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Abstract: When learning in a digital interactive mathematics learning environment (DIMLE) designed
to foster the development of specific mathematics content, students come to express their ideas
through different languages and representations. We devise a method based on the Theory of
Instrumental Genesis (TIG) to analyse aspects of a middle school student’s learning about algebraic
generalisation in a DIMLE called “eXpresser”. Our analytic scheme allows us to capture changes in
her instrumented schemes when accomplishing a certain task repeatedly, gradually modifying her
interactions with the system. The results concern both insights into a specific mathematics learning
journey in a DIMLE, and methodological progress at a more general level. Indeed, the method
we devised and explored in this specific case can be applied to infer students’ schemes from their
actions as they interact with other DIMLEs. This possibility yields great potential because more
and more actions can now be recognized directly by software. This has important implications for
computer-supported personalised learning, and AI in general.

Keywords: algebraic generalisation; digital interactive mathematics learning environment (DIMLE);
instrumentation scheme; theory of instrumental genesis

1. Introduction: Students’ Learning in Digital Interactive Mathematics
Learning Environments

The branch of research in mathematics education concerned with studying students’
learning in computer-based learning environments was inaugurated decades ago by Pa-
pert’s work with Logo [1]. He coined the notion of “microworld” to describe an environ-
ment designed to foster specific mathematics learning: indeed, such an environment needs
to be designed to “incorporate” certain mathematical ideas that are informally encountered
by students as they interact with the microworld. Over the decades new terminology has
been proposed to refer to digital environments with similar characteristics; it is beyond
the scope of this paper to review or discuss such terminology, but in order for our work to
resonate with current research, instead of “microworld”, we will speak of Digital Interactive
Mathematics Learning Environment (DIMLE) (e.g., [2,3]). The DIMLE we will introduce
was designed with the explicit goal of promoting certain concepts and forms of algebraic
reasoning that we will illustrate below. By interacting with digital objects in the DIMLE,
students need to discover and express relationships between them to accomplish certain
tasks (that make sense within the DIMLE); during such a process, the student is supposed
to encounter fundamental algebraic ideas that can be metaphorically seen as seeds of the
algebraic concepts and forms of reasoning that are “planted” by the experience with the
DIMLE. Such a “planting of seeds”, in a carefully designed DIMLE such as the one we will
introduce, should occur as a result of the student becoming successful in interacting with
the system: to do so, she needs to become fluent in expressing her thoughts and strategies
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in the “language of the DIMLE”, which in our case is a sort of graphic programming
environment (e.g., [4]). Becoming fluent in the language of a digital computer-based envi-
ronment can be seen as a skill of techno-mathematical literacy [5], which is fundamental
in order to create “constructive interference” between the 4th Industrial Revolution and
the teaching and learning of mathematics modernisation of our educational systems, as
highlighted by Lew and Baccaglini-Frank [6] at the plenary panel of the 44th Conference of
the International Group for the Psychology of Mathematics Education.

Moreover, as we will discuss in Section 2.1, becoming fluent in the language of the
system can make use of and foster the development of forms of computational thinking
(CT) (e.g., [4,7]) that are “the thought processes involved in formulating problems and
their solutions, so that the solutions are represented in a form that can be effectively
carried out by an information-processing agent” ([8], p. 20). A recent systematic review
of such literature reveals that most studies, in particular those conducted to improve the
conceptual basis and practice of computationally enhanced mathematics learning (e.g., [9]),
suggest that CT’s integration in mathematics instruction is associated to gains in learning
outcomes, especially in the domains of algebra and geometry [4,9]. Moreover, among the
computational concepts and practices associated with CT-based mathematical activities
for which learning gains have been found, the following are particularly relevant to our
work in this paper: the notion of variable, abstraction—especially in the form of pattern
recognition, modelling, and testing and debugging, which are notions described by many
authors (e.g., [10]).

Generally speaking, in this paper, we will elaborate on a method to help researchers
answer questions such as the following that have been addressed over the years within
the general literature in mathematics education (e.g., [3,11–13]). When a student achieves
successful outcomes following interactions with a DIMLE designed to embed aspects of a
mathematical domain, what learning occurs? How can we make sense of the interaction
between the student, the computer and nearby educators (visually, acoustically or from
responses to computer-generated benchmarks, etc.) so as to trace students’ learning (and
eventually design the system to better support students’ learning)?

More specifically, our goal here is to qualitatively capture in fine-grained detail a
student’s learning within a DIMLE, associating sets of (visible) actions accomplished by a
student to solve a specific task with mathematical ways of thinking that are fundamental
for conquering algebraic generalisation. Although we will be focusing on a specific DIMLE
and showcasing the analyses in the case of a specific student, we argue that our method
is generalisable to other learning journeys, and to different DIMLEs (with the necessary
changes in the intended learning and a priori analysis of the DIMLE’s design).

2. Our Perspective on Algebraic Generalisation, Elaboration of the Theoretical Lens and
Introduction of the DIMLE

We start by making more explicit the content of the student’s learning that we prepare
to observe, within the broader perspective of digital technology as a gateway to algebraic
generalisation. We then introduce how we will use the Theory of Instrumental Gene-
sis [14–17] to analyse the interactions between a student and the DIMLE to untangle how
becoming fluent in the language of the DIMLE can be linked to the planting of seeds of
algebraic generalisation. We finally introduce the main features of the DIMLE in focus,
eXpresser, explaining its potential for promoting the learning intended.

