
 International Journal of

Geo-Information

Article

Analysis of Hydrological Sensitivity for Flood
Risk Assessment

Sanjay Kumar Sharma 1,*, Young-Joo Kwak 2,*, Rakesh Kumar 1 and Bibhash Sarma 3

1 National Institute of Hydrology, Centre for Flood Management Studies, Dispur, Assam 781-006, India;
rakesh.nihr@gov.in

2 International Centre for Water Hazard and Risk Management (ICHARM) under the auspices of UNESCO,
Public Works Research Institute (PWRI), 1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan

3 Civil Engineering Department, Assam Engineering College, Guwahati 781-006, India; bsghy@yahoo.co.in
* Correspondences: sanjaypundit@gmail.com (S.K.S.); kwak@icharm.org (Y.-J.K.);

Tel.: +91-943-574-6774 (S.K.S.); +81-49-879-6779 (Y.-J.K.)

Received: 30 November 2017; Accepted: 1 February 2018; Published: 5 February 2018

Abstract: In order for the Indian government to maximize Integrated Water Resource Management
(IWRM), the Brahmaputra River has played an important role in the undertaking of the Pilot Basin
Study (PBS) due to the Brahmaputra River’s annual regional flooding. The selected Kulsi River—a
part of Brahmaputra sub-basin—experienced severe floods in 2007 and 2008. In this study, the
Rainfall-Runoff-Inundation (RRI) hydrological model was used to simulate the recent historical
flood in order to understand and improve the integrated flood risk management plan. The ultimate
objective was to evaluate the sensitivity of hydrologic simulation using different Digital Elevation
Model (DEM) resources, coupled with DEM smoothing techniques, with a particular focus on the
comparison of river discharge and flood inundation extent. As a result, the sensitivity analysis
showed that, among the input parameters, the RRI model is highly sensitive to Manning’s roughness
coefficient values for flood plains, followed by the source of the DEM, and then soil depth. After
optimizing its parameters, the simulated inundation extent showed that the smoothing filter was more
influential than its simulated discharge at the outlet. Finally, the calibrated and validated RRI model
simulations agreed well with the observed discharge and the Moderate Imaging Spectroradiometer
(MODIS)-detected flood extents.
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1. Introduction

Integrated Water Resource Management (IWRM) was developed and increasingly recognized
to meet urgent international and national demand for the effective and efficient management of
water resources under climate change. In particular, transboundary river basins in Asia need to be
managed in integrated ways that consider the interaction between flood risk reduction and sustainable
development. According to the Technical Advisory Committee of Global Water Partnership [1], “IWRM
is a process, which promotes the coordinated development and management of water, land and related
resources in order to maximize the resultant economic and social welfare in an equitable manner
without compromising the sustainability of vital ecosystems”. Integrated flood risk management, in the
context of IWRM, should take the highest priority in the international and regional development plans
of both developing and developed countries. The holistic approach of IWRM should be complementary
to mainstream disaster risk reduction and disaster management. This should be done in a planning
process using a mathematical formula associated with scalable modules at the national, regional, and
local levels under a socio-technical and institutional IWRM framework [2,3]. Keeping the importance
of IWRM in view, the National Institute of Hydrology (NIH), a premier Indian institute in the area of
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hydrology and water resources, set up regional centers for conducting studies related to field problems
and to develop a closer interaction with water resource management organizations across different
regions of the country. One such regional center was set up at Guwahati, India for the northeastern
region to tackle various water resource problems of seven northeast states, including Sikkim and parts
of West Bengal. Under the mandate of the XII plan period, the center is working on a project in IWRM
under the Pilot Basin Study (PBS).

The PBS program involves the identification of suitable basins in consultation with concerned
state governments and authorities; the establishment of advanced instrumentation for data collection,
storage, processing, and analysis using state of the art models; and the preparation of results and
findings in collaboration with specialists of other relevant disciplines in a meaningful and usable form
for intended beneficiaries and relevant stakeholders.

