic congestion in Manhat-
tan, New York City, during the COVID-19 epidemic by utilizing Google traffic data. This
study analyses the effects of social distancing measures by comparing traffic volumes prior
to and following their introduction. The system utilizes image processing techniques to
classify traffic congestion and applies generalized additive models (GAM) and seasonal
decomposition of time series by LOESS (STL) to evaluate the data. The results demon-
strate a notable reduction in traffic subsequent to the implementation of social distancing
measures, indicating an early adherence to the restrictions. Prior to the release of lock-
down orders, there was a noticeable rise in traffic, indicating a potential early onset of
social-distancing tiredness. The data further demonstrate shifts in everyday traffic patterns,
since the epidemic led to modifications in the typical rush hour congestion. The study’s
findings indicate that crowdsourced traffic data can accurately assess human mobility and
adherence to social-distancing measures. This information can offer valuable insights for
future responses to pandemics and actions for traffic management.

Reference [89] proposes an innovative method for improving bicycle safety in urban
environments by utilizing crowdsourcing. The SimRa platform was introduced by the
authors as a smartphone-based system that employs GPS tracking and motion sensors to
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gather data on bicycle routes and near-miss situations. Cyclists can actively participate in
the platform by providing annotations and sharing their rides in an anonymized manner.
The data collected from the crowd is subsequently evaluated to detect possible areas of
high risk in bicycle traffic. The study is especially pertinent to urban environments, such
as cities like Berlin, where the SimRa platform has been deployed. The project utilizes
crowdsourcing data to derive significant insights for identifying hazardous sections in
bicycle traffic. This methodology improves cycling safety by identifying locations with
a higher probability of near-miss occurrences, thereby assisting with the planning and
development of urban infrastructure to create safer cycling environments.

4.5.2. Traffic Management with Crowdsourced Data

This section examines the utilization of crowdsourced data for traffic management,
highlighting diverse research endeavors that tackle different aspects of this field. The papers
included in this collection showcase innovative methods, ranging from improving urban
navigation through the study of real-time data to improving traffic signal management by
utilizing crowdsourced delay information. Every study offers distinct perspectives on how
crowdsourced data could be used effectively to improve traffic flow, alleviate congestion,
and bolster intelligent urban transportation systems.

Ref. [8] explores the utilization of mobile crowdsourcing to enhance real-time nav-
igation in urban traffic. The strategy integrates data from several sensors and mobile
devices to address routing issues through the utilization of integer linear programming
(ILP) models and iterative methodologies. This methodology takes into consideration the
presence of uncertainties and inaccuracies in the data in order to guarantee navigation
solutions that are both efficient and dependable. This study is relevant to intricate urban
traffic networks, where up-to-the-minute data are crucial for effectively controlling traffic
flow and minimizing congestion. The study was conducted in Manhattan, New York. The
methodology aims to enhance the efficiency of real-time route planning in urban settings
by leveraging data from diverse sensors and mobile devices. The authors suggest employ-
ing integer linear programming (ILP) models and iterative methods to address real-time
routing difficulties. In addition, they take into account uncertainties and inaccurate data
inputs to guarantee dependable and effective navigation. The techniques can be used in
complex urban traffic networks where the collection and analysis of real-time data are vital
for traffic management and congestion reduction. This work is notable for its utilization
of crowdsourced data and sophisticated computational methods applied to tackle the
ever-changing traffic issues in urban areas. The findings indicate that the crowdsourcing-
based navigation system outperforms traditional approaches by effectively choosing less
congested routes and avoiding blocked streets. The research demonstrates the efficacy of
employing crowdsourced data in real-time navigation, highlighting its capacity to enhance
traffic flow and alleviate congestion in urban settings.

Reference [90] presents a technique for controlling traffic signals by utilizing real-time
information gathered from mobile devices. This novel method collects real-time delay data
from commuters and uses it to optimize the duration of green lights at traffic signals. The
methodology is specifically designed to be economically efficient and flexible, making it
particularly ideal for urban locations with diverse traffic circumstances, where conventional
sensor-based systems may not be feasible or too costly. The efficacy of this system was
proved by studies conducted in Thane and Noida, India, and Bandung, Indonesia, where
they successfully mitigated traffic delays to a large extent. The findings underscore the
potential of utilizing crowdsourced data in traffic management, demonstrating its capacity
to enhance traffic flow and alleviate congestion in various urban environments. The study
offers valuable insights into optimizing traffic signal regulation and highlights the benefits
of utilizing technology and community data in urban planning and administration.

In [10], a framework known as (vehicular crowdsourcing for congestion support)
VACCS is proposed; it is intended to utilize the computational capabilities of cars in urban
traffic congestion scenarios. The objective of this method is to help transportation agencies
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mitigate or disperse congestion by implementing extensive signal re-timing. VACCS is no-
table for its utilization of on-board computational resources, such as smartphones and other
IoT devices, in vehicles that are trapped in traffic. This allows the development of enhanced
signal timing plans, leading to improved traffic flow and a decrease in carbon emissions.
The methodology entails the creation of strategies for establishing and overseeing the
process of vehicular crowdsourcing, as well as the development of theoretical models for
predicting and determining the availability of resources in a dynamic manner. VACCS
allows traffic signals to be more adaptive to current conditions rather than depending
exclusively on past traffic volume counts. This method offers direct advantages to drivers
and the smart city by improving traffic conditions, reducing driving time, and lowering fuel
consumption expenses. The paper’s contribution is to address the disparity between the
requirements at the municipal level and the challenges associated with the decentralized
ownership of computational resources. The VACCS framework promises a revolutionary
approach to computing by combining the Internet IoT with vehicular crowdsourcing to
optimize the timing of signals. This method has the potential to greatly influence smart city
applications, improving the management of traffic and the quality of urban living.