2.1. Digital Technology as a Gateway to Overcome Difficulties with Algebraic Generalisation

What is algebra? Most secondary students, if they can provide any answer at all,
would answer that it is a set of rules of transformation, a way of symbolically manipulating
expressions. Mathematicians similarly recognise the importance of the mathematical
“machinery” of algebra; but they would also acknowledge that algebra is a language
through which structure can be expressed in a general way. Most students, it seems, even
those who can carry out the requisite manipulations successfully, cannot use algebra as a
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tool for thinking mathematically and do not appreciate that algebra is about expressing
generality, and that symbolic rules are the language of this expression (e.g., [18–20]).

The literature is replete with examples of students’ difficulties in algebra, first docu-
mented in large-scale studies such as the Concepts in Secondary Mathematics and Science
[CSMS] programme (see [21]). A summary is provided by Küchemann and Hoyles [22] and
good arguments and examples are shared by Arcavi, Drijvers and Stacey [20]. Students
often struggle to understand the idea behind using letters to represent any value and are
inexperienced with using mathematical vocabulary to express generality (e.g., [23–25]).
Even students who are capable of expressing a general rule using words, like “always” or
“every”, struggle to build their arguments using letters and symbols.

Moving flexibly between different forms of representations has been identified as
an invaluable mathematical orientation and one that is feasible for students if they are
given appropriate support [26]. However, even though students are often provided with
various representations and models to assist them in their efforts to understand, justify
and communicate structural arguments, they tend not to make expressive links between
these different forms of representations (symbolic, iconic, numeric) or to perceive their
equivalence [22,27,28].

Such difficulties are not alleviated by the role played by algebra in the traditional
mathematics curriculum: the purpose of algebra tends to get lost, the end (to express
generality) confused with the means (to learn the language of algebra). As Kaput [29]
put it, students are routinely asked to “learn representation systems without anything to
represent” (p. 546). Yet the need to express and justify generality can be considered “the
heart, root and purpose of algebra” ([30], p. 2).

The challenge, therefore, is to design tasks and technologies that together have the
potential to help students appreciate the power of different representations. Such a design
challenge was faced by the project that led to the development of the MiGen system, a suite
of software components, and in particular a DIMLE, eXpresser, to help 11- to 14-year-old
students appreciate algebra as a language for generalisation [31]. The project ended a
decade ago, but the results reported in this paper are new and we believe they should
inform both current research on the teaching and learning of algebra, and current research
on student learning in DIMLEs with AI support.

The MiGen system aimed at fostering the development of a key competence, that of
expressing ideas through a different language and representations, the eXpresser language.
The students explored eXpresser using its language to express their ideas and communicate
with this tool. Such processes (Exploring and Expressing) were evident in other, more
recent, projects. For example, the ScratchMaths project that explored students’ mathematics
learning during structured interactions with the Scratch programming language (e.g., [32]),
which also considered CT’s influence towards mathematical learning (as suggested in [7]).
This project offered a framework of design principles for the actions learners get to use
when programming. These are: “Explore (mathematical ideas), Explain (a process in com-
puter language), Envisage (or predict possible outcomes), Exchange (ideas and processes
with others), and bridgE (mathematical and computational concepts)” [33]. In both these
environments, learners were encouraged to gain new skills to be able to interact with the
digital tools in question and learn a new language so as to explore, explain their mathe-
matical ways of thinking and, in fact, communicate with the digital tools. They had to
apply their mathematics knowledge and use their mathematical skills in a new context, that
of a digital tool. However, of course, they had to gain technical knowledge and develop
technical skills relevant to the digital tool they interacted with.

This idea of such (inevitably connected) processes was also reported by Hoyles
et al. [5] in their “mathematics-at-work” project, where they proposed the term “Techno-
mathematical Literacies”. These are literacies regarding the breadth of mathematics knowl-
edge as well as technical knowledge required within contemporary workplaces. Jacinto
and Carreira [34] extended the idea of techno-mathematical literacies, and introduced the
term techno-mathematical fluency, as they wanted to also capture “the idea of being able
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to produce mathematical thinking by means of digital tools, to reformulate or generate
new knowledge, and to express such thinking technologically” (p. 1122). They added that
“techno-mathematical fluency emphasises the need to be fluent in a ‘language’ that entails
both mathematical and technological knowledge, the skilful use of digital tools and the
efficient interpretation and communication of the solution to a problem” (p. 1122).

2.2. The Theory of Instrumental Genesis

To study the interplay between students’ activity in the microworld and the develop-
ment of their algebraic thinking, we use the Theory of Instrumental Genesis (e.g., [15–17]).
Within this theory, artefacts are distinguished from instruments: an artefact is a physical or
digital object [35] that is used by a learner to carry out a given task; the artefact becomes
an instrument for solving a certain task when it is endowed with a scheme, which is a
psychological construct. The notion of scheme has its roots in Vergnaud’s work [36], upon
which the Theory of Instrumental Genesis (TIG) was developed [17].

Within the TIG, Drijvers, Godino, Font and Trouche [13] have described three dualities:
the artefact–instrument duality, involving the process of how a user transforms an artefact
into an instrument; the instrumentation–instrumentalization duality, focusing on how a
tool can shape a student’s thinking and actions (instrumentation) and how a student’s
knowledge, thinking and actions can shape the use of an artefact (instrumentalization);
and the scheme–technique duality, which refers to “the relationships between thinking and
gesture” ([17], p. 26). Within this third duality, some parts of students’ work on solving a
particular task are “visible”—the techniques, while others are not directly observable—the
schemes, “the cognitive foundations of these techniques” ([17], p. 27). We note that an
artefact may be a digital tool as a whole or specific symbolic features within it, as discussed
by Monaghan, Trouche and Borwein [35].

