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Abstract: Problem: The leverage effect plays an important role in finance. However, the statistical test
for the presence of the leverage effect is still lacking study. Approach: In this paper, by using high
frequency data, we propose a novel procedure to test if the driving Brownian motion of an Itô semi-
martingale is correlated to its volatility (referred to as the leverage effect in financial econometrics)
over a long time period. The asymptotic setting is based on observations within a long time interval
with the mesh of the observation grid shrinking to zero. We construct a test statistic via forming a
sequence of Studentized statistics whose distributions are asymptotically normal over blocks of a
fixed time span, and then collect the sequence based on the whole data set of a long time span. Result:
The asymptotic behaviour of the Studentized statistics was obtained from the cubic variation of the
underlying semi-martingale and the asymptotic distribution of the proposed test statistic under the
null hypothesis that the leverage effect is absent was established, and we also show that the test
has an asymptotic power of one against the alternative hypothesis that the leverage effect is present.
Implications: We conducted extensive simulation studies to assess the finite sample performance of the
test statistics, and the results show a satisfactory performance for the test. Finally, we implemented
the proposed test procedure to a dataset of the SP500 index. We see that the null hypothesis of the
absence of the leverage effect is rejected for most of the time period. Therefore, this provides a strong
evidence that the leverage effect is a necessary ingredient in modelling high-frequency data.

Keywords: Itô semi-martingale; high-frequency data; test; leverage effect
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1. Introduction

The leverage effect in financial economics refers to the correlation between the driven
system of an asset price and its volatility. It is widely accepted that the leverage effect is a
common stylized fact of financial data, like the skewed distribution, volatility asymmetry,
etc. Moreover, empirical analyses have provided evidence that the returns of equities are
usually negatively correlated to the near future volatility. Ang and Chen [1] found that
volatility rises when stock prices go down and that volatility decreases if stock prices go
up, see also Black [2], Christie [3].

The existence of the leverage effect is explained from an economic point of view, firstly.
For example, Modigliani and Miller [4] linked the leverage effect to the financial leverage
of a firm, namely, the debt–equity ratio, which reflects a firm’s capital structure. Using the
idea of leverage well demonstrates the negative leverage effect usually found in financial
data. Precisely, with an increase in the stock price, the value of equity increases more than
the value of debt because the claims of the debt holders are limited in a short time interval;
thus, its leverage (debt to equity ratio) decreases; hence, the firm will be less risky, which
results in a drop in the volatility. The same logic applies to falling stock prices, which
should lead to an increase in future volatility. However, the financial leverage is not the
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only driver for the price-volatility relation, there is also evidence that the leverage effect
observed in financial time series is not fully explained by a firm’s leverage. Modigliani
and Miller [4] found a strong leverage effect for falling stock prices but a very weak, even
nonexistent, leverage effect for positive returns; Hens and Steude [5] and Hasanhodzic and
Lo [6] found the leverage effect in many financial markets although the underlying asset
did not exhibit any financial leverage at all.

The leverage effect characterizes the correlation between the latent process and the
volatility process, since the volatility process is unobservable; hence, it has to be estimate
with the observed data. For low-frequency data, it is hard to estimate unless assuming some
stationary condition. However, for high-frequency data, it can be estimated more accurately.
Therefore, the leverage effect can be more accurately measured in high-frequency data
than low-frequency data. Recently, with help of widely available high-frequency financial
data, the leverage effect can be quantitatively modelled and the statistical estimation of
the leverage effect has been investigated. For example, Aït-Sahalia et al. [7] found that
an estimator of the leverage effect using high-frequency data yields a “zero” estimator
whatever the true value of the leverage effect is, based on the Heston’s stochastic volatility
model and they created a bias-corrected consistent estimator; Wang and Mykland [8] con-
sidered the estimation of the leverage effect under the presence of microstructure noise;
Aït-Sahalia et al. [9] further theoretically split the leverage effect into two parts: the continu-
ous leverage effect and discontinuous leverage effect, which are the quadratic co-variations
of continuous diffusion parts and jump parts of a volatility process and underlying-price
process, respectively. Both leverage effects have been consistently estimated. They also
showed the empirical evidence of the existence of the two kinds of leverage effects; Kalnina
and Xiu [10] proposed a nonparametric model-free estimator for the leverage effect. The
study provided two estimators for the leverage effect, the first one only uses the discretely
observed stock-price data, as usual, while the second estimator also employs VIX data as
the observation of the volatility process to improve estimation efficiency.

Despite the economic rationale and non-zero measure of the leverage effect in empirical
analysis for most financial markets and equities, there is yet no theoretically valid test to
tell whether it indeed exists under a given nominal level. If one wants to test the non-
zero leverage effect, a natural way is to estimate the leverage effect first and then use the
asymptotic normality (Studentized version) of the estimator to construct the confidence
intervals. As the volatility is totally unobservable, we must estimate the volatility in
advance, and then, based on these “estimated data” of the volatility and observed price
data, we can compute the estimator of leverage effect, as stated in the above literature. This
procedure, although theoretically feasible, must have a very slow convergence rate, which
pays for the two estimation procedures ahead of the test statistic.

Mathematically speaking, we consider a continuous-time semi-martingale:

dXt = btdt + σtdWt, (1)

where W is a standard Brownian motion defined on an appropriate probability space, and
b and σ are two processes satisfying some regular conditions (specified later), so that the
stochastic differential equation is well-defined. The quantity of interest is the correlation
between the two processes σ and X, precisely, the quadratic co-variation 〈X, σ2〉t. In this
paper, we provide a simple and easy-ito-mplement testing procedure in which we do not
need to estimate the leverage effect. Precisely, we assume that the volatility process further
follows a continuous semi-martingale:

dσt = atdt + LtdWt + HtdBt, (2)

where W is the driven Brownian motion of X and B is another standard Brownian mo-
tion, independent of W. Under this framework, we can see that Lt ≡ 0 indicates the
absence of the leverage effect. Therefore, it is necessary to find statistics whose limit is
an explicit function of L. For instance, we can firstly estimate it by the method in either
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Wang and Mykland [8] or Aït-Sahalia et al. [9], and then create the test statistics from a
related central limit theorem. Here, instead of estimating first and testing afterwards, we
create a direct test procedure. Kinnebrock and Podolskij [11] derived the following limiting
result for the cubic variation of semi-martingale:

1
∆n

n

∑
i=1

(∆n
i X)3 →S 3

∫ T

0
Lsσ2

s ds + 3
∫ T

0
σ2

s dXs +
√

6
∫ T

0
|σs|3dW̃s.

