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Abstract: Cholera, caused by the pathogenic Vibrio cholerae bacteria, remains a severe public health
threat. Although a lot of emphasis has been placed on the population-level spread of the disease,
the infection itself starts within the body. As such, we formulated a multi-scale model that explicitly
connects the within-host and between-host dynamics of the disease. To model the within-host
dynamics, we assigned each susceptible individual with a pathogen load that increases through the
uptake of contaminated food and water (booster event). We introduced minimal and maximal times
when the booster events happen and defined a time since the last booster event. We then scaled the
within-host dynamics to the population where we structured the susceptible population using the
two variables (pathogen load and time since the last booster event). We analyzed the pathogen load’s
invariant distribution and utilized the results and time scale assumptions to reduce the dimension
of the multi-scale model. The resulting model is an SIR model whose incidence function has terms
derived from the multi-scale model. We finally conducted numerical simulations to investigate the
long-term behavior of the SIR model. The simulations revealed parameter regions where either no
cholera cases happen, where cholera is present at a low prevalence, and where a full-blown cholera
epidemic takes off.

Keywords: multi-scale model; cholera; SIR; structured model; pathogen load; spectral analysis
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1. Introduction

Cholera, caused by the pathogenic Vibrio cholerae bacteria, is associated with the
consumption of contaminated food and water. Three different cases are observed when
the infection is introduced in a region: either no cholera cases are observed, even though
the pathogen is present in the environment, or there are persistently few cases or a full
epidemic occurs [1]. Most models have difficulties capturing these three outcomes. In the
present work, we take up recent ideas and return to first principles to derive a refined
model of the within and between-host dynamics. It turns out that this model qualitatively
explains the observations in a natural way.

Since the seminal papers of Kermack and McKendrick [2,3], epidemic models have
described the time course of infections primarily at the population level. Although that
has proved to be an effective approximation, the transmission dynamics of an infection
span multiple scales: within-host and population-level among others [4,5]. Unlike the
population scale, where the interest is in the spread of the infection between individuals,
the focal point of the within-host scale is the evolution of the infection inside a single
individual [6]. It is therefore necessary to bridge the multiple scales for a comprehensive
description of the entire infection process. An appropriate formulation of the incidence
term can potentially be gained from such models; so far, the incidences used are mainly
mass action [7], standard incidence [8] or various forms of nonlinear incidences [9].
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Models that link the two scales of infection (multi-scale models) have been advanced
in recent years [10–13]. An important aspect in the formulation of such models is the linking
of the two scales. Many models keep the within-host and the between-host dynamics fairly
separated, and extract information from the within-host model to feed into the population-
level model [13]. Others [12,14] go a step further and structure the population according
to the state of individuals, in line with what is proposed in [15,16]. This creates a better
connection between the two levels. However, most papers mentioned above keep the
strict distinction between susceptible and infected persons, which appears natural in the
tradition of epidemic modeling; however, as we discuss next, on a second glance and at
least in certain cases, it is somewhat arbitrary.

In the present work, we use cholera as a base to propose a further step in connecting
the within-host dynamics to the disease outbreak at the population level; that is, the model
bridges two different scales. The disease, as a severe public health threat, has been targeted
by the modeling community for a long time. Population-level models for the infection
have been advanced in [1,17–19], some of which structure the population according to
the age [20,21]. A multi-scale model for the disease proposed in [22] makes use of the
interaction between the environmental vibrios and human vibrios (inside the body) to
link the within- and between-host dynamics. The ideas are extended in [23] where the
within-host model includes the interaction with the immune system and the connection of
the two scales is through the pathogen evolution in the environment. In [24], the epidemic
model is structured using a function defined as the immune status, which is derived from
the within-host model.