Most of the basins in Northeast India have insufficient hydrological gauge stations, so reliance on
the availability of satellite products for hydrologic simulations is even greater. Elevation data from
different sources are widely available, even for data-poor developing countries. Topography plays a
major role in determining the accuracy of hydraulic modeling and flood inundation mapping [4,5].
Manfreda et al. (2008) investigated the topographic attributes of the terrain and observed a strong
correlation between the topographic index and areas exposed to flood inundation [6–8]. The Digital
Elevation Model (DEM) is a raster dataset containing the topographic information of a region and
is used as a prerequisite to hydraulic modeling. Considerable variation is observed among different
DEMs, depending on spatial resolution, vertical precision, and accuracy. This diversity is due to the
types of equipment and methods used to obtain the topographic data. When DEMs are used as an input
to hydraulic modeling, the differences in quality among them result in differences in model output
performance [8]. To date, many studies have been carried out to evaluate the impact of topographic
representation accuracy on the results of hydraulic models [9–12]. Patro et al. [13] selected a study
area in India and demonstrated the usefulness of using the Shuttle Radar Topography Mission (SRTM)
DEM to derive river cross-sections for use in hydraulic modeling. They found that the calibration
and validation results from the hydraulic model performed quite satisfactorily in simulating river
flow. Furthermore, the model performed quite well in simulating the peak flow, which is important in
flood modeling. Tarekegn et al. [14] used a DEM generated from the ASTER image of a study area
in Ethiopia. From the results obtained, they concluded that the ASTER DEM was able to simulate
the observed flooding pattern and inundated area extents with reasonable accuracy. Paiva et al. [15]
demonstrated the use of SRTM DEM in a large-scale hydrologic model with a full 1-D hydrodynamic
module to calculate flow propagation on a complex river network. This study focused on different
DEM sources from satellites—such as the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), and The Cartosat-1 Digital
Elevation Model (CARTO DEM)—and their effect on flood simulation.

Objectives

The objective of this study was to evaluate the hydrological and topographical sensitivity of
parameters for flood risk assessment based on the different conditions of the representative river
basin. To determine the optimal parameters for hydrologic modeling, the Rainfall-Runoff-Inundation
(RRI) model was employed to simulate and reproduce historical flood events in 2007 and 2008.
Three different Digital Elevation Model (DEM) resources, i.e., ASTER, SRTM, and CARTO DEM,
were modified by DEM smoothing techniques in pre-processing. They were then compared with a
hydrologic simulation focusing on the comparison of river discharge and inundation area, specifically
the maximum flood-peak discharge and maximum flood extent. Based on the three modified DEMs
and optimal parameters from the experimental study basin, we sought common parameters reflected
in the hydrological sensitivity characteristics of the Brahmaputra River Basin.
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2. Study Area

The Kulsi River Basin, a part of the Brahmaputra sub-basin, was selected for the PBS study. The
Kulsi River drains a total area of 2806 km2, covering the Kamrup District of Assam, the Western Khasi
Hills, and the Ri Bhoi District of Meghalaya in Northeast India. The selected basin is an ideal target to
develop flood inundation maps due to its strategic location (encompassing two states in the northeast)
and the fact that the region experiences large floods. The Kulsi River Basin is situated on the south
bank of the mighty Brahmaputra River (Figure 1). It is located between latitude 25◦30′ N to 26◦10′ N
and longitude 89◦50′ E to 91◦50′ E, with an altitude between 100 to 1900 m above mean sea level
(AMSL). The area that the Kulsi River drains can be broadly divided into three reaches: (i) the Upper
Khasi hill reach; (ii) the middle reserve forest reach; and (iii) the alluvial or flood plain reach.
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2.1. Data

The daily rainfall data from 2007 and 2008 were provided by the Indian Meteorological
Department and were collected from five rain gauges in and around the Kulsi River Basin (Figure 2).
The daily discharge data at the outlet for 2007 and 2008 were collected from the Centre Water
Commission of India. Information on the outlet and boundary of the Kulsi River Basin were obtained
from the Centre Water Commission of India.