Various studies grounded within the TIG have described students’ learning of certain
mathematical concepts through the use of digital artefacts: for example, Roorda, Ros,
Drijvers and Goedhart [37] did this for the concept of derivative; Drijvers, Godino, Font
and Trouche [17] used both the TIG and the onto-semiotic approach to capture students’
learning in the context of quadratic equations; and Gregersen also worked in this direction,
focusing on students’ justification processes in situations that involve a variable represented
as a slider in GeoGebra applets [38,39]. Our study is situated within this line of research.

Specifically, in this paper, we will make use of the distinction between techniques and
schemes to identify emergent instrumentation schemes in eXpresser. This will allow us to
offer a fine-grained example of how a student’s dialogue with the DIMLE leads her to form
and express ideas in different languages: verbally and in the language of eXpresser. The
techniques we will identify mostly show how the student learns to use the programming
language of the DIMLE, which is based on signs of various types: graphical, written words
and icons in “property windows” (see Section 2.3), and algebraic to form expressions.

2.3. The Microworld eXpresser and Three Key Ways of Thinking for Algebraic Generalisation

eXpresser is a DIMLE designed to help 11–14 year-old students appreciate algebra
as a language for generalisation (Noss et al., 2009 [31]), and to develop, in particular, the
following three algebraic ways of thinking (AWOT) [40]:

• AWOT.1—perceiving structure and exploiting its power: recognising the constituent el-
ements of a complex structure, and using them to build the structure—both physically
and mentally;

• AWOT.2—seeing the general in the particular: identifying variants and invariants,
manipulating a special and familiar case in order to get a sense of what stays the same
and what changes;

• AWOT.3—recognising and articulating generalisations, including expressing them
symbolically: describing structure by using variables (symbols) and expressing symbol-
ically their relationships to structure and generality; that is, building an algebraic rule.



Educ. Sci. 2024, 14, 409 5 of 18

As discussed earlier in Section 2.1, the main obstacle students are known to face
is making the step from using relationships (correctly but) implicitly in calculations to
expressing these relationships explicitly. This is specifically what eXpresser was designed
to help students overcome. In eXpresser, students are presented with a dynamic (animated)
figural coloured pattern and their task is to construct the same pattern on their own in
eXpresser, but also find the “general” rule for calculating the number of tiles in any pattern,
e.g., the nth term in a figural pattern sequence. Students had to perceive the structure in the
given pattern or what was repeated and what remained the same in any instantiation of
the pattern (AWOT1); then they had to explore what stayed the same and what varied and
consider constants and variables (AWOT2); before taking the final step of articulating the
“rule” that gave the total number in any pattern instantiation writing it using the eXpresser
language (AWOT3). In other words, students are asked to create a pattern on a grid using a
set of coloured tiles and repeat it with a specific regularity. Below, we present an example to
further showcase eXpresser’s design and the specific tasks it poses to students who interact
with it (Figure 1).
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Figure 1. Screenshot of eXpresser, in which a “crosses” pattern has been constructed by repeating a
building block made of 4 blue tiles and a green tile. Rules for the numbers of tiles of each colour in the
pattern have been constructed using the “unlocked” number (which is 3 in this instance) named “z”.

For example, Figure 1 shows a pattern in eXpresser created with a set of four blue
tiles and one green tile in the middle, forming a “cross” (referred to as “building block” in
the eXpresser language), repeated three times; below the pattern, a model rule has been
constructed: it represents the total number of green and blue tiles in the pattern. “z” is
chosen as the letter to represent the number of repetitions of each group of tiles making a
building block. Any number used to describe a pattern, like “z”, can be unlocked; that is, it
can be allowed to change. Once a number is unlocked, its variation can be imposed either
manually or automatically through animation. The possibility for students to develop a
scheme in which they unlock a number and use it to symbolically describe a pattern was
designed to foster the development and understanding of algebraic generalisation, and, in
particular, the meaning of algebraic variable, a number that can change giving generality to
an expression (seen as a symbolic representation of a pattern).

Sets of tiles can become coloured: from being greyed out, they will turn into the
colour they were intended to be whenever the student correctly answers the question “How
many tiles [of that intended colour]?” within the properties window (the main artefact that
students learn to use to express their ideas in the DIMLE’s language) relative to a pattern.

Different techniques, the observable instances of a solver’s activity carried out for this
(or another) task, are related to different schemes that can also be inferred with the help of
the solver’s verbal communication. For example, to find the number of squares in case 3 (of
Figure 1), a student could count up the tiles and type in a numerical answer; or they could
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use the number found previously for case 2 and add the squares needed to construct case 3,
so computing 10 + 5 either orally or by constructing an expression and calculating its value;
or they could visualise a “unit” defining the figure’s structure (in Figure 1 a “flower” with
4 blue tiles and 1 green tile) and multiply the number of squares that compose it (5) by its
number of repetitions in case 3, constructing the expression 5 × 3, or 3 + 3 × 4 if she counts
the blue tiles and the green tiles separately.

The answer provided by the student may be correct only in a specific case (e.g., for
3 repetitions of the building block) but not in general; that is, when animation is turned on
and the number of repetitions of the building block varies. For example, Figure 1 shows the
rules “3” and “3 × 4” in the properties window built to express the total number of green
and blue tiles, respectively, in the pattern. This feature was designed to help students focus
their attention on the number of tiles in a pattern with a certain structure (AWOT.1), and
on expressing their evolving counting strategies in a general algebraic language (AWOT.2
and AWOT.3).