From this limiting result, if L ≡ 0 (under the null hypothesis), the limit on the right-hand
side is a conditional normal random variable. Moreover, the “conditional mean” 3

∫ T
0 σ2

s dXs
can be consistently estimated, and the conditional variance can be consistently estimated
as well. That is, after Studentization, it would result in a standard normal distribution
asymptotically. Our analysis shows that this de-biased and Studentized statistic, although
it indeed yields a satisfactory performance under the null hypothesis as expected, it does
not provide a unit power under the alternative hypothesis. To improve the power, we
consider the high-frequency data of a long time period—[0, T], for instance—and then
implement and replicate the procedure in each time interval [k − 1, k] for k = 1, · · · , T,
to obtain a sequence of asymptotically independent standard normal random variables.
The final test statistic is constructed globally based on these independent standard normal
random variables. We can show that this overall test procedure provides a unit power
under the alternative hypothesis; the T is large. We establish the related asymptotic theory
under both null and alternative hypotheses. The simulation studies assess the finite sample
performance of the proposed test and show that the test provides satisfactory finite sample
size and power. Finally, we also implement the procedure to test the presence of the
leverage effect in modelling the SP500 index. The high-frequency dataset consists of the
daily SP500 index in years 2000–2019, a total of 240 months. We consider the null hypothesis
of the absence of the monthly leverage effect. The results show that the null hypothesis of
zero monthly leverage effect is rejected for most of months. This supports the claim that
the leverage effect is a necessary component in modelling high-frequency data.

The remainder of this paper is organized as follows. Section 2 contains the model
setup and assumptions. In Section 3, we introduce some statistics and derive the related
central limit theorem, based on which the test procedure is presented. Section 4 is the
simulation studies and Section 5 is the application to a real high-frequency dataset. All the
technical proofs are put into the Appendix A.

2. Setting and Assumptions

Let {Xt, t ≥ 0} denote the efficient log-price process defined on a filtered probability
space (Ω,F ,Ft, P) equipped with a filtration {Ft}t≥0 of the form:

dXt = btdt + σtdWt, (3)

where, bt is a locally bounded and Ft progressively measurable real-valued process, σt is a
càdlàg Ft-adapted real-valued process, and Wt is a Ft-adapted Wiener process. This is the
most popular model for log-price processes due to the consideration of no arbitrage, see Del-
baen and Schachermayer [12–14]. Some future literature about the stochastic volatility mod-
els can be found in Stojkoski et al. [15], Zheng and Wang [16], Bouchaud and Potters [17],
and Fouque et al. [18], and references therein.

We assume that the volatility process {σt, t ≥ 0} is of form:

dσt = atdt + LtdWt + HtdBt, (4)

where, a, L and H are locally bounded and progressively measurable with respect to Ft,
and B is another Ft-adapted Wiener process, independent of W.
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Assumption 1. The system satisfies (3) and (4), where X and σ are continuous processes. All the
coefficients bt, at, Lt and Ht are locally bounded in absolute value.

The problem of interest is to test:

H0 : Lt ≡ 0, µ-a.s. vs. H1 : Lt 6≡ 0, µ-a.s., (5)

where µ denotes the Lebesgue measure.

Remark 1. Our test is equivalent to testing the presence of the leverage effect in Wang and Mykland [8].
They defined the contemporaneous leverage effect as

〈X, σ2〉T = 2
∫ T

0
F′(σ2

t )Ltdt, (6)

where F is a twice continuously differentiable and monotonic function on (0, ∞). Considering the
stochastic volatility model, Lt generally can be written as δtρt, where ρt is the correlation between
the driven Wiener process of Xt and that of σt. Thus,

∫ T
0 σ2

t Ltdt = 0 is essentially equivalent to
ρt ≡ 0, and, therefore,

∫ T
0 F′(σ2

t )Ltdt = 0 for any function F in Wang and Mykland [8].

3. Test

Over the time interval [0, T], we assume that the process X is observed discretely on
the time points i∆n, i = 0, . . . , n, where n = b T

∆n
c. Let ∆n

i X := Xi∆n − X(i−1)∆n . We start
from an auxiliary result from Kinnebrock and Podolskij [11], which gives the asymptotic
behaviour of the cubic power variation of X:

n
n

∑
i=1

(∆n
i X)3 →S 3

∫ T

0
Lsσ2

s ds + 3
∫ T

0
σ2

s dXs +
√

6
∫ T

0
|σs|3dW̃s, (7)

where W̃ is a standard Brownian motion defined on an extension of the original probability
space independent of W and B and→S denotes the stable convergence. (A sequence of
random variables, ξn, n ≥ 1, is said to converge stably in law to ξ, which is defined on an
appropriate extension of the origin probability space (Ω,F , P) if, for any F−measurable,
bounded random variable υ and any bounded continuous function f , we have the conver-
gence

E[υ f (ξn)]→ E′[υ f (ξ)], (8)

where E′ is the expectation defined on the extended probability space. The stable con-
vergence is slightly stronger than the weak convergence (let υ = 1); we write the stable

convergence as ξn
L−(s)−−−→ ξ. We refer to Renyi [19] and Aldous and Eagleson [20] for the

more detailed discussion on stable convergence. The extension of stable convergence to
stochastic processes has been discussed in Jacod and Shiryayev [21] (Chap. IX.7).) The first
two terms in the limit are from the process X. Under H0, the first term vanishes; if we could
consistently estimate the second term, then only a mixed normal variable remains in the
limit. We now illustrate this standardization procedure.