Three DEMs were used in this study to characterize the topography of the study area.
HYDROlogical data and maps based on SHuttle Elevation Derivatives at multiple Scales
(HYDROSHEDS) were comprised of high-resolution processed elevation data at 90 m spatial resolution;
this was obtained from a space shuttle flight for NASA’s Shuttle Radar Topography Mission (SRTM).
The ASTER DEM ver. 2 maintains the Geotiff format with a 30 m spatial resolution. The data was
downloaded for the study from the ASTER GDEM distribution website developed by the Ministry of
Economy, Trade, and Industry of Japan (METI) and the National Aeronautics and Space Administration
(NASA) [16]. CARTO DEM is a national DEM developed by the Indian Space Research Organisation
(ISRO) that is derived from the Cartosat-1 stereo payload launched in May 2005. The primary output
unit is a tile of 7.5′ by 7.5′ in size with a DEM spacing of 1/3 arc-sec (with 10 m spatial resolution). The
data products were downloaded from National Remote Sensing ISRO (NRSC) [17].
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The soil data for the study was obtained from the Harmonized World Soil Database v 1.2 of the
Food and Agriculture Organization (FAO) soil portal. The Harmonized World Soil Database is a 30
arc-second raster database. The soil data for the study area was downloaded from the FAO [18]. The
soil texture of the Kulsi River Basin consists of sandy loam (29%), sandy clay (25%), and clay loam
(46%). Elevation values were measured at fifty locations along the Kulsi River (Figure 2) using the
Differential Global Positioning System (DGPS).

To validate the inundation area on 13 June, 2008, the Moderate Resolution Imaging
Spectroradiometer (MODIS) eight-day composite surface reflectance products (MYD09A1 from the
Aqua satellite platform) were used to detect floodwater between 9 and 16 June 2008. The data product
was downloaded from the Land Processes Distributed Active Archive Centre, US Geological Survey
(USGS) [19].

2.2. Methods

The RRI model is a 2D model capable of simultaneously simulating rainfall-runoff and flood
inundation [20,21]. The flow on the slope grid cells is calculated with a 2D diffusive wave model,
while the channel flow is calculated with a 1D diffusive wave model. The vertical infiltration flow is
estimated using the Green-Ampt model. The Green-Ampt infiltration model is the most widely used
model and is built into the RRI Model.

The RRI model was used to model hydrological behaviour in the study area. The details of the
model are shown below. The model equations are derived from the following mass balance equation
and momentum equation for a gradually varied unsteady flow:

∂h
∂t

+
∂qx

∂x
+

∂qy

∂y
= r− f (1)

∂qx

∂t
+

∂uqx

∂x
+

∂vqx

∂y
= −gh

∂H
∂x
− τx

ρw
(2)
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∂qy

∂t
+

∂uqy

∂x
+

∂vqy

∂y
= −gh

∂H
∂y
−

τy

ρw
(3)

where:

• h = height of the water from the local surface,
• qx, qy = unit width discharges in x and y directions,
• u, v = flow velocity in x and y directions,
• r = rainfall intensity,
• f = infiltration rate,
• H = height of the water from the datum,
• ρw = density of water,
• g = gravitational acceleration, and
• τx, τy = shear stress in x and y directions.

The second terms on the right side of Equations (2) and (3) are calculated with the Manning’s
equation:

τx

ρw
=

gn2u
√

u2 + v2

h1/3 (4)

τy

ρw
=

gn2v
√

u2 + v2

h1/3 (5)

where n is the Manning’s roughness parameter.
The RRI model spatially discretizes the mass balance (Equation (1)) as follows:

dhi,j

dt
+

qx
i,j−1 − qx

i,j

∆x
+

qy
i,j−1 − qy

i,j

∆y
= ri,j − fi,j (6)

where qx
i,j, qy

i,j are x and y direction discharges from a grid cell at (i, j), respectively.
Equations (7) and (9) describe the saturated subsurface flow and Equations (8) and (10) describe

the combination of the saturated subsurface flow and the surface flow based on the Darcy law. For the
kinematic wave model, the hydraulic gradient is assumed from the topographic slope, and the RRI
model assumes the water surface slope as the hydraulic gradient:

qx = −kah
∂H
∂x

(h ≤ d) (7)

qx = − 1
n
(h− da)

5/3

√∣∣∣∣∂H
∂x

∣∣∣∣sgn
(

∂H
∂x

)
− ka(h− da)

∂H
∂x

(da < h) (8)

qy = −kah
∂H
∂y

(h ≤ d) (9)

qy = − 1
n
(h− da)

5/3

√∣∣∣∣∂H
∂y

∣∣∣∣sgn
(

∂H
∂y

)
− ka(h− da)

∂H
∂y

(da < h) (10)

where ka is the lateral saturated hydraulic conductivity and da is the soil depth multiplied by the
effective porosity.
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Equation (11) is used to simulate the effect of unsaturated subsurface flows, saturated subsurface
flows, and the surface flow with the single variable of h:

−kmdm

(
h

dm

)β
∂H
∂x , (h ≤ dm)

qx = −ka(h− dm)
∂H
∂x − kmdm

∂H
∂x , (dm < h ≤ da)