The possibility offered by eXpresser of working with geometrical structures and
linking these to symbolic representations is a key feature with respect to all three algebraic
ways of thinking. In eXpresser, the learner is asked to construct a sequence and “make it
stay coloured” (we refer to this as the colouring task) as the number of repetitions varies.
While solving such a task, a student’s emergent instrumented schemes should come to
include the unlocking of a number in expressions. Fluency in her techniques for using this
artefact can be interpreted as an important step in the student’s learning to express her
ideas in the language of eXpresser, and, more in general, towards algebraic generalisation.

2.4. Our Specific Research Question and Broader Aim

With this study we specifically aim to investigate the following research question.
What instrumented schemes for the colouring task in eXpresser can be inferred from

students’ instrumented techniques emerging during their interactions with the DIMLE,
and what are the emerging algebraic ways of thinking?

At a more general level, we wish to shed light on the method we used to set up an
analytic scheme that allowed us to infer the student’s instrumented schemes and sketch
out the progress of her mathematics learning.

3. Capturing a Student’s Learning Journey in eXpresser

In this section, we present our methodological approach and our focus, for this paper,
on the case of one student, Molly.

3.1. Participants and Data Collected

We introduced the DIMLE eXpresser to six seventh graders in a school in London,
after which we conducted two or three observed-activity sessions. The introductory lesson
was planned to prepare and motivate students for the activities of the following sessions,
in which observations would be conducted. During the lesson, a model of repeating cross
shapes was used to introduce the fundamental features of eXpresser, including the support
offered by the system. Students were asked to work in pairs and a researcher visited each
pair in turn to answer specific questions. Students were shown how to drag numbers onto
the canvas and form expressions with them. They were not, however, shown how to build
a general rule: this problem was left to be solved during the sessions. We video-recorded
the students’ interactions with eXpresser during the sessions using the screen capturing
software Camtasia 2 for Mac OS.

However, such data were collected more than a decade ago and the MiGen system
is no longer available in the form in which it was experienced by the participants. We
therefore re-enacted [41] a set of vignettes from the experience of one of our participants,
who we refer to here with the pseudonym Molly, using a new web-based version of the
DIMLE (accessible at web-expresser.appspot.com, accessed on 13 April 2024), and using
completely anonymised excerpts we had transcribed from the Thinking Aloud protocol

web-expresser.appspot.com
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(e.g., [42]) used during the original study. Such a protocol provided us with a “window”
into her schemes and emerging algebraic ways of thinking [11]. Molly, like all students who
took part in our studies, worked on many different tasks in eXpresser. She participated
in three observed-activity sessions, and in the last session, she agreed to explain how
eXpresser worked to a classmate who had been absent. In this paper, we present vignettes
from Molly’s sessions with eXpresser, focussing especially on the one that took place in her
last session.

3.2. Re-Enactments of the Observed-Activity Sessions

The vignettes we will present took place around three activities, each of which took
up a 40 min session: the first two comprised working individually with eXpresser to build
models, and the third one to help another student construct and colour a given model.
The activities involved the construction of two models: the bridges model and the fences
model (see Figure 2a,b). During these activities, two researchers were present (one was
the first author of this paper) and they would stop and talk to students if they appeared to
be “stuck”.
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Figure 2. (a,b). The bridges model and the fence model as presented on the screen in activities (a) 1
and (b) 2.

The simplified general rule for the bridges model is “5n + 3” and for the fence model
is ”7n + 5”. In the third activity, Molly was asked to help a fellow student learn to use
eXpresser to make a model and find a rule for the number of tiles for any model number.
In this activity, students were expected to articulate and share their thinking processes to
support a fellow student solve the given task and derive a general rule.

Each vignette depicts a successive instantiation of Molly’s of the colouring task, which
she faced a total of ten times. We consider her colouring tiles of a single colour an instantia-
tion of the task (or “specific task”, that can be seen as a subtask of the general colouring
task). In each instantiation, we will identify the following:

• The specific task Molly is solving;
• The artefacts she uses (a visible part of how Molly interacts with the DIMLE);
• Her instrumentation schemes, through the techniques and the technical elements (the

visible parts of her becoming fluent in the language of the DIMLE), as well as the
conceptual elements (that we will associate to the emergence of the expected algebraic
ways of thinking).

While the technical elements are relatively easy to identify objectively through the
observations of the student’s actions on the screen and her utterances, we can only infer
the conceptual elements. Indeed, the conceptual elements constitute the invisible part of
the scheme that needs to be inferred. To this aim, we will strengthen our inferences by
considering Molly’s verbal interactions with the nearby researcher and with her classmate.

To carry out the analyses of Molly’s case, we started by transcribing all her sessions
in Transana 2.2 (www.transana.com accessed on 13 April 2024), a Computer-Assisted
Qualitative Data Analysis Software for qualitative analysis of multifaceted data [43], as was
performed for the analyses of all students’ interactions with eXpresser [44]. In Transana,
we organised Molly’s media files into smaller units of analysis, each corresponding to
an instantiation of the colouring task; then, we coded them using thematic or conceptual

www.transana.com
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keywords so as to investigate certain phenomena in her interactions, including actions that
we associate to her techniques that we report on in this paper.

We provide an analytic account of the visible part of each instantiation, in the form
of vignettes, with screenshots and dialogue excerpts when necessary, followed by a table
summarising all aspects analysed, and by an analytic comment of the process depicted in
each vignette.

4. Results

Molly completes all three activities, constructing two patterns for each model, and
twice using multiple colour tiles in the same patterns. She faces the task again twice, after
unlocking the number of repetitions of the building block. Therefore, overall, she faces
the colouring task a total of 10 times: 5 times in activity 1 (instantiations 1–5), 3 times in
activity 2 (instantiations 6–8) and twice in activity 3 (instantiations 9–10). We present her
first instantiation and then the four instantiations in which the most significant changes in
her instrumented scheme appear.