In the following,→L denotes the convergence in distribution if the limit is a random
variable and denotes the weak convergence if the limit is a distribution, and→P denotes
the convergence in probability.

Observing the convergence in (20), under the null hypothesis H0, namely, Lt ≡ 0, we
have

n
n

∑
i=1

(∆n
i X)3 − 3

∫ T

0
σ2

s dXs →S
√

6
∫ T

0
|σs|3dW̃s. (9)
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If we have a consistent estimator for the “bias” term 3
∫ T

0 σ2
s dXs, then the quantity on the

left-hand side will behave asymptotically as a mixed normal random variable. This idea
results in the following proposition. We define the local volatility estimator as

σ̂2
i∆n

:=

{
1

kn∆n
∑i

j=i−kn+1(∆
n
j X)2, i = kn, . . . , n

1
kn∆n

∑kn
j=1(∆

n
j X)2, i = 0, . . . , kn − 1,

(10)

where we take kn = b θ√
∆n
c for some θ > 0.

Proposition 1. Assumption 1 holds. If Lt ≡ 0, then we have

Tn =
∑n

i=1(∆
n
i X)3 − 3∆n ∑n

i=1 σ̂2
(i−1)∆n

∆n
i X√

2
5 ∑n

i=1(∆
n
i X)6

→L Z, (11)

where Z is a standard normal variable.

Here, we take an appropriate Studentization to obtain the standard normal, which is
necessary for a valid test procedure. The denominator is just the standard deviation of the
normal variable in the numerator.

Remark 2. The asymptotic result above provides a guarantee on the first type error. However, it is
not a consistent text statistic. We see that, under the alternative hypothesis Lt 6≡ 0, we have

Tn →L
3
∫ T

0 Lsσ2
s ds√

6
∫ T

0 σ6
s ds

+

∫ T
0 |σs|3dW̃s√∫ T

0 σ6
s ds

. (12)

Here, the limit on the right-hand side is a mixed normal random variable with conditional mean

3
∫ T

0 Lsσ2
s ds√

6
∫ T

0 σ6
s ds

.

Therefore, the asymptotic power for this test is not 1. The reason is that we only use the data from
a fixed period [0, T]; the bias under the alternative is not big enough to guarantee the asymptotic
power is 1. Therefore, one natural way to increase the power is to use the data from a long time
period, [0, T].

Following this idea, we may overcome the issue of power by considering the data from a
long time span (T → ∞). We denote m = b ϑ

∆n
c as the sample size of one period for some

ϑ > 0, and define

T(k)
n :=

∑m
i=1(∆

n
i+(k−1)mX)3 − 3∆n ∑n

i=1 σ̂2
(i−1)∆n+(k−1)m∆n

i+(k−1)mX(
2
5 ∑m

i=1(∆
n
i+(k−1)mX)6

)1/2 , (13)

for k = 1, · · · , Kn with Kn := bn/mc.

Theorem 1. X and σ satisfy Assumption 1. If Lt ≡ 0, and if Kn → ∞, Kn∆1/4
n → 0 as ∆n → 0,

for a continuous function g with finite first order derivative |g′| < ∞, and ρg = E[g(Z)] <
∞, νg = V[g(Z)] < ∞, then we have

Tn :=
1√

νgKn

Kn

∑
k=1

[
g(T(k)

n )− ρg
]
→L Z, (14)
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where Z defines a standard normal variable.

Now, under the alternative hypothesis, since the new test statistic T gathers Kn non-
central normal random variables (conditionally independent), it would tend to infinity
with Kn → ∞. This is demonstrated by the following corollary.

Corollary 1. Assumption 1 holds. Denote with zα the α-quantile of standard normal distribution.
g is a continuous function with finite first order derivative |g′| < ∞, and ρg = E[g(Z)] < ∞, νg =

V[g(Z)] < ∞. If Kn → ∞, Kn∆1/4
n → 0 as ∆n → 0, then we have

P(|Tn| ≤ z1−α/2)→
{

1− α, under H0
0, under H1.

(15)

Under the null, the limiting null distribution of Tn coincides with that of the zero-mean
normal random variable with unit variance while, under the alternative, the test statistic
diverges in probability, thus delivering a unit power.

Remark 3. Some possible choices of g are given in the following:

• g(x) = x: 1√
Kn

∑Kn
k=0 T̂(k)

n →L N(0, 1);

• g(x) = |x|: 1√
Kn(1− 2

π )
∑Kn

k=0

(
|T̂(k)

n | −
√

2
π

)
→L N(0, 1);

• g(x) = x2: 1√
2Kn

∑Kn
k=0

(
(T̂(k)

n )2 − 1
)
→L N(0, 1);

• g(x) = log(|x|): 1√
Knσlog ∑bn

k=0

(
log |T̂k

n | − µlog) →L N(0, 1), where σlog = V[log |Z|]

≈ 1.24, and µlog = E[log |Z|] ≈ −0.64.

We can also use the extreme value distribution to construct the test. That is, we have

√
2 log Kn

(
max

0≤k≤Kn
T(k)

n −
√

2 log Kn +
log log Kn + log 4π

2
√

2 log Kn

)
→L G, (16)

where G is the Gumbel distribution with cumulative distribution function exp{− exp(−x)}.

Remark 4. From the conditions of Theorem 1, Kn∆1/2
n → 0 (Kn ≈ T) is required to obtain the

desired asymptotic results. Due to the restriction, therefore, Kn (or T) cannot be too large. For
example, if we consider the daily trading set (6.5 hours) with frequency one minute, then we have
∆n = 1/390; hence, a reasonable choice for Kn will be 10–20. This may yield a low power, although
the test is asymptotically consistent. To obtain a larger sample size Kn, we can consider a shorter
local time span, namely, m = b ϑ

∆n
c for 0 < ϑ < 1. It is easy to see that the asymptotic results keep

true for this case as long as ϑ is fixed. For instance, if we consider the half-day trading set, Kn will
be doubled. Moreover, we may consider the extreme case of ϑ → 0 (but m → ∞). However, the
asymptotic behaviour will be totally different to that obtained in the current setting, and it would be
investigated in a future work.