− 1
n (h− da)

5/3
√∣∣∣ ∂H

∂x

∣∣∣sgn
(

∂H
∂x

)
− ka(h− dm)

∂H
∂x − kmdm

∂H
∂x , (da < h)

(11)

DEM products are sometimes created and distributed without any correction to the height
obtained from data acquisition or processing for errors caused by artefacts and trees. DEM smoothing is
an important pre-processing step to remove such errors. The main purpose of the smoothing algorithm
is to remove certain high-frequency information in DEMs, while preserving genuine information at all
frequencies [22,23]. Based on the advantages and disadvantages of several DEM smoothing algorithms,
three algorithms, i.e., low-pass filter, enhanced lee filter, and denoising algorithms, were selected to
remove noise from SRTM, ASTER, and CARTO DEMs. These simple and fast smoothing algorithms
remove noise effectively while clearly preserving the mesh features (i.e., sharp edges and corners) of
these three DEMs on flood inundation simulations.

A low-pass filter, known as a blurring or smoothing filter, averages the rapid changes in an image.
It calculates the average value of pixels in a window and all of its eight intermediate neighbours. The
result replaces the original value of the pixel. The process is repeated for every pixel in the image. The
equation to calculate the enhanced Lee filter is given below:

Yij = K0 + W × (C − K0) (12)

where Yij is the despeckled image, K0 is the mean of the kernel/window, W is the weight factor, and C
is the centre element in the kernel/window. The denoising algorithm based on [22] works by iteratively
filtering the face normals by the weighted averages of neighbouring face normals and, then, updating
the vertex positions to correspond with denoised face normals.

The topographic data consisting of SRTM, ASTER, and CARTO DEMs were processed using the
Hydrology toolset for the ArcGIS Spatial Analyst extension (ESRI, CA, USA) because DEMs usually
consist of undesired errors, classified as sinks or peaks. A sink is an area surrounded by higher elevation
values, while a peak is defined as an area surrounded by lower elevation values. More accurate DEMs,
called depressionless DEMs, create more accurate flow directions and accumulated flows after all
errors (such as sinks and peaks) are removed. In this study, depressionless DEMs were created using a
fill sink tool of the Hydrology toolset. Then, flow direction and flow accumulation were computed
from the three types of depressionless DEMs. The RRI model, a subroutine of DemAdjust2.exe, was
employed to further correct the values of flow direction and accumulation from depressionless DEMs.
Elevation, flow direction, and flow accumulation grids were exported in the ASCII format for use as
input in the RRI model.

Rainfall–runoff data corresponding to a flood event observed in the study area during 2007 was
used for calibrating the RRI model. The RRI model was set up to simulate the flow of the Kulsi River
at the outlet. The calibration of the RRI model was done by matching the simulated hydrograph with
the observed hydrograph of the 2007 flood. The sensitivity check scenarios were performed with RRI
input parameters to assess their influence on the hydrologic simulation. The validation of the RRI
model was performed by executing the model with the parameters calibrated to the 2008 flood event.

Remote sensing images from the Moderate Imaging Spectroradiometer (MODIS) were used to
determine the flood inundation extent in the Kulsi River Basin. The Modified Land Surface Water



ISPRS Int. J. Geo-Inf. 2018, 7, 51 7 of 17

Index (MLSWI) was used to identify flooded areas [24,25]. MLSWI was calculated using Equation (13)
as follows:

MLSWI =
1− RNIR − RSWIR
1− RNIR + RSWIR

(13)

where NIR stands for near infrared reflectance and SWIR for shortwave infrared reflectance. RNIR and
RSWIR are the reflectance values (R) of MODIS bands 2 and 7, respectively. An optimal threshold of the
MLSWI was selected as 0.64 in order to discriminate water bodies from other land-cover features based
on their spectral characteristics. The flood extent, determined by the MLSWI, was used to evaluate the
accuracy of simulated results attained using the RRI model based on the different DEMs, with and
without smoothing.

To verify the correspondence between RRI-based and MODIS-detected flood areas, the Critical
Success Index (CSI) was used as categorical verification statistic. CSI is computed using the following
formula:

CSI =
RRIarea ∩ MODISarea

RRIarea ∪ MODISarea
(14)

A perfect simulation using categorical verification statistics would have a CSI value of 1.

