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Abstract: As worldwide warming intensifies, the average temperature of the earth continues to
increase. Temperature is a key factor for the growth and development of all organisms and governs
the distribution and seasonal behavior of plants. High temperatures lead to various biochemical,
physiological, and morphological changes in plants and threaten plant productivity. As sessile
organisms, plants are subjected to various hostile environmental factors and forced to change their
cellular state and morphological architecture to successfully deal with the damage they suffer.
Therefore, plants have evolved multiple strategies to cope with an abnormal rise in temperature.
There are two main mechanisms by which plants respond to elevated environmental temperatures.
One is the heat stress response, which is activated under extremely high temperatures; the other is
the thermomorphogenesis response, which is activated under moderately elevated temperatures,
below the heat-stress range. In this review, we summarize recent progress in the study of these
two important heat-responsive molecular regulatory pathways mediated, respectively, by the Heat
Shock Transcription Factor (HSF)–Heat Shock Protein (HSP) pathway and PHYTOCHROME INTER-
ACTING FACTOR 4 (PIF4) pathways in plants and elucidate the regulatory mechanisms of the genes
involved in these pathways to provide comprehensive data for researchers studying the heat response.
We also discuss future perspectives in this field.

Keywords: heat stress; heat shock transcription factor; heat shock protein; phytochrome interacting
factor 4; thermomorphogenesis

1. Introduction

A rise of 2.5–5.4 ◦C in the global surface temperature during the 21st century has been
projected by the Intergovernmental Panel on Climate Change [1]. Plants are responsive
to temperature changes, some species even to differences of 1 ◦C [2]. A characteristic set
of cellular and metabolic responses occur when plants are exposed to excess heat, with
temperatures at least 5 ◦C above their optimal growing conditions [3,4]. Although different
plants (crops) have discrete temperature thresholds in response to extreme and moderate
high temperature (Table 1), climate change and global warming are severely hindering the
normal growth and development of many important crops, threatening food safety [3].

Table 1. Previously reported temperature ranges of moderate and extreme heat for different species.

Species Normal Moderate Heat Extreme Heat

Arabidopsis [5] 22 ◦C 28 ◦C 37 ◦C
Zea mays [6] 25 ◦C 38 ◦C

Oryza sativa [7] 25 ◦C 30 ◦C 35 ◦C
Gossypium hirsutum L. [8] 27.5 ◦C 36.5 ◦C

Malus domestica [9] 25 ◦C 48 ◦C
Solanum tuberosum L. [10] 22 ◦C 30 ◦C

Vitis vinifera L. [11] 25 ◦C 35 ◦C
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Table 1. Cont.