4. Simulation

In this section, we conduct simulation studies to assess the finite sample performance
of our proposed test statistics. We generate the high-frequency data from the following
one-factor stochastic volatility model (see Andersen et al. [22]):

dSt = rdt + σtdWt, dVt = adt + ηρdBt + κ
√

1− ρ2dWt, σt = exp(µ + γVt), (17)

where, W and B are two standard Brownian motions, independent of each other, and ρ
represents the level of the leverage effect. The parameters of the model are calibrated to
real financial data. The parameter values used in the generating process under the null
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and alternative hypotheses are displayed in Table 1, where r = 0.0317 represents monthly
interest rate, corresponding to an annual interest of about 8%.

Table 1. The parameter values used in the simulation.

S0 V0 r a η κ µ γ ρ

H0 log(40) 0.3989 0.0317 0.0317 5 0.0212 −0.9682 0.9123 −0.2919
H1 log(40) 0.3989 0.0317 0.0317 5 0.0212 −0.9682 0.9123 0

The observation scheme is similar to that of our empirical application. We set
∆n = 1/78, ϑ = 1, and m = 78, which corresponds to sampling every 5 min in a 6.5 h
trading day. In the estimation of the local volatility, we let kn = 13. We tested for presence
of the leverage effect on an interval from length of T = 1 (day), to T = 66 (one quarter), by
summing the test statistics over the T days. For the choice of function g (which is used in
the Theorem 1), we selected the following functions:

• g(x) = x, which corresponds to the test statisticWn;
• g(x) = |x|, which corresponds to the test statistic Sn;
• g(x) = 4

√
|x|, which corresponds to the test statistic Un;

• g(x) = log(|x|), which corresponds to the test statistic Vn;

These four functions are all have bounded derivatives and, therefore, satisfy the
condition of Theorem 1. From the first to the last, the derivative becomes gradually smaller.

We computed the finite sample size and power for all cases. The results from the Monte
Carlo, which is based on 10,000 replications, are reported in two tables (Tables 2 and 3) and
two figures (Figures 1 and 2). Table 2 and Figure 1 display the finite sample size and Table 3
and Figure 2 exhibit the finite sample power, respectively.

Table 2. Coverage rates of the test statistics under H0.

T
α = 0.05 α = 0.1

Wn Sn Un Vn Wn Sn Un Vn

1 0.9746 0.9758 0.9554 0.9504 0.9331 0.9552 0.9144 0.9257
5 0.9691 0.9728 0.9536 0.9528 0.9304 0.9326 0.9107 0.9163

10 0.9683 0.9697 0.9499 0.9483 0.9289 0.9196 0.9044 0.9056
15 0.9671 0.9566 0.9443 0.9413 0.9270 0.9086 0.8995 0.9045
20 0.9671 0.9553 0.9459 0.9434 0.9261 0.9039 0.8952 0.8969
22 0.9665 0.9538 0.9456 0.9451 0.9242 0.8937 0.8925 0.8951
44 0.9662 0.9289 0.9320 0.9329 0.9234 0.8590 0.8758 0.8849
66 0.9643 0.8969 0.9172 0.9245 0.9218 0.8253 0.8591 0.8733

Table 3. Coverage rates of the test statistics under H1.

T
α = 0.05 α = 0.1

Wn Sn Un Vn Wn Sn Un Vn

1 0.9995 0.9996 0.9974 0.9968 0.9864 0.9969 0.9959 0.9959
5 0.1914 0.9887 0.9771 0.9993 0.1234 0.9242 0.7083 0.8737

10 0.0154 0.8420 0.3552 0.4170 0.0056 0.5565 0.1416 0.1478
15 0.0006 0.5225 0.0905 0.1040 0.0002 0.2365 0.0298 0.0376
20 0 0.2599 0.0185 0.0282 0 0.0881 0.0039 0.0091
22 0 0.1853 0.0093 0.0167 0 0.0573 0.0030 0.0057
44 0 0.0015 0 0 0 0 0 0.0001
66 0 0 0 0 0 0 0 0

From Table 2, we see that the test statistic Wn performs stably relatively, with the
length of time interval, T. The coverage rates of other three test statistics tend to decrease
more clearly when T increases. Figure 1 shows the same results pictorially. This is consistent
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with our theoretical results, noting that Theorem 1 and Corollary 1 indicate that Kn (hence
T) cannot be too large, to guarantee a valid converge rate under the null hypothesis H0.
Table 3 shows that all four test statistics tend to perform better uniformly when the time
interval becomes longer under the alternative hypothesis H1, which is also consistent with
our theoretical result. In fact, the only condition to assure the test statistics tending to
infinity under alternative hypothesis H1 is letting T → ∞. Therefore, an ideal choice for the
length of the test period should be determined via a tradeoff between the size and power. To
perform this, we computed the averaged errors of sizes and powers, namely, the difference
between finite sample coverage rate and asymptotic coverage rate, of the four test statistics.
The simulation results indicate that, for the high-frequency data with sampling frequency
of five minutes, the best choice for the time interval of the test is between a month and two
months.

Figure 1. The converge rates of five test statistics under H0, against the length of time interval T.
(Left): a 90% nominal level. (Right): a 95% nominal level.

Figure 2. The converge rates of five test statistics under H1, against the length of time interval T.
(Left): a 90% nominal level. (Right): a 95% nominal level.

5. Real Data Analysis

In this section, we implement the proposed test procedures to a real high-frequency
financial dataset. The dataset consists of 5-minute close prices of the SP500 index from 1997
to 2000. To clear the data, we firstly removed the largest 3% returns to avoid the possible
presence of jumps and no further adjustment was conducted for the data set. Finally,
we obtained a total of 250,669 data points. We computed the test statistics with several
periods, namely, a day, a week, a month, a quarter, half a year and a year, respectively.
More precisely, for example, for the daily test, we took n = 78 (n = 390, 1716, 5418, 10,296
and 20,592 for the weekly test, monthly test, quarterly test, semiannual test and annual test,
respectively.) and mn = kn = b

√
nc, using the following statistic with Kn = bn/mc:

Tn :=
1√

νgKn

Kn

∑
k=1

[
g(T(k)

n )− ρg
]
, T(k)

n =
∑n

i=1(∆
n
i X)3 − 3∆n ∑n

i=1 σ̂2
(i−1)∆n

∆n
i X√

2
5 ∑n

i=1(∆
n
i X)6

(18)

where we used the similar test function g used in the simulation.
Table 4 displays the values of the test statistics and related rejection rates of the tests

based on these six different time spans.
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Table 4. Rejection rate of tests.