3. Results

3.1. Topographic Data Processing

The processed depressionless DEMs of SRTM, ASTER, and CARTO were obtained as shown in
Figure 3. On visual inspection, all the DEMs exhibited similar trends in the spatial distribution of
specified elevation ranges, with exceptions for the lowest and highest elevation values.
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Figure 3. Depressionless Digital Elevation Models (DEM) used in the study.

Table 1 shows the basic statistics derived from the processed DEM. The maximum elevation was
observed in the CARTO DEM, followed by the SRTM and ASTER DEMs. The highest mean elevation
was observed in the SRTM DEM, and the highest standard deviation was observed in ASTER.

Table 1. Characteristics of depressionless DEMs.

Basic Statistics SRTM ASTER CARTO

Minimum elevation (m) 35.0 26.0 33.0
Maximum elevation (m) 1919.0 1914.0 1926.0

Mean elevation (m) 869.1 833.5 852.7
Standard deviation 539.6 551.6 541.3
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To determine the accuracy of DEMs, 50 ground-based elevations represented by the DGPS
measurements were compared with the elevations in SRTM, ASTER, and CARTO DEM. The DGPS
measurements were classified into two categories: one consisting of the DGPS values located in the
flood plains, and the other consisting of the DGPS values located in the forests and hilly areas. Figure 4
compares the three DEM sources with the DGPS in the elevation of flood plains.

To quantify the differences in elevation between the DGPS points and the DEM data,
root-mean-square error (RMSE) and mean absolute error (MAE) values were computed for the flood
plains and for the forests and hills in the study area, as shown in Table 2.

Table 2. Comparison of elevations in the three DEMs (i.e., Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), and Cartosat-1 (CARTO))
and the Differential Global Positioning System (DGPS).

Source of DEM
Flood Plains Forests and Hills

RMSE (m) MAE (m) RMSE (m) MAE (m)

SRTM 1.88 1.73 9.53 8.82
ASTER 3.85 3.15 6.95 5.94
CARTO 8.08 7.08 8.81 10.46
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The computed error analysis found that the SRTM DEM produced the lowest RMSE and MAE for
the flood plains, i.e., 1.88 m and 1.73 m, respectively; however, for the remaining study area, the best
results for RMSE and MAE were obtained from the ASTER DEM, i.e., 6.95 m and 5.94 m, respectively.

Figure 5 shows the DEM-derived slopes from three depressionless DEMs. According to the visual
interpretation of the slope maps, the overall slope values modified by SRTM DEM were higher than
both the ASTER and CARTO DEMs in the flood plain. The higher slope values signify that a slope
will accelerate a velocity of water flow in the basin as a primary driving component in any hydrologic
model. Therefore, the simulated peak discharge will be produced by a steep slope regulating runoff
behaviour. The differences in the slope values and the spatial distribution consequently lead to
differences in the hydrologic response.

The watersheds, which were delineated using the flow directions derived from different DEMs,
also displayed differences in spatial extent (Figure 6), especially near the outlet of the basin. Watershed
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areas of 24,846.5, 25,017.6, and 25,187.7 km2 were obtained using the SRTM, ASTER, and CARTO
DEMs, respectively.
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3.2. Sensitivity Analysis of Manning’s Roughness Coefficient in Hydrologic Simulation

Manning’s n values were set to those between the highest and lowest values prescribed by the
RRI manual. This was in order to evaluate the impact of Manning’s roughness coefficient on the
discharge and inundation area simulated by the RRI model. This section discusses the impact of
different Manning’s n values on hydrologic simulations using different DEMs.

Figure 7a shows the RRI model variation in simulated discharge caused by changing n from 0.15
to 1.0. The best fit of simulated values compared to the observed discharge value was given when
n = 0.4. The figure clearly shows that decreases in the Manning’s n values resulted in increases in
discharge, and vice versa. Flood flow peaks showed higher rates of change compared to the observed
discharge values (the blue dotted line) due to the variation in Manning’s n value. In general, a 5%
decrease in Manning’s n value resulted in an increase in flood peak by 3.35%.

Figure 7b shows the RRI model variation in simulated discharge caused by changing n from 0.15
to 1.0 for ASTER DEM. Change trends in flood peak when using ASTER DEM was similar to the
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previous case. In general, a 5% decrease in the Manning’s n value resulted in an increase in flood peak
by 2.05%.