Species Normal Moderate Heat Extreme Heat

Triticum aestivum L. [12] 24 ◦C 37 ◦C
Marchantia polymorpha [13] 22 ◦C 37 ◦C

Lilium longiflorum [14] 22 ◦C 37 ◦C
Solanum lycopersicum L. [15] 28 ◦C 42 ◦C

Glycine max L. Merr. [16] 28 ◦C 38 ◦C
Petunia hybrida [17] 26 ◦C 40 ◦C

Plants have evolved various complex pathways and mechanisms to respond to ele-
vated temperatures. Therefore, the biology and physiology of the heat response, including
the extreme heat stress response (HSR) and the moderately elevated temperature response
called thermomorphogenesis, need to be studied at both cellular and organic levels [18–20].
Under heat stress conditions, plants exhibit many molecular responses, such as an increase
in the synthesis of heat shock proteins and hormones to survive [21], while under moder-
ately elevated temperature, below the heat-stress range, plants change their growth and
development morphologically and architecturally, with, e.g., hypocotyl elongation, and
leaf hyponasty, and accelerate flowering to adapt to the warm temperatures [20]. Some
pivotal molecular factors that promote plant thermomorphogenesis and adaption to heat
stress have been gradually identified through the application of forward and reverse ge-
netics [22]. Here, we firstly used the Statistical Analysis Toolkit for Informetrics (SATI,
http://sati.liuqiyuan.com (accessed on 3 January 2022) to identify the main keywords
in the thermoresponsive field in recent years (2016–2022) by an advanced search with
keywords related to heat (TI = “Heat Stress” OR “thermotolerance” OR “high-temperature”
OR “high temperature” OR “Thermomorphogenesis” OR “thermoresponsive” OR “Heat
Shock”) in the core collection of Web of Science and limited the subject terms to plants and
the time scale to the last 6 years (2016–2022) [23]. A total of 3, 414 articles were searched,
and the top keyword distribution was analyzed (Figure 1).
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The occurrence frequency of keywords in these articles revealed that RNA-seq, pro-
teomics, metabolomics, mass spectrometry, and QTL methods have all been used in ther-
moresponsive research in recent years. The main study subjects of thermoresponsive
research works are not only the model plant Arabidopsis, but also common and important
crops, such as wheat, maize, rice, and soybean. Tomato is the most popular vegetable crop
in thermoresponsive studies. Furthermore, based on these keywords, we found that the
main damage caused by high temperature at the cellular level in plants regards intracellular
proteostasis, DNA, apoptosis, autophagy, and alternative splicing (AS) events of genes.

http://sati.liuqiyuan.com
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Consequently, these damages lead to macroscopic disruptions in important plant traits,
including germination, spikelet fertility, grain quality, and plant yields.

In addition, the distance between the keywords in Figure 1 suggest that HSPs, which
are directly targeted by HSFs, and some other molecular chaperone proteins have a specific
role in proteostasis regulation in plant cells under high temperature, as confirmed by
many studies. In addition to the important role of HSPs and molecular chaperones in the
regulation of plant cell proteostasis, recent studies have also shown that autophagosome-
dominated autophagy pathways in plant cells play a very important role in regulating
changes in proteostasis caused by heat. Phytohormones, especially ABA and SA, are crucial
not only for the normal growth and development of plants, but also for thermoresponsive
regulation. Another molecular regulatory mechanism that has received attention with
respect to the heat response is the ROS pathway, which plays a crucial role as a second
messenger in the heat response to transduce the temperature signal quickly. According to a
summary of recent studies, there is a close connection between the heat stress response and
drought stress as well as the photosynthesis pathway, which also indicates the diversity
and complexity of plant thermoresponsive molecular regulatory mechanisms.

Here, based on the keywords distribution and abundant literature available on how
plants tolerate extreme heat stress and moderately increased temperatures, we review two
main molecular regulatory mechanisms activated in plants in response to elevated tem-
peratures, i.e., the heat stress response and the thermomorphogenesis response, which are
mediated by the Heat Shock Transcription Factor (HSF)–Heat Shock Protein (HSP) pathway
and the PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) pathway, respectively.