Time Span Nominal Level Tn Sn Un Vn

Day 0.05 0.98 0.92 0.89 0.68
0.1 0.98 0.90 0.87 0.57

Week 0.05 1 1 1 1
0.1 1 1 1 1

Month 0.05 1 1 1 1
0.1 1 1 1 1

Quarter 0.05 1 1 1 1
0.1 1 1 1 1

Half year 0.05 1 1 1 1
0.1 1 1 1 1

Year 0.05 1 1 1 1
0.1 1 1 1 1

From Table 4, for the time period longer than a day, all four test statistics reject the null
hypothesis of the absence of the leverage effect. For the daily test, we see that Tn shows
the highest rejection rate for all kinds of time periods, followed by Sn and Un; Vn has a
lowest rejection rate. This is same as the order of empirical powers in the simulation study;
hence, we may conclude that the leverage effect is a necessary component in modelling the
high-frequency data of the SP500 index.

6. Discussion

In the current paper, we did not consider the common stylised facts of the high-
frequency data, such that the jumps and microstructure noise. Here, we give some possible
ways to deal with the effects of the jumps and microstructure noise. The process X contains
jumps when, namely,

dXt = btdt + σtdWt + δtdJt, (19)

where J is a pure jump process. In this case, one possible way to remove the effect of the
jump is to use the threshold technique proposed by Mancini [23]:

n
n

∑
i=1

(∆n
i X)31{|∆n

i |≤α∆v
n } →

S 3
∫ T

0
Lsσ2

s ds + 3
∫ T

0
σ2

s dXs +
√

6
∫ T

0
|σs|3dW̃s, (20)

where v < 1/2 is a positive integer. Then, the theory established in this paper should
be extended to the case with jumps. For microstructure noise, we may try some de-
noising approaches, such as the pre-averaging method proposed in Jacod et al. [24] or the
realized kernel method suggested by Barndorff-Nielsen et al. [25] to reduce the level of
microstructure noise and then use the idea in this paper to construct a test statistic to test
the presence of the leverage effect. The other direction concerns the future implications of
the results obtained in this paper. As implied by the results of the empirical study in this
paper, the leverage effect is a necessary feature of high-frequency modelling; therefore, we
may consider how to use the leverage effect to improve the usefulness of high-frequency
data; for instance, we may add the leverage effect as a factor in predictive models predicting
volatility and asset price, such as in the HAR model, etc.

7. Conclusions

In this paper, we propose a class of test statistics to test the presence of the leverage
effect in modelling high-frequency data in financial markets. The test procedure is valid
under shrinking sampling intervals. In real application, it proved a valid and reasonable
test approach for the presence of the leverage effect within a moderately long time span,
from a week to a quarter, for instance. Widely simulated studies further confirmed the
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performance of the proposed test statistics. The proposed test method was also applied to a
dataset of the SP500 index; the result shows that the leverage effect is a necessary factor
when the time span is longer than a week.

Some limitations of the present study remain. The first one is that the jump is not
incorporated into the current setting, and the second is that the test is not robust in the
possible presence of microstructure noise. We listed some possible ways to deal with these
two issues in the last section. In view of the importance of both jumps and microstructure
noise in financial high-frequency data, the extension of the current research in this direction
deserves a future investigation.
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Appendix A. Technical Proofs

By a standard localization procedure, as described in Jacod and Protter [26], we may
assume that b, a, H and σ are bounded; we also assume that the σ2 is bounded from below
uniformly in [0, T] and L is bounded from below uniformly in [0, T] as well as under the
alternative hypothesis. Throughout the proofs, C defines a generic constant. We denote
tn
i = i∆n and Yi := Ytn

i
for a process Y.

Proof of Proposition 1. Observe that

n

∑
i=1

(∆n
i X)3 =

1
∆n

n

∑
i=1

(
∫ tn

i

tn
i−1

bsds)3 +
1

∆n

n

∑
i=1

(
∫ tn

i

tn
i−1

σsdWs)
3

+
3

∆n

n

∑
i=1

(
∫ tn

i

tn
i−1

bsds)2
∫ tn

i

tn
i−1

σsdWs +
3

∆n

n

∑
i=1

∫ tn
i

tn
i−1

bsds(
∫ tn

i

tn
i−1

σsdWs)
2

=: In
1 + In

2 + In
3 + In

4 .

Thus

Tn =
(In

1 + In
2 + In

3 + In
4 )− In

5(
2

5∆2
n

∑n
i=1(∆

n
i X)6

)1/2 , (A1)

where In
5 := 3 ∑n

i=1 σ̂2
i−1∆n

i X. Boundedness of b and σ together with Itô-Isometry yield

E[
∣∣In

1
∣∣] ≤ C∆n, E[(In

3 )
2] ≤ C∆2

n. (A2)

Next, we analyse In
2 . By Itô’s formula, we have the following decomposition:

In
2 =

1
∆n

n

∑
i=1

(
2
∫ tn

i

tn
i−1

∫ s

tn
i−1

σuσsdWudWs +
∫ tn

i

tn
i−1

σ2
s ds

)
·
∫ tn

i

tn
i−1

σsdWs

=
1

∆n

n

∑
i=1

(
2
∫ tn

i

tn
i−1

∫ s

tn
i−1

σuσsdWudWs ·
∫ tn

i

tn
i−1

∫ s

tn
i−1

dσudWs

)

+
1

∆n

n

∑
i=1

(
2
∫ tn

i

tn
i−1

∫ s

tn
i−1

σuσsdWudWs · σi−1∆n
i W

)