Similarly, our model seeks to advance the multi-scale modeling of the disease. On one
hand, we aimed to introduce a novel model structure that is closer to the immunological
and environmental processes. On the other hand, we aimed to provide a rigorous way
to analyze this novel model structure. Unlike the previously mentioned models, the
epidemic model is structured using the pathogen load such that the distinction between
a susceptible and infected individual is relaxed. We formulate the model by explicitly
addressing the pathogen level in susceptible individuals. This sounds contradictory at first
glance since susceptible individuals are usually thought to be pathogen free. However,
the bacteria causing cholera, Vibrio cholerae, exist in the environment [25]. Contaminated
food and water, enhanced by improper sanitation and hygiene practices, is the main cause
of infection. In some instances, the consumption of contaminated food and water does
not immediately trigger infection. This is because a cholera infection only occurs when
the pathogen load of an individual exceeds a critical threshold [26,27] (which varies from
individual to individual, e.g., caused by differences in the gut microbiome [28,29]). That is,
individuals take up V. cholerae, but the innate immune system fights off and eliminates the
bacteria as long as the critical pathogen threshold is not exceeded. Furthermore, laboratory
experiments on mice show that a moderate increase in the infectious dose leads to an
increase in the pathogen burden over time (with a time scale of approximately 12 h) [30],
and not to infection. We are thus led to a model, where the susceptible are structured by
their pathogen load, and the transition into the infected class happens at a rate dependent
on the pathogen load. This step allows for better connection of the within- and between-
host dynamics, as the somewhat arbitrary distinction between a susceptible person and an
infected person is softened.

Mathematically, the model structure resembles that of fragmentation–aggregation
equations: we have a time-continuous process of pathogen clearance (we assume that
pathogens are degraded at a constant rate within a host), and at randomly distributed times,
by food uptake, we have booster events that instantaneously increase the pathogen load.
Accordingly, the analysis of the invariant distribution for the pathogen load follows the
theory developed for aggregation–fragmentation equations, particularly for cell division,
given in the 1980s by Heijmans, Gyllenberg and others [31,32], which was later extended,
e.g., by Doumic and others [33–36]. The understanding of the pathogen load’s invariant
distribution and the assumption of a time scale separation then allows the reduction of the
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rather complex multi-scale model to a population-level only model, where the incidence
term assumes a form derived from the multi-scale model. We then analyze the resultant
model numerically.

The paper is structured as follows: In Section 2, we introduce the model. In Section 3,
we focus on the within-host pathogen dynamics and show that these dynamics yield, in
the long run, an invariant pathogen distribution. In Section 3, we perform a rigorous
mathematical analysis of the model. The results are intuitive while the content is rather
technical; a reader who is interested in the application side rather than the mathematical
theory should consider skipping this section. In Section 4, we derive a kind of SIR-model
from our structured model and discuss the long term behavior. The results are put into
context in the discussion in Section 5.

2. Model

The human population is subdivided into three compartments that represent the
susceptible (S), infected (I) and recovered (R) individuals. Additionally, we have the
bacterial concentration in the environment B. The pathogens (Vibrio cholerae) can survive
and reproduce in the environment without interaction with human hosts. We simply
assume an environmental pathogen production rate a and a pathogen death rate σ. As a
detailed model of the pathogen’s life cycle is out of the scope of the present article, we aim
to focus on the human population.

In particular, we aimed at a model connecting the within-host level with the popu-
lation level. Thereto, we assign a pathogen load P to each susceptible person. Although
transmission can take place directly through person-to-person contact, we only considered
the case of indirect transmission since direct transmission is a rare occurrence [37]. That
is, contact with contaminated food boosters the pathogen load of an individual by ψB. As
food uptake does not take place randomly, there is a minimal and a maximal time between
these events, we also take the time since the last booster event τ into account. That is, we
have S = S(t, τ, P), the susceptible class is structured according to their pathogen load,
and the time since the last uptake event. It turns out, that this structure is not only more
realistic but also mathematically convenient. The timing of booster events is modeled by
ρ(τ), which we will discuss below in more detail.

It is well known, that a critical pathogen load is required for an infection to occur [26,38].
For a sub-critical level, the innate immune system is able to control the pathogens. We take
that into account by defining a clearance rate γ for the within-host pathogens. That is, within
a single susceptible individual, we have an interplay between the booster event and the
degradation of pathogens, which establishes a stochastic process (see Figure 1). Experiments
on mice with a moderate pathogen level show the exact kind of decline in the pathogen
load addressed by this sub-model for the susceptible [30]. Furthermore, the infection rate
β is a function depending on the pathogen load, β = β(P). Here, β(P) = 0 if the pathogen
load is sub-critical. β only becomes positive if the pathogen load P exceeds some value and
persons with such a high pathogen load are transferred into the infected class. An infected
individual sheds pathogens at rate ξ into the environment, and recovers at a rate of α. We
assume that the recovered individuals become immune and stay immune: the time scale
of our model covers months (time scale of one cholera epidemic), and not years, where
recovered individuals become susceptible again.