4.5.3. Public Transportation

The convergence of crowdsourced data with public transportation accessibility is an
emerging area of study, providing revolutionary insights into urban mobility. We begin
by examining examples of studies that utilize geographic information system (GIS) and
general transit feed specification (GTFS) data. These analyses reveal significant differences
and changes over time regarding the accessibility of public transportation, emphasizing
the need for customized, data-based strategies to improve urban transportation systems
and guarantee fair distribution of resources.

In [7], the authors focus on Melbourne, Australia’s public transport system. The
authors present a novel framework for assessing the effectiveness and efficiency of public
transport in residential regions and investigate its suitability across various local govern-
ment areas (LGAs). The method uses a geographic information system (GIS) to examine
accessibility based on factors such as coverage, road usage, frequency, and availability
of public transportation services such as buses, trams, and trains. The key findings re-
veal that accessibility varies depending on population density and geographical location.
Specifically, places with high population density have fewer areas without access to public
transport, sometimes referred to as ’blank spots’. The survey also revealed discrepancies in
the accessibility of public transportation services at various times of the day and week. In
summary, the research emphasizes the necessity for enhanced accessibility to public trans-
portation in locations with lower population density and proposes prospective avenues for
future improvement.

Reference [91] presents a comparative analysis of the accessibility of public transporta-
tion in Melbourne and Sydney, Australia. The system utilizes a geographic information
system (GIS) to evaluate the accessibility of public transportation based on multiple criteria,
such as the distribution of areas with no coverage, the distribution of population without
access, and the variations in access based on time and frequency. According to the study,
the proximity to city centers and the dimensions of local government areas (LGAs) have an
impact on residents’ accessibility to public transportation. Although Sydney has a smaller
number of areas with poor coverage and greater overall network coverage, Melbourne
provides a more reliable connection independent of population density or distance from
the city center. The analysis demonstrates substantial disparities in public transport ac-
cessibility both within and among these cities, underscoring the necessity for customized
strategies to enhance public transport systems in diverse urban regions (see Figure 3).
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Figure 3. Melbourne and Sydney comparison of the uncovered population for public transportation [91].

Reference [92] examines the public transportation system in Szczecin, Poland. This
study focuses on the temporal dimension of public transportation accessibility and its
correlation with geographical fairness. The study evaluates the accessibility of public
transportation in different locations of the city at various times of the day by utilizing
comprehensive general transit feed specification (GTFS) data and conducting GIS analysis.
It exposes notable discrepancies in accessibility, especially during non-peak hours, such as
overnight, disproportionately impacting the least accessible regions. The results emphasize
the significance of taking into account temporal fluctuations in accessibility in order to gain
a more thorough understanding of and tackle urban transport equality.

In addition, we present three case studies that illustrate the integration of technol-
ogy and crowdsourcing to improve metropolitan public transit and emergency response
systems. Their research focuses on the analysis of real-time data processing in public
transportation, the accuracy of vehicle tracking utilizing smartphone GPS data, and the
efficient utilization of social media during emergency scenarios. Every paper offers a
different perspective on the leveraging of digital tools to improve municipal infrastructure
and services.

Reference [93] examines the MOBANA architecture, which is designed to integrate
and process diverse public transit data. The project aims to provide effective, adaptable,
and immediate data processing and visualization for public transit networks. By employ-
ing distributed messaging systems and stream processing engines, MOBANA efficiently
handles the real-time tracking of vehicle positions, the integration of social media data
for event detection, and the minimization of data duplication. The framework undergoes
testing in Pavia, Italy, revealing its ability to improve the monitoring and analysis of public
transportation.

Reference [94] examines a technique used to improve the precision of public transport
vehicle placement by utilizing GPS data collected from smartphones through crowdsourc-
ing. The study presents an enhanced particle filter technique that analyses GPS data from
many passengers inside a transit vehicle. The aim of this technology is to offer more
precise vehicle location in comparison to existing systems, particularly in regions where
conventional car positioning infrastructure is absent. The algorithm’s efficacy is confirmed
by analyzing data gathered from diverse bus routes in urban and suburban Mumbai, India.
The findings indicate a notable decrease in the average placement error, demonstrating the
capacity of crowdsourcing to improve public transit systems.

Reference [83] introduces a novel method for leveraging crowdsourcing social media
data, specifically from Twitter, to enhance emergency response in metropolitan areas.
The study uses the latent Dirichlet allocation (LDA) model to categorize tweets linked
to incidents and determine the sorts of incidents that occur during emergencies. This
strategy is validated using data from two major occurrences in New York City: the Chelsea
explosion and Hurricane Sandy. The results demonstrate the effectiveness of the LDA
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model in extracting and classifying emergency-related information from social media. This
provides a quick and efficient tool for emergency responses in smart cities.

5. Challenges: Limitations and Future Trends

This section examines the complexities and challenges associated with crowdsourced
spatial analytics. The issues include data quality, participant biases, privacy concerns,
and technological obstacles. Through the analysis of these subjects, our objective is to
offer a thorough comprehension of the challenges encountered in crowdsourced geospatial
initiatives and suggest possible approaches to surmount these difficulties.

By means of crowdsourced spatial analytics, rich, varied geospatial data can be col-
lected that offers in-depth insights into our environment. However, in order to harness the
full potential of this technology, serious issues concerning data accuracy and quality must
be addressed. Because participation in the crowdsourcing process is voluntary, and because
there may be a prevalence of particular demographics or interests, the data can be affected
by prejudices, leading to invalid conclusions. Human error and technological constraints
may lead to inaccuracies in, for example, GPS data [95,96]. Also, entities with malicious
intent may purposefully insert false information, further jeopardizing the integrity of the
data. Verification of the obtained data poses another problem [96,97]. It is difficult to verify
the accuracy of large, widely distributed databases, especially when there is no reliable
ground truth data. Crowdsourced data tends to be subjective as it frequently includes
opinions and impressions. This adds an additional level of complexity that makes it difficult
to define and benchmark “correctness”. It is just not feasible to manually verify every data
point; hence, the necessity of developing effective and efficient verification techniques [96].