Figure 7c shows the RRI model variation in simulated discharge caused by changing n from 0.15
to 1.0 in the CARTO DEM. In this case, a 5% decrease in values resulted in an increase in flood peak
by 2.73%. Among the DEMs used in this study, the SRTM DEM exhibited the highest sensitivity to
changes in the Manning’s n value, followed by the ASTER and CARTO DEMs.
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3.3. Sensitivity Analysis of Soil Depth in Hydrologic Simulation

After fixing the Manning’s n values, the soil depth parameter in the RRI model was varied based
on the specifications of the RRI manual. The soil type selected was clay, as it yielded the best RRI
model performance out of all the soil types. The value of soil depth ranged from d = 0.5–2.0 m, and
the effect of soil depth on the hydrologic simulation was estimated. The differences between the
model simulations and observed discharge could be attributed to the fact that a single soil type was
selected, despite there being different soil types in the study basin. The following section discusses the
sensitivity of RRI model simulations using different DEMs to soil depth.

Figure 8a shows the RRI model variation in simulated discharge caused by changing the soil
depth from the lowest value of d = 0.15 m to the best-fitting value of d = 1.5, then, to the highest
recommended value of d = 2.0 m. From the figure, the general trend is that a decrease in d value
results in an increase in discharge. The range of the variation in flood peaks was lower than that of the
peak variation observed in relation to changing the Manning’s n value, which suggests that discharge
values were less sensitive to soil depth than to the Manning’s n value.
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Figure 8b shows the RRI model variation in simulated discharge caused by changing soil depth
values. Changing the values of soil depth by 5% resulted in a 1.7% change in discharge peaks in the
ASTER DEM. The maximum flood peaks were quite similar among all the soil depth values; however,
the intermediate peaks were not well simulated, which indicates possible limitations of the data or the
RRI model used in this study.

Figure 8c shows the RRI model variation in simulated discharge caused by changing soil depth
values in the CARTO DEM. Changing the values of soil depth by 5% resulted in a 0.6% change in
discharge peaks in the CARTO DEM.

3.4. Sensitivity Analysis of Smoothing of Different DEMs on Hydrologic Simulation

After calibrating the RRI model with the Manning’s n values and the soil depth parameter, the
effect of different smoothing filters of DEMs on the hydrologic simulation was observed. Four types of
filters, i.e., low-pass filter, enhanced Lee filter (window size = 3), enhanced Lee filter (window size = 5),
and denoising algorithms, were applied to SRTM, ASTER, and CARTO DEMs. The following section
discusses the sensitivity of different DEMs to smoothing filters using the RRI model simulation.

Figure 9a shows the RRI model variation in simulated discharge caused by using different
smoothing filters for SRTM DEM. The use of a low-pass filter generally resulted in the simulation of
higher discharge values. The denoising algorithm resulted in the lowest discharge values and were
closer to the observed discharge values (the blue dotted line) in the hydrograph.
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Figure 9b shows the RRI model variation in simulated discharge caused by using different
smoothing filters in ASTER DEM. The simulation with a low-pass filter generally resulted in lower
discharge values. The enhanced Lee filter with a size 3 × 3 window produced the highest peak and
variation of the simulated discharge. The use of a denoising algorithm resulted in the lowest discharge
values, which were closer to the observed discharge values (the blue dotted line) in the hydrograph.

Figure 9c shows the RRI model variation in simulated discharge caused by using different
smoothing filters in CARTO DEM. The low-pass filter generally resulted in the simulation of higher
discharge values for the major peaks, while the enhanced Lee filter with a 5 × 5 window resulted in
higher discharge values for the intermediate peaks. The denoising algorithm resulted in simulating
the lowest discharge values, which were closer to the observed hydrograph.

3.5. Simulation of Flood Extent Using the Rainfall-Runoff-Inundation (RRI) Model

The inundation area on 13 June 2008 was computed using RRI models and DEMs, with and
without smoothing. The results were compared with the MLSWI derived from MODIS imagery.
Table 3 shows the comparison of the inundation area simulated by the RRI models using different
DEMs. The inundation area derived from the MODIS imagery on the same date was calculated as
560.09 km2.

Table 3. Comparison of simulated flood extent using the Moderate Imaging Spectroradiometer (MODIS)
imagery for the 2008 flood.