2. HSFs and HSPs-Mediated Heat Stress Responses (HSR) in Plants

Although the thermal regulatory mechanisms may have diverged in part in different
species, most of the thermal regulatory mechanisms in Arabidopsis—which has served as the
prototype for the mechanistic exploration of HS in higher plants—can conceivably be extended
to crops such as wheat [12,24,25], rice [26–28], maize [29–31], tomato [15,32], lily [14,33–36],
particularly the HSF–HSP pathway [21,37]. Under heat stress (Figure 2), heat signaling is
transmitted, through the second messengers ROS and calcium ions, to HSFA1, which is the
master regulator of the HSF–HSP pathway [13,37–41]. The released HSFA1 further activates
the expression of the HSFA2 and HSFA7 genes [42–44]. HSFA2 is the main enhancer of the
HSR in this pathway [45,46]. It directly activates the expression of the downstream HSP genes
and, more importantly, interacts with HSFA1 and HSFB1, forming a complex that further
enhances the expression of downstream heat response genes [47]. As a master gene of the
HSF–HSP pathway, HSFA1 can also directly induce the expression of the drought-response
gene DREB2A. DREB2A is a downstream regulator of both osmotic and heat stress and
positively controls osmotic- and heat stress-inducible gene expression; especially, it promotes
the expression of the HSFA3 gene to enhance plant heat tolerance [48,49]. Simultaneously,
HSFA1 can regulate HSFA3 expression by negatively regulating the expression of HSFA6B,
which directly induces DREB2A [5]. HSFA2 induces the production of heat stress proteins, such
as HEAT SHOCK BINDING PROTEIN 2 (HSBP2), as well as of catalytic metabolism-related
enzymes, such as galactinol synthase 2 (GOLS2) and raffinose synthases (RAFS), which are
two key enzymes in raffinose biosynthesis [50]. Consequently, raffinose synthesis is promoted,
and the heat tolerance of plants is improved [29,51]. More importantly, HSFA2 is required not
only for the induction of HS genes but also for HS memory maintenance [37,52,53]. The HSFA2
protein interacts with heat shock protein HSP90.1, which is an important regulatory factor of
thermotolerance [54,55]. Meanwhile, HSP90.1 can also form a complex with ROF1/AFKBP62
(rotamase FKBP 1) to respond to heat stress [55,56]. Under normal temperature conditions,
the HSP90.1–ROF1 complex is located in the cytoplasm, but following heat stress, HSFA2
interacts with HSP90.1–ROF1, forming an HSFA2–HSP90.1–ROF1 complex which enters
the nucleus. This HSFA2–HSP90.1–ROF1 complex is thought to be essential to promote
the transcriptional activity of HSFA2 and facilitate the synthesis of HSPs during heat stress
recovery, making the plant more strongly responsive to an upcoming recurrence of heat
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stress [55,56]. However, NBR1, which is a plant homolog of the mammalian autophagic cargo
receptor SQSTM1/p62, hinders HSFA2-mediated heat stress memory by degrading the HSP90
and ROF1 proteins through the autophagic pathway, reducing their interactions and further
affecting their interactions with HSFA2 [57].
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Figure 2. Schematic representation of HSFs-and HSPs-mediated heat stress response (HSR) in
plants. The heat signal is perceived by the plasma membrane and induces the production of second
messengers such as Ca2+ and ROS, which then quickly transmit the heat signal to HSFA1, acting as
the master regulating the downstream HSR genes and improving thermotolerance under heat stress.

The production of small amounts of ROS also directly induces the expression of HSFA1
and HSFA4, which activate the downstream HSR genes [5,28,32]. However, HSFA5 can
interact with HSFA4, inhibiting the transcriptional activity of HSFA4 involving the down-
stream heat-responsive genes [58]. Interestingly, an excessive increase in ROS content due
to increased intracellular misfolding of proteins under heat stress can result in cell death
and activate the autophagy pathway [9,59]. Autophagy shows an important role not only
in plant development but also in responses to abiotic stresses and biotic stresses [60–63].
The autophagy-related protein ATG18 promotes the increase of catalase (CAT), peroxidase
(POD), and superoxide dismutase (SOD) in the ROS scavenging system through the au-
tophagy pathway to reduce the excess ROS, allowing a correct downstream transmission
of heat stress signals [9].
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Simultaneously, an increase in protein misfolding events can also induce the expression
of INOSITOL-REQUIRING ENZYME 1 (IRE1), an RNA splicing factor localized in the
endoplasmic reticulum membrane [64,65]. Furthermore, IRE1 triggers the unfolded protein
response (UPR) within the endoplasmic reticulum (ER) [30,66]. The thermal activation
of IRE1 can induce the alternative splicing (AS) of the bZIP transcription factor family
members bZIP60 and bZIP74 mRNA to form a nuclear-imported form of mRNA [64–69].
Subsequently, the nuclear-imported form of bZIP mRNA upregulates the HSFA family
gene HSFTF13 (HSFA6B), which further activates the expression of the downstream HSP
genes, linking of the UPR response and the HSR response in plants [30]. In addition, the
major regulatory factors of the HSF–HSP pathway, HSFA1, HSFA2, and HSFB1, can form
complexes with HSP70, sHSP, and HSP90, respectively, at a normal temperature, limiting
the HSFs levels. Under heat stress, these complexes are separated, thereby increasing
the content of HSFs, which further promotes the expression of the downstream HSR
genes and other heat-responsive genes, thus contributing to the establishment of heat
tolerance [47,70–72]. In addition, it was found that HSP90 could bind to high expression
of osmotically responsive gene 1 (HOS1) under high temperature, stabilizing the protein
activity of HOS1, which promotes the expression of RECQ2 DNA helicase. The high
expression of RECQ2 allowed a further repair of the extent of DNA damage caused by high
temperatures to improve heat tolerance [73].