Because crowdsourced data are heterogeneous, the integration and analysis of the
data present several unique challenges. The diverse range of formats, various amounts
of detail, and inconsistent data quality make it difficult to merge the data, find patterns,
and draw valid conclusions. Also, spatial and temporal inconsistencies produce more
difficulties, as data gathered at specific moments or locations may vary due to the data col-
lection technique or the context, making it difficult to use for comparison purposes [83,92].
Often, sophisticated statistical and machine-learning methods are required to address these
difficulties, and these can be computationally costly. Apart from technical challenges, there
are ethical issues that must be considered [12]. The data obtained through crowdsourcing
often contain personal information that must be handled ethically in terms of its collection,
storage, and utilization to safeguard individuals’ privacy. Also, biases in the data can
produce unjust or discriminatory results, indicating the need to consider all possible ethical
consequences throughout the entire data collection and analysis process. Transparency and
accountability are crucial, as they will enable users to make well-informed decisions based
on the data source, its reliability, and the constraints of the data they engage with [98].

Apart from the issues associated with ethical behavior and data quality, the technology
infrastructure can also pose problems. The acquisition of precise data can be hampered
by expensive hardware and software that may not be available to a wide range of users,
thereby preventing inclusiveness. Also, the efficient storage and management of large
and heterogeneous datasets require a dependable infrastructure, effective tools, and strict
quality control, although these increase the analytical complexity [98]. A comprehensive
analysis of these diverse datasets requires substantial computer capacity and advanced
technologies, placing an additional burden on resources. The complexities of data manage-
ment and analysis make it difficult to implement real-time applications with low latency
and effective data integration. Furthermore, because platforms are not uniform, this makes
it difficult to exchange, reuse, and integrate data, thereby making it difficult to amalgamate
information in order to conduct a thorough analysis. Ultimately, it is essential that strong
security measures and procedures be implemented to prioritize privacy and safeguard
the contributors and their data. However, this will add more complexity to the technical
infrastructure [99]. In order to fully exploit the potential of crowdsourced spatial analytics,
these technological obstacles must be successfully addressed.
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Furthermore, although numerous technological issues need to be addressed, crowd-
sourcing spatial analytics generally poses challenges beyond those associated with data and
technology. In order to ensure regular, high-quality contributions, communication must be
transparent, and potential contributors require effective motivators [47]. The integration of
data obtained from different platforms requires specific formats and compatible technology.
Also, innovative methodologies need to be applied to ensure that contributors are proficient
in the use of technology and that no obstacles arise due to language or cultural differences.
To reduce algorithmic prejudice and eliminate legal difficulties, meticulous preparation and
ethical deliberation are essential. Ultimately, long-term success will depend on consistent
and ongoing funding, the application of effective strategies for data management, and
maintaining contact and involvement with the community of contributors. Only when
issues related to data, technology, and wider societal factors are addressed effectively can
the potential of crowdsourced spatial analytics be harnessed as a reliable and credible
source of valuable information.

By taking measures to address the shortcomings of the current technology, and adopt-
ing innovative approaches, the transformative power of crowdsourced data can be more
fully exploited across various industries and sectors, guiding future directions. Below, we
conduct a close examination of several cases, showing the potential of crowdsourced
spatial analytics.

Crowdsourced spatial analytics and local insights present unprecedented possibilities
for close observation and quick response to events captured in real time. This approach
enables the collection of finely detailed data at the micro level, making it possible to accu-
rately monitor environmental changes, traffic movements, and public sentiment. Moreover,
because data are gathered via community input, stakeholders are given instant access to
accurate location-centric information, thereby improving decision-making related to areas
such as environmental protection, emergency management, and urban development. This
application of real-time, location-based data analysis has revolutionized our understanding
of and interaction with our social and natural environments and is a pivotal point in the
field of spatial analytics.

Moreover, crowdsourced data have become an essential tool for lreal-time environ-
mental and climatic monitoring. For instance, farmers are now able to obtain real-time soil
moisture data from nearby fields to adjust their irrigation and conserve water. Similarly,
local governments can monitor deforestation in real-time to promptly identify illegal log-
ging, and take timely action. Crowdsourced data, combined with meteorological models
and satellite imaging, can greatly improve the early warning systems used to signal the
advent of natural disasters, giving communities and local authorities the time to prepare
for the event [83,100]. Communities now have more access to environmental data that can
be used to design proactive strategies and increase their resilience against various extreme
climatic conditions.

Communities. Major issues related to healthcare, infrastructural deficits, and food
safety and supply can be addressed by utilizing crowdsourced geographical data. Because
this approach is based on collective efforts and accessible technology, it is possible to
gain accurate insights into community needs. The collection and integration of local
knowledge also encourage inclusion and sustainability in decision-making processes as it
offers a more comprehensive, culturally-nuanced viewpoint on resource management and
conservation [96,100]. These initiatives demonstrate that crowdsourced spatial analytics
could change the nature of environmental stewardship and social justice, acting as a catalyst
for resilience and community-driven change.

Furthermore, expanding our knowledge and comprehension with cutting-edge AI
methods. The integration of advanced AI techniques such as explainable AI, interpretative
models, federated learning, and graph neural networks has led to a significant evolution
of crowdsourced geographical data analysis. If AI is explained clearly, the algorithms’
complicated decision-making process will be demystified, subsequently promoting open-
ness and confidence among stakeholders. Federated learning enables data analysis to be
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decentralized while maintaining the integrity of each individual’s data, thereby helping
to dispel privacy concerns. Moreover, graph neural networks can improve the richness
and accuracy of insights obtained from crowdsourced data, as they provide an advanced
method of understanding and simulating the complex patterns and relationships found in
spatial data.