+
1

∆n

n

∑
i=1

(∫ tn
i

tn
i−1

(σ2
s − σ2

i−1)ds ·
∫ tn

i

tn
i−1

σsdWs

)
+

n

∑
i=1

σ2
i−1

∫ tn
i

tn
i−1

σsdWs

=: In
2,1 + In

2,2 + In
2,3 + In

2,4.
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Recalling Assumption 1, σ itself is a semi-martingale; hence,

In
2,1 =

2
∆n

n

∑
i=1

(∫ tn
i

tn
i−1

∫ s

tn
i−1

σuσsdWudWs ·
∫ tn

i

tn
i−1

∫ s

tn
i−1

dσudWs

)

=
2

∆n

n

∑
i=1

(∫ tn
i

tn
i−1

∫ s

tn
i−1

σuσsdWudWs ·
∫ tn

i

tn
i−1

∫ s

tn
i−1

aududWs

)

+
2

∆n

n

∑
i=1

(∫ tn
i

tn
i−1

∫ s

tn
i−1

σuσsdWudWs ·
∫ tn

i

tn
i−1

∫ s

tn
i−1

HudBudWs

)

+
2

∆n

n

∑
i=1

(∫ tn
i

tn
i−1

∫ s

tn
i−1

σuσsdWudWs ·
∫ tn

i

tn
i−1

∫ s

tn
i−1

LudWudWs

)
=: In

2,1(1) + In
2,1(2) + In

2,1(3).

If L ≡ 0, then In
2,1(3) = 0. It is easy to see

E[
∣∣In

2,1(1)
∣∣] ≤ C∆

1
2
n .

and

In
2,1(2) =

2
∆n

n

∑
i=1

∫ tn
i

tn
i−1

(∫ s

tn
i−1

σuσsdWu ·
∫ s

tn
i−1

∫ u

tn
i−1

HvdBvdWu

)
dWs

+
2

∆n

n

∑
i=1

∫ tn
i

tn
i−1

(∫ s

tn
i−1

∫ u

tn
i−1

σvσudWvdWu ·
∫ s

tn
i−1

HudBu

)
dWs

+
2

∆n

n

∑
i=1

∫ tn
i

tn
i−1

(∫ s

tn
i−1

σsσudWu ·
∫ s

tn
i−1

HudBu

)
ds

=: In
2,1(2, 1) + In

2,1(2, 2) + In
2,1(2, 3).

Note that

In
2,1(2, 3) =

2
∆n

n

∑
i=1

∫ tn
i

tn
i−1

(∫ s

tn
i−1

∫ u

tn
i−1

σsσu HvdBvdWu +
∫ s

tn
i−1

∫ u

tn
i−1

σuσv HudWvdBu

)
ds

=
2

∆n

n

∑
i=1

(∫ tn
i

tn
i−1

∫ tn
i

v

∫ tn
i

u
σsσu HvdsdWudBv +

∫ tn
i

tn
i−1

∫ tn
i

v

∫ tn
i

u
σuσvdsdBudWv

)
.

Boundedness of b, H, a and σ, Cauchy–Schwarz inequality and Burkholder inequality
together yield

E[
∣∣In

2,1(2, 1)
∣∣2] ≤ C∆n, E[

∣∣In
2,1(2, 2)

∣∣2] ≤ C∆n, E[
∣∣In

2,1(2, 3)
∣∣2] ≤ C∆2

n. (A3)

For In
2,3, we have

In
2,3 =

1
∆n

n

∑
i=1

(∫ tn
i

tn
i−1

(σ2
s − σ2

i−1)ds ·
∫ tn

i

tn
i−1

σsdWs

)

=
1

∆n

n

∑
i=1

(∫ tn
i

tn
i−1

( ∫ s

tn
i−1

dσu
)2ds ·

∫ tn
i

tn
i−1

σsdWs + 2σi−1

∫ tn
i

tn
i−1

∫ s

tn
i−1

dσuds ·
∫ tn

i

tn
i−1

σsdWs

)
=: In

2,3(1) + In
2,3(2).

Again, Assumption 1, Cauchy–Schwarz inequality and Burkholder inequality together
yield

E[
∣∣In

2,3(1)
∣∣] ≤ C∆

1
2
n . (A4)
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and

In
2,3(2) =

1
∆n

n

∑
i=1

(
2σi−1

∫ tn
i

tn
i−1

∫ s

tn
i−1

dσuds ·
∫ tn

i

tn
i−1

σsdWs

)

=
2

∆n

n

∑
i=1

σi−1

(∫ tn
i

tn
i−1

(
∫ s

tn
i−1

dσu ·
∫ s

tn
i−1

σudWu)ds +
∫ tn

i

tn
i−1

(σs

∫ s

tn
i−1

∫ u

tn
i−1

dσvdu)dWs

)

=
2

∆n

n

∑
i=1

σi−1

(∫ tn
i

tn
i−1

(
∫ s

tn
i−1

audu ·
∫ s

tn
i−1

σudWu)ds

)

+
2

∆n

n

∑
i=1

σi−1

(∫ tn
i

tn
i−1

(
∫ s

tn
i−1

HudBu ·
∫ s

tn
i−1

σudWu)ds

)

+
2

∆n

n

∑
i=1

σi−1

(∫ tn
i

tn
i−1

(
∫ s

tn
i−1

LudWu ·
∫ s

tn
i−1

σudWu)ds

)

+
2

∆n

n

∑
i=1

σi−1

(∫ tn
i

tn
i−1

(σs

∫ s

tn
i−1

∫ u

tn
i−1

dσvdu)dWs

)
=: In

2,3(2, 1) + In
2,3(2, 2) + In

2,3(2, 3) + In
2,3(2, 4).

In
2,3(2, 3) if L ≡ 0. It is easy to check that

E[
∣∣In

2,3(2, 1)
∣∣2] ≤ C∆n, E[

∣∣In
2,3(2, 2)

∣∣] ≤ C∆1/2
n , E[

∣∣In
2,3(2, 3)

∣∣2] ≤ C∆n, E[
∣∣In

2,3(2, 4)
∣∣2] ≤ C∆n.