4.1. Vignette 1

When Molly first attempts this task, she constructs the bridges model using a pattern
with tiles that overlap and a pattern of negative tiles. Patterns with negative tiles have the
“ability” to erase existing tiles on the eXpresser and they are indicated with an “x” when
placed on top of existing tiles, as shown in Figure 3.
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Figure 3. Molly successfully coloured the green tiles for the 6 repetitions using the number generator,
as highlighted by the red circles added to the screenshot.

Account of Molly’s actions
Molly counts the green tiles as sets of two, saying “two, four, six, eight, ten, twelve”.

She types 12 into the number generator and drags it into the properties window. Table 1
presents the aspects analysed of Molly’s first instantiation.

Table 1. Molly’s instantiation 1 of instrumentation scheme for the colouring task.

Specific Task Artefacts Used Instrumentation Scheme: Compute
and Answer

colour the green tiles
(see Figure 3)

number generator;
properties window

technique: compute the number of tiles
mentally; answer with a number
conceptual elements: perceiving

structure visually (as per AWOT.1) and
describing it arithmetically: seeing 12 as

6 blocks of 2
technical elements: use the number

generator to write the number of green
tiles; drag this into the “?” under “How
many tiles?” in the properties window
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Analytic comment
In this instantiation, through the visible technical elements, we identify both processes

of instrumentation and of instrumentalization. The former relates to how seeing the 6 sets of
2 green tiles leads Molly to a counting approach, and to how her response to the eXpresser’s
question “How many tiles?” in the properties window promotes her answer “12” that she
creates by using the number generator artefact, which is a tool that enables interaction
with eXpresser. Instrumentalization also seems to be occurring because Molly seems to be
“imposing onto the DIMLE” her intuitive approach of counting the green tiles and using
the number generator to record the exact number of these and answer the question. At this
point, while her scheme does suggest that Molly has perceived the relationship between
the visual–geometrical layout of the pattern and its numerical description in a particular
case, she is still using a counting approach that is very context-specific.

4.2. Vignette 2

Now, Molly seeks to colour the red tiles (see Figure 3).
Account of Molly’s actions
Molly initially repeats her previous actions. However, she has trouble finishing the

computation. The researcher is watching and they suggest: “How about writing a rule?”.
Molly hesitates, and the following dialogue takes place.

Researcher: Alright let’s write it down here with the expression. So [. . .], over
here, you take the 6 and then . . . what are you going to do?

Molly: [she drags out the 6] and then I think I have to [she moves the mouse on
the screen but does not find what she seems to be expecting.]

Researcher: How do you put them together, if you want? You drag it on top of
the other one right?

Molly: oh yeah. I think it’s times. . .

Researcher: okay and then what do you need to do?

Molly: calculate it and that’s 36. So, I think you have to do, drag the 36 there.

Molly successfully colours the red tiles in her static pattern, using the scheme described
in Table 2.

Table 2. Molly’s instantiation 2 of instrumentation scheme for the colouring task.

Specific Task Artefacts Used Instrumentation Scheme: Calculate Value
of Expression

colour the red tiles
(see Figure 3)

geometric representation
of the pattern;

expression -blocks;
properties window;

calculate value

technique: make an expression for the
number of tiles and calculate its value;

answer with a number
conceptual elements: a numerical

calculation can be represented
symbolically; a number must be used to

answer, “How many red tiles?”; perceiving
structure, and recognizing and articulating

generalisations expressing them
symbolically through the expression-blocks

(as per AWOT.3)
technical elements: drag onto the canvas a
number from the building block properties

window; drag onto the canvas another
number; multiply the two numbers on the

canvas; calculate the value; use this
number to answer, “How many tiles?”
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Analytic comment
In her second instantiation of the colouring task, thanks to her difficulties in counting

the tiles which prompted the researcher’s intervention, Molly uses a new artefact, the
expression-blocks, to interact with eXpresser, communicating to it the calculation she
intended to carry out.

We recognize here a process of instrumentation: Molly’s actions of using expression
blocks by dragging them from the properties window in eXpresser and combining them
enable her to create an expression (or a “rule” as she calls it) for the number of red tiles, or
in other words, to communicate with eXpresser using its language, a language that shares
many symbols with mathematical language. On the other hand, instrumentalization is also
occurring, as Molly learns to drop the one expression block (number of repetitions of the
building block) onto the other expression block (number of red tiles within the building
block) and select the operation to connect them. Moreover, Molly has eXpresser “calculate
it”; that is, she uses the newly constructed expression not as an independent algebraic
rule providing an algebraic translation of the geometrical structure of the pattern but as
a “calculator” to obtain the correct “answer”. In doing this, Molly is shaping the tool to
make it produce what she wants; this might be the case because she is not sure about the
meanings of the numbers that she used to construct the rule and she still needs to compare
the result with the number she calculated mentally. We can also interpret this interaction as
a development of Molly’s techno-mathematical fluency (Jacinto and Carreira, 2017 [34]):
she is using four artefacts of the DIMLE to effectively interact with it in a way that helps
her solve the mathematical problem she is facing.

4.3. Vignette 3

Account of Molly’s actions
Molly is prompted to unlock her model number and check her colouring of the model.