Conversely, heat stress also induces negative regulatory mechanisms for the estab-
lishment of thermotolerance. Heat stress increases the post-translational modification
(PTM) of genes, which inhibits the protein activity of HSFs at high temperatures through
chaperone-mediated ubiquitination and degradation by the ubiquitin proteasome system
(UPS) and negatively regulates cellular HSFs network activity [70]. It is well documented
that alternative splicing (AS) is an important post-transcriptional regulatory mechanism
involved in plant responses to temperature variation [74–76]. Some studies indicated that
temperature variations induce alternative splicing of HSFA2, and different spliced forms of
HSFA2 possess differential protein localization and activity. The efficiency of AS may be
an important regulatory mechanism in thermotolerance [27,77]. Moreover, some studies
showed that the activity of HSFs can also be regulated by heat shock binding protein
(HSBP), which interferes with their oligomerization. HSFBP2, an HSF-binding protein
in Arabidopsis induced by HSFA2, can reduce the DNA binding capacity of HSFA2 and
functions as a negative regulator of the HSR [29,78,79].

To date, the conservation of the HSF–HSP pathway in Arabidopsis and other species
has been well elucidated. The significantly conserved thermal functions of some key HSR
genes in crops have also been revealed, such as those of HSFA1b in wheat [25], OsbZIP58 in
rice [27], HSFA2, HSBP2, and bZIP60 in maize [29–31], HSP40 and HSFs in tomato [15,32],
and HSFAs in lily [14,33–36]. However, heat tolerance research in crops is only about
cloning, and the thermal functions of key HSR genes and specific regulatory networks still
need further exploration.

3. PIF4-Mediated Thermomorphogenesis under Warm Temperatures
3.1. PIF4 Promotes Plant Thermomorphogenesis by Regulating Auxin Response