Now, we return to consideration of the two main terms, In
2,1 and In

2,4. By employing Itô’s
product formula repeatedly, we obtain

In
2,2 =

1
∆n

n

∑
i=1

(
2
∫ tn

i

tn
i−1

∫ s

tn
i−1

σuσsdWudWs · σi−1∆n
i W

)

=
2

∆n

n

∑
i=1

σi−1

(
3
∫ tn

i

tn
i−1

∫ s

tn
i−1

∫ u

tn
i−1

σuσvdWvdWudWs

)
+

2
∆n

n

∑
i=1

σi−1

(∫ tn
i

tn
i−1

σsdWs ·
∫ tn

i

tn
i−1

σudu

)

=
6

∆n

n

∑
i=1

σ3
i−1

(∫ tn
i

tn
i−1

∫ s

tn
i−1

∫ u

tn
i−1

dWvdWudWs

)
+ 2

n

∑
i=1

σ2
i−1

(∫ tn
i

tn
i−1

σsdWs

)

+
2

∆n

n

∑
i=1

σi−1

(
3
∫ tn

i

tn
i−1

∫ s

tn
i−1

∫ u

tn
i−1

∫ v

tn
i−1

σudσqdWvdWudWs

)

+
2

∆n

n

∑
i=1

σi−1

(
3
∫ tn

i

tn
i−1

∫ s

tn
i−1

∫ u

tn
i−1

∫ u

tn
i−1

σvdσqdWvdWudWs

)

+
2

∆n

n

∑
i=1

σi−1

(∫ tn
i

tn
i−1

σsdWs ·
∫ tn

i

tn
i−1

∫ u

tn
i−1

dσvdu

)
=: In

2,2(1) + In
2,2(2) + In

2,2(3) + In
2,2(4) + In

2,2(5).

Boundedness of b, H, a and σ, Cauchy–Schwarz inequality and Burkholder inequality
together give

E[
∣∣In

2,2(3)
∣∣2] ≤ C∆n, E[

∣∣In
2,2(4)

∣∣2] ≤ C∆n, E[
∣∣In

2,2(5)
∣∣] ≤ C∆

1
2
n . (A5)

For In
4 , by Itô’s formula, we obtain

In
4 =

3
∆n

n

∑
i=1

(∫ tn
i

tn
i−1

bsds ·
(
2
∫ tn

i

tn
i−1

∫ s

tn
i−1

σuσsdWudWs +
∫ tn

i

tn
i−1

σ2
s ds
))
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=
6

∆n

n

∑
i=1

(∫ tn
i

tn
i−1

bsds ·
∫ tn

i

tn
i−1

∫ s

tn
i−1

σuσsdWudWs

)
+

3
∆n

n

∑
i=1

(∫ tn
i

tn
i−1

bsds ·
∫ tn

i

tn
i−1

σ2
s ds

)
=: In

4,1 + In
4,2.

Again, by boundedness of b and σ, Hölder’s inequality together with Itô-Isometry, we
obtain

E[
∣∣In

4,1
∣∣] ≤ C∆3/2

n .

Writing In
4,2 as

In
4,2 =

3
∆n

n

∑
i=1

(∫ tn
i

tn
i−1

bsds ·
∫ tn

i

tn
i−1

(σ2
s − σ2

i−1)ds

)
+ 3

n

∑
i=1

(
σ2

i−1 ·
∫ tn

i

tn
i−1

bsds

)
=: In

4,2(1) + In
4,2(2).

It is easy to get
E[
∣∣In

4,2(1)
∣∣] ≤ C∆2

n. (A6)

Considering In
5 , we firstly have

σ̂2
i−1 =

1
kn∆n

(i−1)∨kn

∑
j=(i−kn)∨1

(∆n
j X)2

= σ2
i−1 +

1
kn∆n

(i−1)∨kn

∑
j=(i−kn)∨1

(
∫ tn

j

tn
j−1

bsds)2 +
1

kn∆n

(i−1)∨kn

∑
j=(i−kn)∨1

∫ tn
j

tn
j−1

bsds
∫ tn

j

tn
j−1

σsdWs

+
1

kn∆n

(i−1)∨kn

∑
j=(i−kn)∨1

∫ tn
j

tn
j−1

(σ2
s − σ2

i−1)ds +
2

kn∆n

(i−1)∨kn

∑
j=(i−kn)∨1

∫ tn
j

tn
j−1

∫ s

tn
j−1

σuσsdWudWs

=: σ2
i−1 + en

i,1 + en
i,2 + en

i,3 + en
i.4.

Hence, we have

In
5 = 3

n

∑
i=1

σ̂2
i−1∆n

i X = 3
n

∑
i=1

σ2
i−1∆n

i X + 3
n

∑
i=1

∆n
i X(en

i,1 + en
i,2 + en

i,3 + en
i.4).

It is easy to see that

E[
∣∣ n

∑
i=1

(∆n
i X · en

i,1)
∣∣] ≤ C∆1/2

n , E[
∣∣ n

∑
i=1

(∆n
i X · en

i,3)
∣∣2] ≤ C∆n.

Moreover,

n

∑
i=1

(∆n
i X · en

i,2) =

(
kn

∑
i=1

∆n
i X

)
·
(

1
kn∆n

kn

∑
j=1

∫ tn
j

tn
j−1

bsds
∫ tn

j

tn
j−1

σsdWs

)

+
n

∑
i=kn+1

(∫ tn
i

tn
i−1

bsds · 1
kn∆n

i−1

∑
j=i−kn

∫ tn
j

tn
j−1

bsds
∫ tn

j

tn
j−1

σsdWs

)

+
n

∑
i=kn+1

(∫ tn
i

tn
i−1

σsdWs ·
1

kn∆n

i−1

∑
j=i−kn

∫ tn
j

tn
j−1

bsds
∫ tn

j

tn
j−1

σsdWs

)
=: on

2,1 + on
2,2 + on

2,3.