She calls the unlocked number “b” for “building blocks”. As soon as b changes, Molly’s
model no longer remains coloured. The system’s intelligent support is designed to intervene
in moments like this, prompting the student to find a link between the number of building
blocks and the number of tiles in each building block, and then prompting for a rule that
links these numbers. These prompts appear on the screen and Molly, who is working
alone at the computer, opens the properties windows and starts dragging numbers onto
the canvas. She constructs a correct rule for the red tiles, multiplying b times 6; then, she
calculates its value and replaces her previous answer with the calculated value (Figure 4).
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Figure 4. Molly writes a correct rule for the red tiles (5 × 6), calculates its value (30) and uses
this calculated value to replace her previous answer (which she first tried to fix by unlocking it),
highlighted by the red circles added to the screenshot.

Molly successfully colours the red tiles (in Figure 4), using the scheme described in
Table 3.
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Table 3. Molly’s instantiation 3 of instrumentation scheme for the colouring task.

Specific Task Artefacts Used Instrumentation Scheme: Calculate Value
of Expression with Unlocked Number

colour the red tiles
(see Figure 4)

geometric representation
of the pattern; unlocked

number; pattern
animation; expression

blocks; properties
windows;

calculate value

technique: make an expression for the
number of tiles, using the unlocked number
of building blocks, and calculate its value;

answer with a number
conceptual elements: a numerical calculation
can be represented symbolically; a numerical

calculation can be related to a geometrical
structure (working towards AWOT.1); there

are special numbers that “can change”
(working towards AWOT.2); a number must

be used to answer, “How many red tiles?”
(working towards AWOT.3)

technical elements: drag out the number of
tiles of the desired colour in a building block
properties window; drag out the unlocked
number of repetitions of the building block;
multiply these two numbers; calculate the
value; use the calculated value to answer

“How many tiles?”

Analytic comment
Here, we see a shift in Molly’s instrumented scheme: eXpresser’s animation artefact

prompts Molly to unlock a number and change its value, which makes Molly’s non-general
solution evident. We see an important process of instrumentation taking place here. Molly
seems to start to realise that it is the unlocked number b that needs to be used in the rules
describing the numbers of coloured tiles, not specific numbers typed into the number
generator that are good only for a specific case. The system clearly seems to be shaping
Molly’s actions, and probably her scheme behind such actions, to some extent, while
fostering her development of techno-mathematical fluency in the DIMLE.

Although Molly successfully builds a rule containing an unlocked number, she still
insists on answering the “How many tiles?” question with a “calculated” number (see her
words in instantiation 2). This action suggests that Molly has taken some steps towards
seeing the general in the particular (AWOT.2), and towards recognizing and articulating
a generalisation (AWOT.3), but that she has not yet completely acquired the sought for
algebraic ways of thinking. In terms of instrumentalization, we notice that Molly insists on
forcing the tool to “calculate the value” in order to place a single number, not an expression,
in response to the “How many tiles?” question. It is possible that Molly’s past experience
and her lack of experience with algebraic generality prevents her from using her general
rule as a number.

We summarise her next four instantiations of the colouring task: during these, Molly
comes to use the constructed rule to answer the “How many tiles?” question, increasing her
techno-mathematical fluency. However, before inserting such a rule into the properties win-
dow, every time, she insists on calculating its value and leaving that number on the screen.
We interpret this behaviour as indicative of a persistent difficulty in internalising AWOT.3.

In the fourth and last vignette, we analyse Molly’s final instantiation of the colouring
task, and then provide a summary of her scheme development.

4.4. Vignette 4

Molly is now working on activity 3, where she has been asked to help a fellow student
work in eXpresser.
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Account of Molly’s actions
Molly swiftly presents to her classmate “what you should do”, showing her the

sequence of actions to be carried out to colour a pattern. The first time, Molly suggests
that her classmate uses the number generator to answer because “here you can type
in the answer calculated in your head”, but, she continues, “then your pattern doesn’t
stay coloured”. Molly unlocks the number of repetitions of the building block; then, she
continues to explain “it’s better to use the properties window”. Molly creates an expression
multiplying the unlocked number times the number of tiles to colour in a single building
block; then, she drags the expression into the properties window to answer the “How many
tiles?” question.

Table 4 shows Molly’s scheme in her last instantiation of the colouring task.

Table 4. Molly’s instantiation 10 (the final one) of her instrumentation scheme for the colouring task.

Specific Task Artefacts Used Instrumentation Scheme: Answer with
General Rule

colour the tiles of a
selected colour

geometric representation
of the pattern;

expression-blocks;
number generator;

calculate value;
properties window;
unlocked number

technique: make an expression for the
number of tiles; use it to answer

conceptual elements: a numerical calculation
can be represented symbolically; a numerical

calculation can represent properties of a
geometrical structure; algebraic rules can

answer questions by asking “how many. . .?”
(but it is better if you calculate the value in

your head ahead of time); perceiving
structure, seeing the general in the particular

and articulating generalisations (working
towards AWOT.1, AWOT.2, AWOT.3)

technical elements: calculate the number of
tiles and type that number into the number

generator; drag out the number of tiles of the
desired colour in a building block properties
window; unlock the number of repetitions of
the building block; drag out the number of
repetitions; multiply the two numbers; use
the rule in the answer to answer the “How

many tiles?” question

Analytic comment
Molly’s scheme, which we called “answer with general rule”, now includes an ex-

plicitation of her mental calculations through a product of two numbers, of which one is
unlocked, representing “something” that stands for a number that could be any number.
Behind these actions, we infer the development of an instrumentation scheme that has
overcome the use of a mental strategy to calculate tiles when the number of building blocks
is fixed: Molly’s scheme now is based on a general rule that will always represent the correct
number of tiles, no matter how many building blocks there are. The process of instru-
mentation supported by eXpresser and the gradual development of techno-mathematical
fluency in eXpresser have led Molly to articulate a generalisation, representing a numerical
calculation symbolically and using a whole expression as a single “object”. For Molly, this
object now has the same function as the number she would calculate and then drag into the
properties window as an answer to the “How many tiles?” question. The fact that such a
procedure does not maintain the model’s colouring in the microworld, seems to be enough
to foster the development of Molly’s scheme into the one described here. Interestingly,
however, when Molly explains to her classmate how to proceed, she still includes the
intermediate step of calculating the number of tiles “in your head” and even typing that
number into the number generator, as a sort of mental control over the other instrumented
actions, or as a remainder of her initial scheme.
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4.5. Looking Back at Molly’s Scheme Development