So far, most of the regulatory mechanisms of thermomorphogenesis in plants have
been mainly studied and interpreted in the model plant Arabidopsis and have rarely been
further extended to other plant species. Therefore, it will be important in the future to
uncover whether some Arabidopsis regulatory mechanisms of thermomorphogenesis are
conserved in other higher plants, particularly in crops. In the model plant Arabidop-
sis, moderately elevated temperatures promote thermomorphogenesis, characterized by
hypocotyl elongation, leaf hyponasty, and early flowering [20]. Many studies have shown
that PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) is a dominant regulator not only
in the light signal transduction but also in the thermoresponsive pathway [80–84] (Figure 3).
PIF4 can integrate the elevated temperature signal into the auxin response and increases
the auxin level, which then mediates thermomorphogenesis [45,85,86]. PIF4 promotes the
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expression of key IAA biosynthetic genes such as YUCCA 8 (YUC8), CYTOCHROME P450
FAMILY 79B (CYP79B), and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS
1 (TAA1) through temperature-mediated binding to their promoters [87,88]. The high-
temperature-mediated induction of TAA1 and CYP79B2 is greatly reduced in pif4-101 mu-
tants, indicating that PIF4 plays an important role in the temperature-dependent regulation
of the expression of these genes [87]. An elevated auxin level then promotes the expression
of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) (for example, IAA4 and IAA29), SMALL
AUXIN UPREGULATED RNA (SAUR) genes, and ARABIDOPSIS THALIANA HOMEOBOX
PROTEIN2 (AtHB2) involved in cell elongation, which are also reported to be activated by
PIF4 in a temperature-dependent manner [81,85,89]. Aux/IAA genes have been found to
negatively regulate the activity of AUXIN REPONSE FACTOR (ARF) transcription factors
and attenuate auxin responses [90]. However, increased auxin levels promote auxin binding
to the receptor INHIBITOR 1/AUXIN SIGNALING F-BOX (TIR1/AFBs), which interacts
with AUX/IAA and subsequently initiates the degradation of AUX/IAAs [91]. The degra-
dation of AUX/IAA then releases ARFs, which activates the expression of SMALL AUXIN
UPREGULATED RNA (SAURs), mainly belonging to the SAUR19–24 and SAUR61–68 sub-
families, to drive elongation growth at warm temperatures [92]. More importantly, studies
have confirmed that PIF4 also directly enhances the transcription of YUCCA8 (YUC8) by
directly binding to the promoter of YUCCA8, thus promoting auxin accumulation, which
regulates thermomorphogenesis at high temperatures [87,88]. Moreover, increased IAA
levels enhance BR signaling to BZR1, which in turn induces PIF4 expression, thus forming
a PIF4–AUXIN–BR–PIF4 positive feedback regulatory network for the heat response [93].
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Figure 3. Schematic representation of PIF4-mediated thermomorphogenesis through the regula-
tion of the auxin signaling pathway in plants. Warm temperatures promote PIF4 transcription
and protein stability through multiple regulatory mechanisms. PIF4 further positively regulates
the auxin response, which promotes thermomorphogenesis in response to moderately elevated
ambient temperatures.

3.2. Transcriptional and Posttranscriptional Regulation of PIF4

As a key regulator of plant thermomorphogenesis, the regulation of PIF4 is subjected
to various regulatory factors at the transcriptional and posttranslational levels [87,88,94].
EARLY FLOWERING3 (ELF3), a proposed thermosensor, mainly acts as a key factor in the
evening complex (EC) of the circadian clock [95]. Recent studies have also shown that ELF3
interacts with PIF4 to suppress the transcriptional activity of PIF4 in an EC-independent
manner, which blocks the activation of thermoresponsive genes in PIF4-mediated ther-
mosensory pathways [69,96,97]. However, the latest findings suggest that the inhibitory
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effect of ELF3 on PIF4 is attenuated through the E3 ligase XBAT31-mediated ELF3 degrada-
tion in response to warm temperatures in Arabidopsis [98]. XBAT31 ubiquitinates ELF3
through a direct interaction with ELF3 and B-box protein BBX18, which then degrades
ELF3 via the 26S proteasome and therefore promotes the release of PIF4. In addition,
since ELF3 acts as a core member of EC, XBAT31-mediated ELF3 degradation also inhibits
the negatively transcriptional regulation by the EC protein complex of PIF4. Recently,
ELF3 has also been proposed to be a thermosensor with polyglutamine (polyQ) repeats
within a predicted prion-like domain (PrD) in Arabidopsis [99]. Under warm tempera-
ture conditions, ELF3 also releases the inhibitory effect on PIF4 through a liquid–liquid
phase separation.