We have the following estimates:

E[
∣∣on

2,1
∣∣] ≤ Ck

1
2
n ∆n, E[

∣∣on
2,2
∣∣] ≤ C∆

1
2
n , E[

∣∣on
2,3
∣∣2] ≤ C∆n/kn.
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Similarly,

n

∑
i=1

(∆n
i X · en

i,4) =

(
kn

∑
i=1

∆n
i X

)
·
(

1
kn∆n

kn

∑
j=1

∫ tn
j

tn
j−1

∫ s

tn
j−1

σuσsdWudWs

)

+
n

∑
i=kn+1

(∫ tn
i

tn
i−1

bsds · 1
kn∆n

i−1

∑
j=i−kn

∫ tn
j

tn
j−1

∫ s

tn
j−1

σuσsdWudWs

)

+
n

∑
i=kn+1

(∫ tn
i

tn
i−1

σsdWs ·
1

kn∆n

i−1

∑
j=i−kn

∫ tn
j

tn
j−1

∫ s

tn
j−1

σuσsdWudWs

)
=: on

4,1 + on
4,2 + on

4,3.

and

E[
∣∣on

4,1
∣∣] ≤ C(kn∆n)

1
2 , E[

∣∣on
4,2
∣∣2] ≤ C∆n, E[

∣∣on
4,3
∣∣2] ≤ C/kn ≤ C∆1/2

n .

Observing that In
2,4 + In

2,1(2) + In
4,2(2) = 3 ∑n

i=1 σ2
i−1∆n

i X, and recalling the decomposi-
tion (A1), we have

Tn =
(In

1 + In
2 + In

3 + In
4 )− In

5(
2

5∆2
n

∑n
i=1(∆

n
i X)6

)1/2 =
In
2,2(1) + Op(∆1/4

n )(
2

5∆2
n

∑n
i=1(∆

n
i X)6

)1/2 . (A7)

By standard martingale limit theorem, we obtain

In
2,2(1) =

6
∆n

n

∑
i=1

σ3
i−1

(∫ tn
i

tn
i−1

∫ s

tn
i−1

∫ u

tn
i−1

dWvdWudWs

)
→S MN(0, 6

∫ T

0
σ6

s ds). (A8)

Now, because
1

∆2
n

n

∑
i=1

(∆n
i X)6 →P 15

∫ T

0
σ6

s ds,

thus, Slutsky’s theorem yields

Tn →L N (0, 1).

This completes the proof of Proposition 1.

Before the proof of Theorem 1, we prove an auxiliary lemma. We have the decomposi-
tion for T(k)

n :

T(k)
n =

1
∆n

(In,k
1 + In,k

2 + In,k
3 + In,k

4 )− In,k
5(

2
5 ∑m

i=1(∆
n
i+(k−1)mX)6

)1/2 ,

and we denote

ξn
k :=

In,k
2,2(1)(

6 ∑m
i=1 σ6

(k−1)m+i−1∆n

)1/2 .

Lemma A1. Under the conditions in Theorem 1, we have

1√
vgKn

Kn

∑
k=1

{
g(ξn

k )− ρg
}
→L N (0, 1). (A9)



Mathematics 2022, 10, 2511 15 of 16

Proof. By taking condition on σ, then ξn
k ’s are independent for k = 1, · · · , Kn. Then, by the

standard central limit theorem, we obtain

1√
Kn

Kn

∑
k=1

 g(ξn
k )−E[g(ξ

n
k )]√

V[g(ξn
k )]

→L N (0, 1). (A10)

Moreover, in view of (A8), Slutsky’s Theorem and dominated convergence theorem together
imply that

√
Kn(E[g(ξn

k )]− ρg)→ 0. Finally, observing that

V[g(ξn
k )]→

P vg,

as ∆n → 0, uniformly in k = 1, · · · , Kn, therefore, the desired result follows from Slutsky’s
Theorem. The proof is complete.

Proof of Theorem 1. Using the notations above, we have

Tn =
1√

vgKn

Kn

∑
k=1

{
g(ξn

k )− ρg
}
+Rn,

where,

Rn =
1√

vgKn

Kn

∑
k=1

{
g(T(k)

n )− g(ξn
k )
}

.

From the approximations in the previous proof and Taylor’s expansion, we have E[|Rn|] ≤
C
√

Kn∆1/4
n . Thus, the required result follows from Lemma A1.

Proof of Corollary 1. Under H0, the result in Theorem 1 holds when Kn → ∞ and Kn∆1/4
n →

0, thus we have
P(Tn ≥ z1−α) = α. (A11)

Under H1, we have

Tn =
1√

vgKn

Kn

∑
k=1

{
g(ξn

k )− ρg
}
+Rn.

However, now,

Rn =
1√

vgKn

Kn

∑
k=1

{
g(T(k)

n )− g(ξn
k )
}

=
1√

vgKn

Kn

∑
k=1

g

 In,k
2,1(3) + In,k

2,3(2, 3) + In,k
2,2(1) + Op(∆1/4

n )(
6 ∑m

i=1 σ6
(k−1)m+i−1∆n

)1/2

(
1 + OP(∆1/2)

)− g(ξn
k )


=

1√
vgKn

Kn

∑
k=1

g(ξ ′nk )

 In,k
2,1(3) + In,k

2,3(2, 3) + Op(∆1/4
n )(

6 ∑m
i=1 σ6

(k−1)m+i−1∆n

)1/2

(
1 + OP(∆1/2)

)
,

where, ξ ′nk is a value between ξn
k and T(k)

n . Note that

In,k
2,1(3) + In,k

2,3(2, 3)(
6 ∑m

i=1 σ6
(k−1)m+i−1∆n

)1/2 →
P 3

∫ k
k−1 σ2

s Lsds(
6
∫ k

k−1 σ6
s ds
)1/2 ,
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for all k = 1, · · · , Kn. Therefore, by Lemma A1 and Assumptions 1, we obtain

Rn →P ∞.

Hence, Tn →P ∞ from Lemma A1. This completes the proof of Corollary 1.
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