Additionally, AI can be applied to improve the quality and reliability of data through
verification. This approach supports the crowdsourced data verification process, serving
as the second pillar of innovation. Active learning algorithms, one technique used in this
context, help simplify data labeling by identifying the most valuable instances for human
annotation, thereby maximizing model training efficiency. Hybrid systems offer a balanced
approach to data verification by integrating human expertise with the computational power
of AI, ensuring that both scale and nuance are taken into account. Furthermore, generative
adversarial networks (GANs) are utilized to detect and eliminate fake data, aiming to
ensure the accuracy and reliability of crowdsourced datasets [96].

Moreover, ethical principles must be taken into consideration when developing and
applying spatial data analysis. Hence, every stage of the AI lifecycle from development
to application must conform stringently to the principles of justice, accountability, and
transparency. The AI industry’s commitment to ethical standards is evident in its attempts
to foster diversity, minimize algorithmic prejudice, and develop AI governance frameworks
that encourage and enable. Furthermore, ready access to spatial data analytics, the focus on
developing systems that are multilingual and culturally sensitive, and giving non-expert
users access to AI tools via low-code/no-code platforms will lead to a more inclusive and
equitable technological future [101].

Combining historical, sensor, and satellite imagery with crowdsourced geographical
data multi-dimensional spatial data cubes facilitates a thorough analysis of data that yields
patterns and predicts trends, enabling better resource management. The geographically
distributed processing offered by edge computing facilitates real-time, locally-focused
solutions for specific environmental and infrastructure problems related to noise pollution,
air quality, and traffic management, for example. Hence, communities can obtain useful
and actionable information enabling them to solve or mitigate problems in their local area.

Finally, a better understanding of ecological and cultural complexities can be obtained
by combining native wisdom and regional knowledge and expertise with crowdsourcing
data interdisciplinary [58]. The integration of behavioral analysis and social science theories
and insights can improve the strategies applied to encourage community engagement,
increase participation, and improve data quality. Partnerships between various fields
such as public health, urban planning, and economics use crowdsourced spatial data to
creatively address global issues. Hence, multidisciplinary activities are essential since they
can increase the influence and inclusivity of geographical data.

6. Conclusions

This paper investigates the area of crowdsourced and spatial data analytics from
several perspectives. It explores how new technologies, such as AI and cloud-based GIS,
can improve the quality of geospatial data that can assist society in many ways. In order to
ensure the reliable and safe integration of crowdsourced data with spatial analytics, the
paper also highlights important methodological developments that address privacy and
security issues. Using several case studies of cities around the world, the research shows
the influence of crowdsourcing data in several fields, such as traffic congestion analysis
and transportation, environmental monitoring, urban planning, and health. The impor-
tance of crowdsourced spatial analytics for well-informed policy and decision-making
has been shown in these case studies. This paper discusses the limitations and challenges
that researchers face today in the context of crowdsourced data and spatial data analytics,
predicting a future where there will be more collaboration and convergence between the
expanding availability of high-quality crowdsourced data and technological and method-
ological breakthroughs.



ISPRS Int. J. Geo-Inf. 2024, 13, 168 19 of 22

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Breunig, M.; Bradley, P.E.; Jahn, M.; Kuper, P.; Mazroob, N.; Rösch, N.; Al-Doori, M.; Stefanakis, E.; Jadidi, M. Geospatial data
management research: Progress and future directions. ISPRS Int. J. Geo-Inf. 2020, 9, 95. [CrossRef]

2. Lee, J.G.; Kang, M. Geospatial Big Data: Challenges and Opportunities. Big Data Res. 2015, 2, 74–81. [CrossRef]
3. Das, J.; Ghosh, S.K.; Buyya, R. Geospatial edge-fog computing: A systematic review, taxonomy, and future directions. Mob. Edge

Comput. 2021, 47–69.
4. Niu, H.; Silva, E.A. Crowdsourced data mining for urban activity: Review of data sources, applications, and methods. J. Urban

Plan. Dev. 2020, 146, 04020007. [CrossRef]
5. Srivastava, P.; Mostafavi, A. Challenges and opportunities of crowdsourcing and participatory planning in developing infrastruc-

ture systems of smart cities. Infrastructures 2018, 3, 51. [CrossRef]
6. Wu, H.; Gui, Z.; Yang, Z. Geospatial big data for urban planning and urban management. Geo-Spat. Inf. Sci. 2020, 23, 273–274.

[CrossRef]
7. Alamri, S.; Adhinugraha, K.; Allheeib, N.; Taniar, D. GIS Analysis of Adequate Accessibility to Public Transportation in

Metropolitan Areas. ISPRS Int. J. Geo-Inf. 2023, 12, 180. [CrossRef]
8. Wan, X.; Ghazzai, H.; Massoud, Y. Mobile crowdsourcing for intelligent transportation systems: Real-time navigation in urban

areas. IEEE Access 2019, 7, 136995–137009. [CrossRef]
9. Song, W.; Wu, C. Introduction to advancements of GIS in the new IT era. Ann. Gis 2021, 27, 1–4. [CrossRef]
10. Olariu, S. Vehicular crowdsourcing for congestion support in smart cities. Smart Cities 2021, 4, 662–685. [CrossRef]
11. Bhat, M.A.; Shah, R.M.; Ahmad, B. A solution to Geographical Information Systems(GIS). Int. J. Comput. Sci. Eng. 2011,

3, 594–600.
12. Kiwelekar, A.W.; Mahamunkar, G.S.; Netak, L.D.; Nikam, V.B. Deep Learning Techniques for Geospatial Data Analysis. In

Machine Learning Paradigms: Advances in Deep Learning-Based Technological Applications; Tsihrintzis, G.A., Jain, L.C., Eds.; Springer
International Publishing: Cham, Switzerland, 2020; pp. 63–81. [CrossRef]

13. Mapbox. Assessing Satellite Imagery at Scale: How We’re Mapping the Quality of Our Satellite and Aerial Tiles; Mapbox: San Francisco,
CA, USA, 2018.