PIF4 was also reported to physically interact with DELLA proteins, but this inter-
action inhibits elongation growth by preventing PIF4 binding to the promoters of target
genes [100–105]. Interestingly, the plant hormone gibberellin (GA) can relieve the growth
restraint by mediating the degradation of DELLAs and enhancing PIF4 activity at warm
temperatures [100,101]. Consistently, elevated temperatures can rapidly upregulate the
expression of the GA biosynthesis genes AtGA20ox1 and AtGA3ox1 and then increase
the GA levels to release PIF4 from DELLAs in Arabidopsis seedlings [106]. In addition,
some new findings indicate that the TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP)
transcription factors such as TCP5 and TCP17 promote the activity of PIF4 [107–109]. Ele-
vated temperatures can rapidly induce the expression of these TCPs and also increase their
protein stability. For example, TCP5 not only physically interacts with PIF4 to enhance PIF4
transcriptional activity but also directly binds to the promoter of PIF4 to regulate the PIF4
transcript. Therefore, TCPs may also play important roles in regulating the activity of PIF4
during thermomorphogenesis.

FCA, an RNA-binding protein, has been reported to affect the thermosensory flowering
process and promote flowering in response to elevated growth temperatures by incorpo-
rating ambient temperature signals through an FLC-independent pathway [110,111]. FCA
can also suppress the activity of PIF4 to regulate temperature-mediated flowering and
hypocotyl growth [112,113]. It has been shown that FCA can induce the dissociation of
PIF4 from the YUC8 promoter by removing H3K4me2 chromatin marks and attenuates
PIF4 activity at elevated temperatures, which further negatively regulates the expression of
YUC8 and IAA synthesis [113]. In addition, the region of PIF4 binding can be decreased
by H2A.Z-nucleosome incorporation into chromatin mediated by ACTIN-RELATED PRO-
TEIN 6 (ARP6) [114]. However, under elevated temperatures, PIF4 can increase the prob-
ability of directly binding to the promoters of its target genes, including YUC8, through
disassociation of the histone variant H2A.Z. from the nucleosome [93,114]. Under elevated
temperatures, the space occupancy of the histone variant H2A.Z in the nucleosome of PIF4
targets was reduced, which freed the PIF4 binding space in these genes’ locus, enhancing
their transcriptional regulation and promoting thermomorphogenesis in plants. Therefore,
chromatin remodeling may have a prominent role in thermomorphogenesis [93,113–116].

It is worth noting that H2A.Z-nucleosomes are also present at the PIF4-binding site in
the Flowering locus T (FT) promoter and hinder PIF4 binding [115]. Similarly, the spatial
occupancy of the histone variant H2A.Z in nucleosomes of FT is also decreased by elevated
temperatures [45]. Thus, PIF4 can directly and strongly bind to the FT promoter, promoting
the transcription of FT and early flowering under warm temperatures [115]. Importantly,
an increasing number of studies have identified the important role of histone deacetylases
in the heat response [20,24,117,118]. The acetylation of histones increases the occupancy of
the nucleosome space of the H2A.Z variant, inhibiting the heat-responsive transcription
of these thermoresponsive genes [20,114,117]. Under elevated temperatures, HDA9 is
reported to remove the histone acetylation of thermoresponsive gene loci, including the
H2A.Z variant, and therefore increase the transcription of these thermoresponsive genes,
promoting thermomorphogenesis and the establishment of heat tolerance [119,120].
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3.3. Light Signal and Temperature Signal Integration through PIF4

Light is an important environmental factor for plant development. Three main classes
of photoreceptors, the red (R) and far-red (FR) light-absorbing phytochromes and the
UV-A/blue light-absorbing cryptochromes and phototropins, are involved in light signal
transduction to adjust plant growth and development [121,122]. Many studies have found
that there is signal integration when plants are responding simultaneously to light and
elevated temperatures, and PIF4 is emerging as a cellular “hub” of this integration involving
photoreceptors that regulates growth and development [81,82,123,124] (Figure 4).
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Figure 4. Schematic representation of PIF4-mediated integration of the light signal with the warm
temperature signal in plants. PIF4 acts as a cellular “hub” for this integration involving photore-
ceptors and influences the morphogenic changes by mediating the auxin response in response to a
combination of moderately elevated ambient temperature and different light signals. (a) PIF4 inte-
grates the darkness signal with the elevated temperature signal and promotes hypocotyl elongation;
(b) PIF4 integrates the red light signal with the elevated temperature signal and promotes hypocotyl
elongation; (c) PIF4 integrates the blue light signal with the elevated temperature signal and inhibits
hypocotyl elongation.