Source of
DEM

Inundation Area (km2)

Without
Smoothing

Low Pass
Filter

Lee Filter
(Size = 3)

Lee Filter
(Size = 5)

Denoising
Algorithm

SRTM 310.76 279.66 262.20 260.69 364.18
ASTER 433.83 377.13 431.03 442.94 450.95
CARTO 348.68 306.21 382.36 304.41 366.25

Source of
DEM

CSI

Without
Smoothing

Low Pass
Filter

Lee Filter
(Size = 3)

Lee Filter
(Size = 5)

Denoising
Algorithm

SRTM 0.45 0.31 0.28 0.28 0.47
ASTER 0.47 0.41 0.46 0.49 0.57
CARTO 0.44 0.33 0.42 0.32 0.51

A comparison of the inundation area showed that the area simulated by the RRI model using
ASTER DEM was closer to the area derived using the MODIS imagery. The CSI between the RRI
model and the MODIS imagery produced values of 0.45, 0.47, and 0.44 for SRTM, ASTER, and CARTO
DEMs, respectively. The combination of the denoising algorithm and ASTER DEM produced an
inundation area of 450.95 km2 and a CSI of 0.57, which was closest to the flood extent derived using
the MODIS imagery.

Figure 10 shows a comparison in the spatial distributions of the flooded areas of the flood plain. It
compares the areas simulated by the best performing combination of ASTER DEM and the denoising
algorithm using the RRI model (the blue and light blue pixels) with the areas detected by MODIS
using the MLSWI algorithm (the blue and red pixels). Maximum inundation was observed around the
river confluences and near the outlet in the flood plains. To verify the maximum inundation areas,
we visited representative flood plain sites near the river mouth of the Kulsi River on June 2017. We
further conducted a field investigation to collect ground truth information using a small unmanned
aerial vehicle (sUAV: MAVIC Pro quadcopter with a flight control system, DJI Technology Co. Ltd.,
Shenzhen, China), which is useful for flood monitoring using less labour and time. The location of the
sUAV flight control was around 91◦6′42.12” E, 26◦4′41.52” N near the river mouth of the Kulsi River.
The sUAV, which achieved a flight altitude of 30 m and a radius of 80 m, successfully captured the
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micro-topographic features of flood inundation, i.e., the conditions of floodwater over a two-meter
water depth, submerged roads, and flooded rice fields near the outlet. Despite the different severities
(based on magnitude, return period, duration, and extent of flooding) of the floods in 2007, 2008, and
2017, the water level in 2017 exceeded the flood danger level in the Brahmaputra River, particularly in
the Assam State of India. However, the 2017 flooding caused no less damage to the area (due to river
flood and bank erosion) than the 2007 and 2008 floods. We found that the sUAV-captured inundated
areas represented both the RRI-simulated and MLSWI-detected inundation areas.
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4. Discussion

Flood disasters need to be addressed in the context of IWRM. The overall framework of IWRM
must balance the losses caused by inundation of the flood plains with the benefits of preserving the
ecosystem and its associated biodiversity. Structural measures for land and water management must
be integrated in the delineated flood inundated areas. Based on the results of this study, the importance
of hydrological sensitivity in the case of regional flood inundation is discussed. In this study, two
types of flood simulations in 2007 and 2008, using geomorphological conditions reproduced by the RRI
model, were conducted to evaluate their effects on hydrological simulations of flood discharge and
inundation area. The calibrated and validated RRI model reproduced the maximum flood inundation
in order to analyse hydrological sensitivity based on discharge. This helps gain a comprehensive
understanding of regional floods in Northeastern India.

First, the remarkable variations among the different DEMs were revealed by the topographic
characteristics of the Kulsi River Basin. The quality of topographic data is dependent on several factors,
including sampling density, data acquisition, spatial resolution, the interpolation algorithms used to
generate a DEM, and terrain characteristics, as also reported in [26]. The determination of the absolute
accuracy of DEMs, based on DGPS measurements, can be well explained by the different surface
patterns of low-lying areas and the gentle and steep slopes in the forest and hill areas of the basin. The
presence of thick forests along the gently rolling topography of the basin might have increased the
errors of the DEM due to the backscattering of signals from different satellite sensors; this was more
prominently seen in the SRTM DEM in this study. Among the DEMs used in this study, the SRTM
DEM identified the smallest watershed area as the hydrological boundary condition of the basin. This
tendency was reproduced in the RRI simulations of flood inundation extent using the SRTM DEM.
When compared to ASTER and CARTO DEMs, the raw SRTM data with moderate resolution (90 m)
was less capable of capturing the variation in flow direction, especially near the outlet of the basin.
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Checking the influence of discharge at the upstream points of the basin, and not only at the outlet
point, would increase the reliability of the RRI simulation.