14. Wang, S.; Cao, J.; Yu, P.S. Deep Learning for Spatio-Temporal Data Mining: A Survey. IEEE Trans. Knowl. Data Eng. 2022,
34, 3681–3700. [CrossRef]

15. Liu, S.; Wang, L.; Zhang, W.; He, Y.; Pijush, S. A comprehensive review of machine learning-based methods in landslide
susceptibility mapping. Geol. J. 2023, 58, 2283–2301. [CrossRef]

16. Teixeira, T.A.; Vilaça, N.L.; Printes, A.L.; Gomes, R.C.S.; Torné, I.G.; Araújo, T.Y.A.; Dias, A.G.D.e. Development of a Monitoring
System against Illegal Deforestation in the Amazon Rainforest Using Artificial Intelligence Algorithms. Eng. Proc. 2023, 58, 21.
[CrossRef]

17. Janowicz, K.; Gao, S.; McKenzie, G.; Hu, Y.; Bhaduri, B. GeoAI: Spatially explicit artificial intelligence techniques for geographic
knowledge discovery and beyond. Int. J. Geogr. Inf. Sci. 2020, 34, 625–636. [CrossRef]

18. Bern Szukalski, M.B. Mapping the Future of GIS. 2018. Available online: https://www.esri.com/about/newsroom/blog/
mapping-future-gis/ (accessed on 1 May 2024 ).

19. GeoServer. GeoServer: Open Source Server for Geospatial Data. 2024. Available online: https://geoserver.org/ (accessed on 18
December 2023).

20. Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018,
10, 1509. [CrossRef]

21. Mete, M.O.; Yomralioglu, T. Implementation of serverless cloud GIS platform for land valuation. Int. J. Digit. Earth 2021,
14, 836–850. [CrossRef]

22. Pakdil, M.E.; Çelik, R.N. Serverless geospatial data processing workflow system design. ISPRS Int. J. Geo-Inf. 2022, 11, 20.
[CrossRef]

23. Bebortta, S.; Das, S.K.; Kandpal, M.; Barik, R.K.; Dubey, H. Geospatial serverless computing: Architectures, tools and future
directions. ISPRS Int. J. Geo-Inf. 2020, 9, 311. [CrossRef]

24. Wu, B.; Tian, F.; Zhang, M.; Zeng, H.; Zeng, Y. Cloud services with big data provide a solution for monitoring and tracking
sustainable development goals. Geogr. Sustain. 2020, 1, 25–32. [CrossRef]

25. Guo, W.; Chang, Z.; Su, Y.; Guo, X.; Hämäläinen, T.; Li, J.; Li, Y. Reputation-Based Blockchain for Spatial Crowdsourcing in
Vehicular Networks. Appl. Sci. 2022, 12, 11049. [CrossRef]

26. Gong, Z.; Li, J.; Lin, Y.; Yuan, L.; Gao, W. A novel dual cloud server privacy-preserving scheme in spatial crowdsourcing. Comput.
Secur. 2024, 138, 103659. [CrossRef]

http://doi.org/10.3390/ijgi9020095
http://dx.doi.org/10.1016/j.bdr.2015.01.003
http://dx.doi.org/10.1061/(ASCE)UP.1943-5444.0000566
http://dx.doi.org/10.3390/infrastructures3040051
http://dx.doi.org/10.1080/10095020.2020.1854981
http://dx.doi.org/10.3390/ijgi12050180
http://dx.doi.org/10.1109/ACCESS.2019.2942282
http://dx.doi.org/10.1080/19475683.2021.1890920
http://dx.doi.org/10.3390/smartcities4020034
http://dx.doi.org/10.1007/978-3-030-49724-8_3
http://dx.doi.org/10.1109/TKDE.2020.3025580
http://dx.doi.org/10.1002/gj.4666
http://dx.doi.org/10.3390/ecsa-10-16188
http://dx.doi.org/10.1080/13658816.2019.1684500
https://www.esri.com/about/newsroom/blog/mapping-future-gis/
https://www.esri.com/about/newsroom/blog/mapping-future-gis/
https://geoserver.org/
http://dx.doi.org/10.3390/rs10101509
http://dx.doi.org/10.1080/17538947.2021.1889056
http://dx.doi.org/10.3390/ijgi11010020
http://dx.doi.org/10.3390/ijgi9050311
http://dx.doi.org/10.1016/j.geosus.2020.03.006
http://dx.doi.org/10.3390/app122111049
http://dx.doi.org/10.1016/J.COSE.2023.103659


ISPRS Int. J. Geo-Inf. 2024, 13, 168 20 of 22

27. Sunkara, V.; Purri, M.; Saux, B.L.; Adams, J. Street to cloud: Improving flood maps with crowdsourcing and semantic segmentation.
arXiv 2020, arXiv:2011.08010.

28. Miao, Y.; Yang, Y.; Li, X.; Wei, L.; Liu, Z.; Deng, R.H. Efficient privacy-preserving spatial data query in cloud computing. IEEE
Trans. Knowl. Data Eng. 2023, 36, 122–136. [CrossRef]

29. Li, Y.; Xie, J.; Jiang, R.; Yan, D. Application of edge computing and GIS in ecological water requirement prediction and optimal
allocation of water resources in irrigation area. PLoS ONE 2021, 16, e0254547. [CrossRef] [PubMed]

30. Zhang, J.; Ma, B.; Huang, J. Deploying GIS services into the edge: A study from performance evaluation and optimization
viewpoint. Secur. Commun. Netw. 2020, 2020, 8822990. [CrossRef]

31. Cao, X.; Madria, S. Efficient geospatial data collection in iot networks for mobile edge computing. In Proceedings of the 2019
IEEE 18th International Symposium on Network Computing and Applications (NCA), Cambridge, MA USA, 26–28 September
2019; pp. 1–10.