We set out to investigate Molly’s instrumented schemes for the colouring task in eX-
presser, inferring them from the instrumented techniques emerging during her interactions
with the DIMLE, and putting them in correspondence with emerging algebraic ways of
thinking. Our analyses show how such a development occurred for Molly, who started out
using an implicit rule to mentally calculate the total number of tiles (compute and answer
scheme), and transitioned to a scheme in which a whole expression, with an unlocked
number (a variable) is used in place of that specific single number (answer with the general
rule scheme).

A similar evolution was what we hoped for when designing the microworld, since
Molly’s initial scheme coincided with what students aged 11–14 had been found to typ-
ically do in similar situations: they use mental strategies quickly to count up tiles in a
pattern, and they calculate the results of simple multiplications each time a new question is
asked. However, before conducting this study, we were unsure whether and how students
(1) would develop instrumented schemes involving “general” expressions as a way for
successfully interacting with the DIMLE, and (2) how such schemes were related to the
desired algebraic ways of thinking.

Looking back at Molly’s learning journey, and taking into consideration all the data
analysed, we can organise her schemes into four phases as follows, in which we can identify
an interplay between instrumented techniques and developing algebraic ways of thinking:

• A phase of guided sense-making that coincided with the use of her “compute and
answer” scheme, and in which she tries to make sense of the task and of the artefacts in
eXpresser she chooses to use, supporting her activity by recalling previous techniques;

• A phase of mental recollection, in which she mentally recalls previous actions associ-
ated with her task. The sense-making component is weak in this phase, and the scheme
appears to be unstable, as Molly easily falls back to previous schemes (especially to her
calculate value of expression scheme or calculate value of expression with unlocked
number scheme) and seeks support from eXpresser or a nearby researcher;

• A phase of adjustment and stabilisation of the scheme “answer with general rule”,
during which the instrumented techniques in eXpresser become condensed and are
applied in a more automatic manner. In this phase, Molly’s techno-mathematical
fluency becomes more apparent as she becomes more and more experienced with how
to interact with eXpresser to achieve what she wants;

• A phase of generalisation, though still quite situated, in which Molly explains to her
classmate how to “answer with general rule” in a more flexible (possibly more general)
way, in the sense that she separates what needs to be done from what “you can do”.

When Molly’s initial “complete and answer” scheme is destabilised by the loss of
colour caused by the animation of the model, after being guided a first time through a
solution process for the colouring task, she attempts to recall specific actions (opening
properties windows, dragging numbers onto the canvas and combining them through an
operation) in (what seems to be) an attempt to recall a technique used before but without
the conceptual elements of the instrumented scheme it was part of. The numbers from the
two windows are just any numbers in the two windows, while the choice of multiplication
to combine them is in line with the mental operation that she has consciously (and correctly)
carried out. At this point, Molly seems completely absorbed in trying to express her mental
strategy in the language of the DIMLE, in a process of instrumentalization, that fails. For
her, the calculation of the result of a multiplication was an important aspect, so she asks
the computer to calculate the value of the constructed multiplicative expression. However,
she does not react (in any visible way) to the mismatch between the value obtained by
the computer and that obtained through a thoughtful calculation carried out with the
critical numbers in her head. It is unclear whether she does not realise the mismatch or
simply suspends her reasoning because of blind trust in the computer’s feedback to a
“calculate” prompt.
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Throughout her interaction with the DIMLE, there seems to be a tension between
different elements of techno-mathematical fluency: learning the language of eXpresser,
seen as procedures to be recalled and blindly carried out, and learning to interact with
eXpresser in a meaningful (to her) way. When prompted by the system or by the researcher
to carry out an action that she had not thought of spontaneously, Molly seems to switch to
an “execution mode” and tends to wait to receive further operational prompts. When these
do not arrive, she attempts to recall how she had overcome the same impasse in previous
iterations of the task, and only as a last resort does she try to make sense of the actions and
feedback in order to plan her next move.

An important step in overcoming such a tension is taken when Molly reaches her
“calculate value of expression with unlocked number” scheme in her fourth instantiation.
This is a key step in the process of instrumentation and in developing meaningful techno-
mathematical fluency because, through it, Molly starts to assign meaning to the numbers
that appear in the properties windows. She finally expresses in the language of the DIMLE
the “rule” that was in her head. Moreover, this scheme marks a fundamental benchmark in
“seeing the general in the particular” (AWOT.2): the number of tiles is expressed not as a
number but as an open expression, which is an object itself, representing the calculation
that the student would have performed in her head every time the model number changed.