3.3.1. PIF4 Integrates the Darkness Signal with the Elevated Temperature Signal

The evening complex (EC), consisting of ELF3, ELF4, and LUX ARRYTHMO (LUX), is
a core component of the circadian clock and responds to elevated temperatures to control
hypocotyl growth through the regulation of PIF4 [125,126] (Figure 4a). The EC peaks at
dusk, binds to the PIF4 promoter via the LUX transcription factor, and represses PIF4
transcription in the early night [95]. However, EC activity, as a night transcriptional
repressor, is reduced by warm temperatures [95]. There are two key components of light
signaling, i.e., DE-ETIOLATED 1 (DET1) and CONSTITUTIVE PHOTOMORPHOGENESIS
1 (COP1), which can up-regulate the expression of PIF4 by inactivating ELONGATED
HYPOCOTYL 5 (HY5), which is the repressor of PIF4 transcription in darkness in response
to elevated temperatures [127]. However, recent studies also confirmed that DET1 and
COP1 partly directly upregulate PIF4 expression and positively stabilize the PIF4 protein
to promote elongation growth at elevated temperatures [124]. Meanwhile, studies have
further confirmed that HY5 mainly inhibits hypocotyl elongation by competitively binding
to the promoters of PIF4 target genes, such as YUC8, not by the transcriptional repression
of PIF4 [124]. At elevated temperatures, the HY5 protein is degraded, and its activity
is also decreased, which reduces HY5 competition with PIF4 and thus activates PIF4
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target genes [124,128]. The degradation of HY5 is reported to be mediated through the
DET1–COP1-dependent degradation pathway in darkness [129]. As a central repressor of
Arabidopsis photomorphogenesis, COP1 is highly active in darkness to target numerous
transcription factors (TFs) such as HY5 by working in complex with SUPPRESSOR OF
PHYA-105 (SPA) proteins in ubiquitin-mediated protein degradation [130,131]. In addition,
the constitutive photomorphogenic 10-damaged DNA binding protein 1-DE-ETIOLATED 1
(COP10-DDB1-DET1, CDD) complex can enhance the activity of COP1-SPA E3 ubiquitin
ligases, which further promote the degradation of HY5 [132,133].

3.3.2. PIF4 Integrates the Red Light Signal with the Elevated Temperature Signal

Previous studies found that red light promoted hypocotyl extension at warm tempera-
tures, whereas it repressed hypocotyl elongation at low ambient temperatures, indicating
that the red light response was strictly temperature-dependent [134]. The light-activated
red/far-red light photoreceptor PHYTOCHROME B (PHYB) has been reported to function
as a thermosensor in Arabidopsis [2,135]. Under normal conditions, PHYB targets PIF4 for
post-transcriptional degradation, whereas elevated temperatures promote the conversation
of phyB from active Pfr to inactive Pr (Figure 4b), therefore releasing the inhibitory effects
of phyB on PIF4 protein [115,126,136–139].

In addition, recent studies have found that short hypocotyl under blue 1 (SHB1) and an
MYB transcription factor circadian clock-associated 1 (CCA1, the central oscillator compo-
nents) have a positive regulatory effect on PIF4 expression in a red light-dependent manner
at warm temperatures [126,140]. In response to both red light and elevated ambient temper-
ature, CCA1 interacts with SHB1 and then promotes PIF4 expression through targeting the
PIF4 promoter, therefore desensitizing the light responses for optimal photomorphogenesis
and enhancing plant thermomorphogenesis for better survival under elevated ambient
temperatures [140]. Recent research has also found another clock-associated gene-mediated
balancing thermoresponsive growth system in plants by modulating the level of ELF4 by
CCA1 and REVEILLE5 (RVE5) at warm temperatures [141]. In Arabidopsis, both RVE5
and CCA1 are transcriptional repressors and accumulate at warm temperatures, which can
reduce the expression of ELF4 to promote hypocotyl growth. They can bind to the same
cis element of the ELF4 promoter, and the transcriptional repression activity of RVE5 is
weaker than that of CCA1, while the binding of RVE5 to the ELF4 promoter is enhanced by
competing for the same cis element with the stronger transcriptional repressor CCA1 at
warm temperatures. Such a fine-tuned mechanism provides reasonable thermoresponsive
hypocotyl growth mediated by PIF4 at elevated temperatures.