32. Ketzler, B.; Naserentin, V.; Latino, F.; Zangelidis, C.; Thuvander, L.; Logg, A. Digital twins for cities: A state of the art review.
Built Environ. 2020, 46, 547–573. [CrossRef]

33. Uggla, M.; Olsson, P.; Abdi, B.; Axelsson, B.; Calvert, M.; Christensen, U.; Gardevärn, D.; Hirsch, G.; Jeansson, E.; Kadric, Z.; et al.
Future Swedish 3D city models—Specifications, test data, and evaluation. ISPRS Int. J. Geo-Inf. 2023, 12, 47. [CrossRef]

34. Lehtola, V.V.; Koeva, M.; Elberink, S.O.; Raposo, P.; Virtanen, J.P.; Vahdatikhaki, F.; Borsci, S. Digital twin of a city: Review of
technology serving city needs. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 102915. [CrossRef]

35. QGIS. 2023. Available online: https://www.qgis.org/en/site/ (accessed on 20 December 2023 ).
36. PostGIS. 2023. Available online: https://postgis.net/ (accessed on 20 December 2023).
37. GeoPandas. Available online: https://geopandas.org/ (accessed on 20 December 2023).
38. Amazon Web Services (AWS)-Geospatial. 2023. Available online: https://aws.amazon.com/geospatial/ (accessed on 22

December 2023).
39. Microsoft Azure-Azure Machine Learning. 2023. Available online: https://azure.microsoft.com/en-us/services/machine-

learning/ (accessed on 22 December 2023).
40. Microsoft Azure-Azure Maps. 2023. Available online: https://azure.microsoft.com/en-us/services/azure-maps/ (accessed on

24 December 2023).
41. Klopfenstein, L.C.; Delpriori, S.; Polidori, P.; Sergiacomi, A.; Marcozzi, M.; Boardman, D.; Parfitt, P.; Bogliolo, A. Mobile

crowdsensing for road sustainability: Exploitability of publicly-sourced data. Int. Rev. Appl. Econ. 2020, 34, 650–671. [CrossRef]
42. Tong, Y.; Zhou, Z.; Zeng, Y.; Chen, L.; Shahabi, C. Spatial crowdsourcing: A survey. Vldb J. 2020, 29, 217–250. [CrossRef]
43. Staniek, M. Road pavement condition diagnostics using smartphone-based data crowdsourcing in smart cities. J. Traffic Transp.

Eng. (Engl. Ed.) 2021, 8, 554–567. [CrossRef]
44. Yu, Q.; Duan, Y.; Wu, Q.; Liu, Y.; Wen, C.; Qian, J.; Song, Q.; Li, W.; Sun, J.; Wu, W. An interactive and iterative method for crop

mapping through crowdsourcing optimized field samples. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103409. [CrossRef]
45. Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18. [CrossRef]
46. Arsanjani, J.J.; Barron, C.; Bakillah, M.; Helbich, M. Assessing the quality of OpenStreetMap contributors together with their

contributions. In Proceedings of the AGILE, Nashville, TN, USA, 5–9 August 2013; pp. 14–17.
47. Elwood, S.; Goodchild, M.F.; Sui, D.Z. Researching volunteered geographic information: Spatial data, geographic research, and

new social practice. Ann. Assoc. Am. Geogr. 2012, 102, 571–590. [CrossRef]
48. Alam, M.Y.; Nandi, A.; Kumar, A.; Saha, S.; Saha, M.; Nandi, S.; Chakraborty, S. Crowdsourcing from the True crowd: Device,

vehicle, road-surface and driving independent road profiling from smartphone sensors. Pervasive Mob. Comput. 2020, 61, 101103.
[CrossRef]

49. Hu, J.; Lin, H.; Guo, X.; Yang, J. DTCS: An integrated strategy for enhancing data trustworthiness in mobile crowdsourcing. IEEE
Internet Things J. 2018, 5, 4663–4671. [CrossRef]

50. Boukerche, A.; Kantarci, B.; Kaptan, C. Towards ensuring the reliability and dependability of vehicular crowd-sensing data in
GPS-less location tracking. Pervasive Mob. Comput. 2020, 68, 101248. [CrossRef]

51. Hamrouni, A.; Ghazzai, H.; Frikha, M.; Massoud, Y. A spatial mobile crowdsourcing framework for event reporting. IEEE Trans.
Comput. Soc. Syst. 2020, 7, 477–491. [CrossRef]

52. Wu, Z.; Peng, L.; Xiang, C. Assuring quality and waiting time in real-time spatial crowdsourcing. Decis. Support Syst. 2023,
164, 113869. [CrossRef]

53. Telima, M.; El Esawey, M.; El-Basyouny, K.; Osama, A. The use of crowdsourcing data for analyzing pedestrian safety in urban
areas. Ain Shams Eng. J. 2023, 14, 102140. [CrossRef]

54. Grassi, L.; Ciranni, M.; Baglietto, P.; Recchiuto, C.T.; Maresca, M.; Sgorbissa, A. Emergency management through information
crowdsourcing. Inf. Process. Manag. 2023, 60, 103386. [CrossRef]

55. Tavra, M.; Racetin, I.; Peroš, J. The role of crowdsourcing and social media in crisis mapping: A case study of a wildfire reaching
Croatian City of Split. Geoenviron. Disasters 2021, 8, 10. [CrossRef]

56. Samulowska, M.; Chmielewski, S.; Raczko, E.; Lupa, M.; Myszkowska, D.; Zagajewski, B. Crowdsourcing without data bias:
Building a quality assurance system for air pollution symptom mapping. ISPRS Int. J. Geo-Inf. 2021, 10, 46. [CrossRef]