Once Molly has become comfortable using “rules” to answer the computer’s questions,
she communicates how to do this, showing the steps in her instrumented scheme to a
classmate. Molly now also explains that “you can type in the answer calculated in your
head” but she points out that it is not necessary to accomplish the task, and that “it’s
better to use the properties window” if you want your model to stay coloured. Thus,
we can infer that Molly’s scheme has become somewhat general. Moreover, in the end,
Molly seems to be comfortable using locked and unlocked numbers in a single expression
and then dragging such an expression into the properties window to answer the “How
many tiles?” questions. We see these technical elements as indicative of a conceptual
component of her emerging scheme: for Molly, expressions can now involve a “general”
number as well, which is a “something” that stands for a number that could be any number.
Moreover, whole expressions have become objects for Molly that can be used in eXpresser
just like single numbers. These are important aspects of the algebraic ways of thinking
of seeing the general in the particular and articulating generalisations while achieving
techno-mathematical fluency in eXpresser.

5. Discussion and Conclusions

Our aim was to shed light on how the activity—what students actually do and how
they express themselves—in a DIMLE can foster the development of instrumented schemes
that support the construction of mathematical meanings. We analysed a specific case of a
student in eXpresser learning algebraic ways of thinking. Our broader aim was to shed
light on aspects of our method that we believe can be applied (after being recontextualised)
to study students’ mathematics learning in other DIMLEs. In this final discussion, we take a
step back and further contextualise and highlight the significance of the results concerning
both of our aims.

5.1. A Broader Glance at Planting Seeds of Algebraic Generalisation in eXpresser

In the previous section, we illustrated Molly’s interactions with eXpresser, showing
how the various artefacts transformed Molly’s mathematical knowledge and helped her
gain techno-mathematical fluency in eXpresser. From the analyses, we were able to outline
shifts in Molly’s instrumented schemes for the colouring task that occurred over the three
40 min sessions we analysed, and to make inferences about the algebraic ways of thinking
in development.

Overall, this case study shows a tension, common to most of the students who inter-
acted with the system, between different elements of techno-mathematical fluency: one
related to rote recall of procedural steps, and the other more related to sense-making. Such
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a tension between “procedural” and “conceptual” [45] is well known in the broader literary
context, as it has been found to characterise many “skill practice” sessions in traditional
maths classes. However, Kieran [46] has argued the necessity to overcome such a dichotomy.
We find that our results strengthen Kieran’s argument because, in the eXpresser scenario,
Molly seems to be worried both with recalling/developing a procedure and at the same
time making sense of it; that is, constructing situated meanings around a set of actions
(both those carried out and those being planned). Thus, dichotomizing “procedural” and
“conceptual” in the DIMLE we explored makes little or no sense.

Another aspect of Molly’s learning seems to recur in much of the literature on algebraic
learning. A sort of “cognitive gap” appears between being able to describe a number of
tiles in a pattern as a number which is the final result of a mental calculation, and being
able to describe such a number as a “rule”. Such difficulties lie at the heart of one of the
fundamental aspects of algebra that so many students struggle to master: the conception of
a “rule” as a process aimed at obtaining a “result” needs to be overcome (e.g., [18,20]). We
see a key role played by the DIMLE in supporting such a transition: in such a context, the
student needs to learn to speak the language of the DIMLE, developing what we described
as techno-mathematical fluency.

In this section, we refer to the specific case of eXpresser that we analysed, but we
believe that our considerations apply to other DIMLEs designed to promote the gradual
and constructivist learning of their language. We note that “learning to speak the language
of eXpresser”, as our analyses suggest, is not a trivial task; it is not a question of simply
memorising meaningless procedures. Instead, the DIMLE promotes a gradual learning
of the eXpresser language while also fostering the production of mathematical thinking,
in this case, particular algebraic ways of thinking. Such ways of thinking may lead to the
generation of “new” knowledge and thinking which can be expressed technologically with
the DIMLE’s language.

5.2. Generalisability of Our Method

Within the scheme–technique duality, the instantiations we presented of the scheme
can be seen as “benchmarks” in the learning process: capturing them through their tech-
nical elements allowed us to “see” how they change and to infer their relationships with
the algebraic ways of thinking that eXpresser was designed to foster. Moreover, our opera-
tionalisation of the instrumentation–instrumentalization duality allowed us to identify links
between Molly’s instrumented activity in the microworld and her mathematical learning.

We see our method as generalisable to mathematics learning in other DIMLEs, with a
few caveats. The mathematics knowledge (concepts, ways of thinking, etc.) embedded and
how it can be mobilised through interactions with the functionalities of the DIMLE need
to be made explicit (as we did in Section 2.3). Moreover, at this stage of a priori analysis,
significant recurring tasks that the learner is likely to face need to be identified. Once such
an a priori analysis has been carried out, it will be possible to identify units of analysis
in the collected data from the learners’ interactions with the DIMLE, and an a posteriori
analysis can be conducted, using an analytic scheme similar to the one we set up and used
to generate Tables 1–4.

We hope that the research presented in this paper may also contribute to the problem
of designing DIMLEs that support personalised learning. At a time when the affordances of
technology are developing apace, collecting accounts of students’ instrumentation schemes
seems to be a fundamental step in pursuing insightful design of learning environments
and of tasks within them (e.g., Refs. [37,47–49]). In particular, being able to infer students’
schemes from their actions—potentially actions that can be recognized by the software
itself—can lead to technological environments with intelligent support systems that make
informed predictions about the student’s learning and support it in personalised ways.
Moreover, considering how students can develop skills, such as techno-mathematical
fluency, that can be applicable in other digital environments and other contexts, should be
a key priority now that digital technologies are everywhere.
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Our future work entails a further investigation of how students develop instrumented
schemes and skills that allow them to interact, talk and solve mathematical problems in
digital environments and enact both their mathematical competencies and their digital
competencies. Such processes have been described as mathematical digital competency [50]
and are key for students’ mathematics learning in the digital era and their digital citizenship.
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