Although the absolute vertical accuracy of DEMs was evaluated in this study, the comparison
of the relative elevation accuracy of DEMs using high-resolution topographic maps would also be
useful in determining their suitability for hydrologic simulation. High-resolution DEM data with a
5 m spatial resolution is available from the Advanced Land Observing Satellite (ALOS), operated by
the Japan Aerospace Exploration Agency (JAXA). ASTER DEM outperformed the SRTM and CARTO
DEMs in simulating the flood extent in this study. This finding is supported by the study undertaken
by Tarekegn et al. [14] in Ethiopia using a DEM generated from ASTER images, where integration
between remote sensing and GIS techniques was needed to construct flood plain terrain and channel
bathymetry. From the results obtained, they concluded that ASTER DEM was able to simulate the
observed flooding pattern and inundated area extents with reasonable accuracy. Nevertheless, they
also highlighted the need for advanced GIS geoprocessing knowledge when developing a digital
representation of the flood plain and channel terrain.

Second, we found that the selection of smoothing algorithms had a serious influence on the
hydrologic simulations using different DEMs. For optimal speckle reduction, we also applied a spatial
filter to each pixel with different window sizes, i.e., an enhanced Lee filter. The enhanced Lee filter
with a 3 × 3 window performed RRI simulation better than one with a 5 × 5 window. Improving the
best-fitting parameters of smoothing filters for hydrological simulations of different resolutions will
be useful in determining the best-fitting parameters required to adequately characterize catchment
behaviour. The inclusion of evapotranspiration, river cross-section data, base flow, and the interaction
of ground water with surface water will also enhance the performance and reliability of the RRI model.
Variation in soil depth also produced different flood simulation results, which was validated by the
observed soil depth; Rahimy [27] has already studied the effect of soil depth spatial variation on
runoff simulations.

Third, the simulation of flood extent by the RRI model was consistent along the river network,
while MODIS imagery displayed patchy inundation areas. The reason for this could be attributed
to the low spatial resolution of MODIS imagery and the limitations of MODIS in the presence of
mixed areas within the pixel. This could also be because of the limitations of the index adopted to
differentiate flood and non-flood areas. A comparison of the flood inundated area with multi-temporal
SAR and optical images should improve the reliability of the RRI model simulation; for example, using
TerraSAR-X (X-band, 1~3 m, DLR), Sentinel-1B (C-band, 5 m, ESA), ALOS-2 (L-band, 3 m, JAXA),
WorldView-4 (0.3 m, GeoEye, USA), and Landsat-8 (15 m, USGS, USA).

Finally, in future works, an uncertainty analysis of topography DEMs using Monte Carlo
simulations will be beneficial in quantifying the impact of using different topographical data on
RRI model simulation. Different flood simulation models, such as the Hydrologic Modelling System
(HEC-HMS, U.S. Army Corps of Engineers) and MIKE HYDRO River (MIKE 11 and 21, DHI), should
be tested using different sources in order to compare the hydrological sensitivity of the discharge and
inundation areas based on the selected parameters. In addition, in line with the improvement of a
project in IWRM under the Pilot Basin Study (PBS), we would like to expand the pilot area by applying
an improved approach for integrated flood risk management. We would like to do this with particular
reference to the Brahmaputra River of the Assam District, North East India, as well as to the whole of
the Brahmaputra River Basin as an international-level transboundary river.

5. Conclusions

The following conclusions were drawn from the study: (1) compared to the reference points of
DGPS measurements, SRTM DEM produced the fewest errors in the flood plains, while the relatively
good accuracy of the DEM was obtained from ASTER DEM for the forests and hills; (2) the sensitivity
analysis revealed that the RRI model for flood plains was most sensitive to Manning’s n values
compared with the other input parameters, followed by the sources (original products) of DEMs
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and soil depth; (3) calibration and validation of the RRI model reproduced the maximum flood-peak
discharge quite well; (4) the simulated inundation extent was more influenced by topography-modified
smoothing filters than its simulated discharge at the outlet of the basin; and (5) the denoising algorithm
performed better than the other DEM smoothing filters in hydrological simulations.
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