57. Kraft, R.; Birk, F.; Reichert, M.; Deshpande, A.; Schlee, W.; Langguth, B.; Baumeister, H.; Probst, T.; Spiliopoulou, M.; Pryss, R.
Efficient processing of geospatial mhealth data using a scalable crowdsensing platform. Sensors 2020, 20, 3456. [CrossRef]

http://dx.doi.org/10.1109/TKDE.2023.3283020
http://dx.doi.org/10.1371/journal.pone.0254547
http://www.ncbi.nlm.nih.gov/pubmed/34324531
http://dx.doi.org/10.1155/2020/8822990
http://dx.doi.org/10.2148/benv.46.4.547
http://dx.doi.org/10.3390/ijgi12020047
http://dx.doi.org/10.1016/j.jag.2022.102915
https://www.qgis.org/en/site/
https://postgis.net/
https://geopandas.org/
https://aws.amazon.com/geospatial/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/azure-maps/
http://dx.doi.org/10.1080/02692171.2019.1646223
http://dx.doi.org/10.1007/s00778-019-00568-7
http://dx.doi.org/10.1016/j.jtte.2020.09.004
http://dx.doi.org/10.1016/j.jag.2023.103409
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1080/00045608.2011.595657
http://dx.doi.org/10.1016/j.pmcj.2019.101103
http://dx.doi.org/10.1109/JIOT.2018.2801559
http://dx.doi.org/10.1016/j.pmcj.2020.101248
http://dx.doi.org/10.1109/TCSS.2020.2967585
http://dx.doi.org/10.1016/j.dss.2022.113869
http://dx.doi.org/10.1016/j.asej.2023.102140
http://dx.doi.org/10.1016/j.ipm.2023.103386
http://dx.doi.org/10.1186/s40677-021-00181-3
http://dx.doi.org/10.3390/ijgi10020046
http://dx.doi.org/10.3390/s20123456


ISPRS Int. J. Geo-Inf. 2024, 13, 168 21 of 22

58. Huang, X.; Song, Y.; Hu, X. Deploying spatial data for coastal community resilience: A review from the managerial perspective.
Int. J. Environ. Res. Public Health 2021, 18, 830. [CrossRef] [PubMed]

59. To, H.; Ghinita, G.; Shahabi, C. A framework for protecting worker location privacy in spatial crowdsourcing. Proc. VLDB Endow.
2014, 7, 919–930. [CrossRef]

60. Alharthi, R.; Banihani, A.; Alzahrani, A.; Alshehri, A.; Alshahrani, H.; Fu, H.; Liu, A.; Zhu, Y. Location privacy challenges in
spatial crowdsourcing. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT),
Rochester, MI, USA, 3–5 May 2018; pp. 564–569.

61. Chu, X.; Liu, J.; Gong, D.; Wang, R. Preserving location privacy in spatial crowdsourcing under quality control. IEEE Access 2019,
7, 155851–155859. [CrossRef]

62. Ang, K.L.M.; Seng, J.K.P.; Ngharamike, E. Towards crowdsourcing internet of things (crowd-iot): Architectures, security and
applications. Future Internet 2022, 14, 49. [CrossRef]

63. Ma, Y.; Sun, Y.; Lei, Y.; Qin, N.; Lu, J. A survey of blockchain technology on security, privacy, and trust in crowdsourcing services.
World Wide Web 2020, 23, 393–419. [CrossRef]

64. Han, S.; Lin, J.; Zhao, S.; Xu, G.; Ren, S.; He, D.; Wang, L.; Shi, L. Location privacy-preserving distance computation for spatial
crowdsourcing. IEEE Internet Things J. 2020, 7, 7550–7563. [CrossRef]

65. Thuan, N.H.; Antunes, P.; Johnstone, D. Factors influencing the decision to crowdsource: A systematic literature review. Inf. Syst.
Front. 2016, 18, 47–68. [CrossRef]

66. Sores, C.M. Crowdsourced Data to Improve Municipalities Governance: Sesimbra’s Case; Universidade NOVA de Lisboa: Lisbon,
Portugal, 2021.

67. Bechtel, B.; Demuzere, M.; Sismanidis, P.; Fenner, D.; Brousse, O.; Beck, C.; Van Coillie, F.; Conrad, O.; Keramitsoglou, I.; Middel,
A.; et al. Quality of crowdsourced data on urban morphology—the human influence experiment (HUMINEX). Urban Sci. 2017,
1, 15. [CrossRef]

68. Jahn, M.W.; Bradley, P.E. Topological Access Methods for Spatial and Spatiotemporal Data. ISPRS Int. J. Geo-Inf. 2022, 11, 533.
[CrossRef]

69. Guo, F.; Schlink, U.; Wu, W.; Mohamdeen, A. Differences in Urban Morphology between 77 Cities in China and Europe. Remote
Sens. 2022, 14, 5462. [CrossRef]

70. Sumari, N.S.; Xu, G.; Ujoh, F.; Korah, P.I.; Ebohon, O.J.; Lyimo, N.N. A geospatial approach to sustainable urban planning:
Lessons for Morogoro Municipal Council, Tanzania. Sustainability 2019, 11, 6508. [CrossRef]

71. Benevides, C.C.; Ribeiro, S.R.; Falcão, A.P.; Silva, J.B.; Moura, A.C.M. The use of 3D GIS models for spatial analysis: A Case study
from the city of Fortaleza, Brazil. Disegnarecon 2018, 11, 13-1.