We add one more assumption: we expect the dynamics on the population level to be
slow, while the within-individual pathogen dynamics are fast. A typical cholera epidemic
has a time scale of weeks or months, while the time between two booster events is rather
hours, and accordingly, the time scale of the native immune event to handle the ingested
pathogens is the same as the time scale for the uptake events (otherwise the pathogens
accumulate and eventually an infection would be inevitable). The slow time scale is
expressed by the rate ε.
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Figure 1. Time course of the pathogen load within a single susceptible individual: booster events
(uptake of pathogens) instantaneously increase the load, in-between two booster events the immune
system leads to an exponential decrease in pathogens. The time between two booster events is given
by i.i.d. random variable T. ψB = 1 is taken constant here, the initial time span is dismissed as a
burn-in phase s.t. time runs here from 2970 to 3010.

All in all, the model reads

∂tS(t, τ, P) + ∂τS(t, τ, P) + ∂P(−γPS(t, τ, P)) = −ρ(τ)S(t, τ, P)− εβ(P)S(t, τ, P)

S(t, 0, P) =
∫ τ̂

τ̌
ρ(τ)S(t, τ, P− ψB)dτ

S(t, τ, P) = 0 for P < 0 (1)

İ =
∫ ∞

0

∫ τ̂

τ̌
εβ(P)S(t, τ, P)dτdP− εαI

Ṙ = εαI

Ḃ = ε(a + ξ I − σB)

S(0, τ, P) = S0(τ, P), I(0) = I0, R(0) = R0, B(0) = B0.

The boundary condition S(t, 0, P) defines the pathogen density in the susceptible right
after a booster event. The time since the last booster event τ is zero in this case, while
the delay term P− ψB implies that the boostered individuals had a lower pathogen load
before the jump. After defining the model equations, we turn to discuss a central aspect,
the timing of booster events coded by ρ(τ). The idea is that, beneath our deterministic
model, there is a stochastic process describing the uptake of pathogens. We will later use
this idea to formulate a numerical method to obtain a stationary solution of our model.
The time between two booster events are i.i.d. as a random variable T with probability
density ϕ(t) ∈ C1(R+). That is, P(T < τ) =

∫ τ
0 ϕ(τ) dt. We assume that there is a minimal

time τ̌ > 0 between two booster events, P(T < τ̌) = 0, as well as a maximal time τ̂ > τ̌,
P(T < τ̂) = 1. Therefore,

ϕ(τ) = 0 for τ ∈ [0, τ̌) ∪ (τ̂, ∞),
∫ τ̂

τ̌
ϕ(τ) dτ = 1. (2)
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These assumptions are sensible given the application, and, as we will find out, are
also convenient in the analysis of the model. The parameter ρ(τ) in the model is now the
hazard rate defined by ϕ(τ),

ρ(τ) =
ϕ(τ)

1−
∫ τ

0 ϕ(s) ds
.

We superimpose several rather technical assumptions on the hazard rate.

Assumption 1. The hazard rate ρ(τ) = ϕ(τ)

1−
∫ τ

0 ϕ(s) ds
stems from a distribution ϕ(τ) ∈ C1(R+),

where ϕ satisfies (2). We also assume that

(a) lim
τ→τ̂

∫ τ

0
ρ(τ) dτ = ∞, (b) sup

τ∈[0,τ̂]
ρ(τ)e−

∫ τ
0 ρ(s) ds < ∞, lim

τ→τ̂
ρ(τ)e−

∫ τ
0 ρ(s) ds = 0.

(c)
∫ τ̂

τ̌
ρ2(τ) e−

∫ τ
0 ρ(s) ds dτ < ∞, (d)

∫ τ̂

τ̌
|ρ′(τ)| e−

∫ τ
0 ρ(s) ds dτ < ∞.

In Appendix B.1, we show that these assumptions are satisfied by a wide range of
random variables T (resp. their distribution ϕ).