3.3.3. PIF4 Integrates the Blue Light Signal with the Elevated Temperature Signal

In contrast to the effect of red light on hypocotyl elongation, blue light represses high-
temperature-induced hypocotyl elongation through the blue light receptor Cryptochrome
1 (CRY1) [142] (Figure 4c). CRY1 and PIF4 occupy the same promoter regions of YUC8
and IAA29. Moreover, warm temperatures also promoted the association of CRY1 with the
YUC8 and IAA29 promoters. However, CRY1 could not bind to the DNA fragments present
in the promoter region of these genes by itself and needs PIF4 to form a complex through
direct interaction, in a blue light-dependent manner [142]. The direct interaction between
CRY1 and PIF4 subsequently only represses the transcription activity of PIF4, which then
reduces auxin biosynthesis in response to elevated temperatures.

Meanwhile, the interaction with the bHLH transcription factor HFR1 (LONG HYPO-
COTYL IN FAR RED1) can also sequester the free PIF4 protein, preventing its binding to
DNA and downstream transcriptional regulation [100,123]. HFR1 is a negative regulator
of temperature responses under monochromatic blue light and is degraded by COP1.
HFR1 accumulates in a CRY1-dependent manner as CRYs suppress the E3 ubiquitin ligase
activity of COP1 by forming a complex with SPA1 and COP1 in a blue light-dependent
manner [123,143,144]. Therefore, CRY1 can also repress PIF4 by inhibiting the COP1-
mediated degradation of HFR1.
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These results indicate that plant photoreceptors and ambient temperature can mediate
morphogenesis through the same signaling component PIF4.

4. Conclusions

The response to and survival of plants at elevated temperatures are complex phenom-
ena. Plants have evolved complex physiological systems and a diverse range of tissues
and organs that can sense and integrate information from the environment, adapt to the
environment, and optimize their growth state. The induction of classical HSPs (chaperones)
through the HSF network and auxin-mediated thermomophogenesis as well as the PIF4
network are clearly important, but even this response is not simple and involves several
integrators. Other signaling molecules and complex regulation networks orchestrate the
heat response, regulating a range of effectors components, all of which contribute to plant
adaptation to warm temperatures and their survival under heat stress.

In this review, we presented recent research advances at all these levels of investiga-
tion and focused on the key integrators HSFs and PIF4, which may help to understand
more fully the mechanisms of plants’ response to heat. The HSF–HSP pathway has domi-
nant roles in the response to heat stress and reduces the damage to cell components and
structures caused by extremely high temperatures, increasing plant heat tolerance. PIF4
is a central integrator of environmental information, especially the light signal and the
temperature signal, in plants, constituting a signaling loop to optimize photomorpho-
genesis and enhance thermomorphogenesis. It will likely be a key node to consider for
breeding crops resilient to climate change. However, although some studies have shown
that there is a crosstalk among these reported thermosensory pathways, more studies are
needed to investigate this complex crosstalk. In particular, there are no reports indicating
whether there is a certain direct molecular crosstalk between the HSF–HSP pathway and
PIF4. These studies will be important to advance thermosensory research and possibly
lead to the generation of new plant varieties with sustainable production. Better under-
standing the molecular mechanisms of the plant response to elevated temperatures and
ultimately applying this knowledge to production practices will help to address food
security issues linked to increasing population, higher average temperatures, and larger
temperature fluctuations.
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