72. Morosini, R.; Zucaro, F. Land use and urban sustainability assessment: A 3D-GIS application to a case study in Gozo. City Territ
Arch. 2019, 6, 7. [CrossRef]

73. Luan, C.; Liu, R.; Peng, S. Land-use suitability assessment for urban development using a GIS-based soft computing approach: A
case study of Ili Valley, China. Ecol. Indic. 2021, 123, 107333. [CrossRef]

74. Shi, Y.; Liu, X.; Kok, S.Y.; Rajarethinam, J.; Liang, S.; Yap, G.; Chong, C.S.; Lee, K.S.; Tan, S.S.; Chin, C.K.Y.; et al. Three-month
real-time dengue forecast models: An early warning system for outbreak alerts and policy decision support in Singapore. Environ.
Health Perspect. 2016, 124, 1369–1375. [CrossRef]

75. Bordon, Y. Targeting malaria transmission. Nat. Rev. Immunol. 2022, 22, 595. [CrossRef]
76. Allorant, A.; Biswas, S.; Ahmed, S.; Wiens, K.; LeGrand, K.; Janko, M.; Henry, N.; Dangel, W.; Watson, A.; Blacker, B.; et al.

Finding gaps in routine TB surveillance activities in Bangladesh. Int. J. Tuberc. Lung Dis. 2022, 26, 356–362. [CrossRef] [PubMed]
77. Yang, S.; Ning, S.; Kou, S. Use internet search data to accurately track state level influenza epidemics. Sci. Rep. 2021, 11, 4023.

[CrossRef] [PubMed]
78. Lyu, W.; Seok, N.; Chen, X.; Xu, R. Using Crowdsourced Food Image Data for Assessing Restaurant Nutrition Environment: A

Validation Study. Nutrients 2023, 15, 4287. [CrossRef] [PubMed]
79. Boonnam, N.; Udomchaipitak, T.; Puttinaovarat, S.; Chaichana, T.; Boonjing, V.; Muangprathub, J. Coral Reef Bleaching under

Climate Change: Prediction Modeling and Machine Learning. Sustainability 2022, 14, 6161. [CrossRef]
80. Bhattacharyya, S.; Mondal, N.K.; Platos, J.; Snasel, V.; Kromer, P. Intelligent Environmental Data Monitoring for Pollution Management;

Academic Press: Cambridge, MA, USA, 2020.
81. Periñán-Pascual, C.; Arcas-Túnez, F. Detecting environmentally-related problems on Twitter. Biosyst. Eng. 2019, 177, 31–48.

[CrossRef]
82. Alamri, S. Spatial Analysis and GIS Mapping of Public Parks Adequacy: A Case Study from Riyadh, Saudi Arabia. Sustainability

2024, 16, 3305. [CrossRef]
83. Zuo, F.; Kurkcu, A.; Ozbay, K.; Gao, J. Crowdsourcing incident information for emergency response using open data sources in

smart cities. Transp. Res. Rec. 2018, 2672, 198–208. [CrossRef]
84. To, H.; Kim, S.H.; Shahabi, C. Effectively crowdsourcing the acquisition and analysis of visual data for disaster response. In

Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November
2015; pp. 697–706.

http://dx.doi.org/10.3390/ijerph18020830
http://www.ncbi.nlm.nih.gov/pubmed/33478056
http://dx.doi.org/10.14778/2732951.2732966
http://dx.doi.org/10.1109/ACCESS.2019.2949409
http://dx.doi.org/10.3390/fi14020049
http://dx.doi.org/10.1007/s11280-019-00735-4
http://dx.doi.org/10.1109/JIOT.2020.2985454
http://dx.doi.org/10.1007/s10796-015-9578-x
http://dx.doi.org/10.3390/urbansci1020015
http://dx.doi.org/10.3390/ijgi11100533
http://dx.doi.org/10.3390/rs14215462
http://dx.doi.org/10.3390/su11226508
http://dx.doi.org/10.1186/s40410-019-0106-z
http://dx.doi.org/10.1016/j.ecolind.2020.107333
http://dx.doi.org/10.1289/ehp.1509981
http://dx.doi.org/10.1038/s41577-022-00782-5
http://dx.doi.org/10.5588/ijtld.21.0624
http://www.ncbi.nlm.nih.gov/pubmed/35351241
http://dx.doi.org/10.1038/s41598-021-83084-5
http://www.ncbi.nlm.nih.gov/pubmed/33597556
http://dx.doi.org/10.3390/nu15194287
http://www.ncbi.nlm.nih.gov/pubmed/37836570
http://dx.doi.org/10.3390/su14106161
http://dx.doi.org/10.1016/j.biosystemseng.2018.10.001
http://dx.doi.org/10.3390/su16083305
http://dx.doi.org/10.1177/0361198118798736


ISPRS Int. J. Geo-Inf. 2024, 13, 168 22 of 22

85. Poblet, M.; García-Cuesta, E.; Casanovas, P. Crowdsourcing tools for disaster management: A review of platforms and methods.
In International Workshop on AI Approaches to the Complexity of Legal Systems; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 261–274.

86. Riccardi, M.T. The power of crowdsourcing in disaster response operations. Int. J. Disaster Risk Reduct. 2016, 20, 123–128.
[CrossRef]

87. Elyoussoufi, A.; Walker, C.L.; Black, A.W.; DeGirolamo, G.J. The Relationships between Adverse Weather, Traffic Mobility, and
Driver Behavior. Meteorology 2023, 2, 489–508. [CrossRef]

88. Shearston, J.A.; Martinez, M.E.; Nunez, Y.; Hilpert, M. Social-distancing fatigue: Evidence from real-time crowd-sourced traffic
data. Sci. Total Environ. 2021, 792, 148336. [CrossRef]

89. Karakaya, A.S.; Hasenburg, J.; Bermbach, D. SimRa: Using crowdsourcing to identify near miss hotspots in bicycle traffic.
Pervasive Mob. Comput. 2020, 67, 101197. [CrossRef]

90. Dixit, V.; Nair, D.J.; Chand, S.; Levin, M.W. A simple crowdsourced delay-based traffic signal control. PLoS ONE 2020, 15, e0230598.
[CrossRef] [PubMed]

91. Biswas, A.; Adhinugraha, K.; Taniar, D. Comparative GIS Analysis of Public Transport Accessibility in Metropolitan Areas.
Computers 2023, 12, 260. [CrossRef]
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