3. Pathogen Distribution for Constant Environmental Pathogen Load

It follows that the analysis of the pathogen distribution S(t, τ, P) under the condition
that the environmental pathogen load B is constant and no infections are occurring, we
take ε to zero in (1), is central in the reduction in the model. That is, we consider

∂tS(t, τ, P) + ∂τS(t, τ, P) + ∂P(−γPS(t, τ, P)) = −ρ(τ)S(t, τ, P)

S(t, 0, P) = g(t, P) =
∫ τ̂

τ̌
ρ(τ)S(t, τ, P− ψB)dτ (3)

S(0, τ, P) = S0(τ, P).

for B > 0 given, fixed. The aim of this section is to show that there is a stationary
solution of (3) (the invariant distribution of the underlying stochastic model), and that any
non-negative initial condition eventually tends to this solution. Thereto, we first show
that (3) defines a strongly continuous and eventually compact semigroup, and then inspect
the spectrum of the infinitesimal generator of this semigroup. As we will find out, the
generator has an eigenvalue 0 (caused by mass conservation), which is dominating. The
non-local term in the boundary condition (jump of B by a booster event) is not completely
straightforward to handle.

Mathematically, this semigroup is close to systems describing cell division, or more
generally, aggregation–fragmentation equations. While in aggregation–fragmentation
equations, entities are growing and are decreased by sudden non-local fragmentation
events, in our case, the continuous degradation of the immune system decreases P and
the sudden disruptive non-local events (booster events) increase P. This is the difference
between aggregation–fragmentation equations and our model. However, for the analysis,
we mostly follow the strategy used for those equations developed by Heijmans, Gyllenberg
and others [31,32,39], and advanced in recent years [33,34].

We adapt the methods above to address a technical problem that arises in the analysis:
the lack of strong positivity. That is, we find a compact interval [P∗, P∗], with P∗ and P∗

being the lower and upper bound of the pathogen, respectively, for the pathogen load right
after a booster event happens. However, the probability mass is zero at the boundary of this
interval. To solve this, we need to first regularize the problem before using the standard
arguments. Additional effort is necessary if we pass to the limit and de-regularize the
operators again, to ensure that the desired results remain valid in the limit.

Most part of the present section focuses on the mathematical theory and is rather
technical. While it is rather intuitive that the results we aim at are true, a reader who is
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mainly interested in the epidemic modeling aspect might consider skipping this section
and jumping directly to Section 4, where we use the results derived in the present section
to obtain a reduced model that will be analyzed under the application point of view. For an
introduction to concepts of function spaces, compactness, semigroups and spectral theory,
we refer the reader to [40,41].

3.1. Semigroup

Below, using the methods of characteristics, we show that there is a bounded region
Ω, such that the semigroup defined by (3) has the space of continuous functions C0(Ω) as
an invariant function space. We thus work with the state space E = C0(Ω). For now, we
take Ω for granted, and define the operator A : D(A) ⊂ E→ E as

Aφ(τ, P) = −∂τφ(τ, P)− ∂P(−γPφ(τ, P))− ρ(τ)φ(τ, P) ∀φ ∈ D(A) (4)

D(A) = {φ(τ, P)|φ, Aφ ∈ E, φ(0, τ) =
∫ τ̂

τ̌
ρ(τ)φ(τ, P− ψB)dτ}.

We can rewrite (3) as the abstract Cauchy equation (with the understanding that
S(t) ∈ E).

d
dt

S(t) = AS(t), S(0) = S0.

We next show that the operator A is the infinitesimal generator of a strongly continuous
semigroup {T(t)|t ≥ 0} on E. As it is usual for this kind of equation [42], the construction of
the existence of the semigroup is based on the method of characteristics. The characteristic
curves of (3) are given by

dt
ds

= 1,
dτ

ds
= 1,

dP
ds

= −γP,
dz
ds

= −(ρ(τ)− γ)z.

For t < τ < τ̌, we obtain the solution by a pure transport of the initial conditions
along the characteristics,

t = τ, τ = s + τ0, P = P0e−γs, z = S0(τ0, P0)e−
∫ s

0 ρ(s+τ0)−γds.

S(t, τ, P) = S0(τ − t, Peγτ)e−
∫ τ

τ−t ρ(τ′)−γdτ′ .

Therewith, for t < τ̌, we obtain the boundary values S(t, 0, P) by an appropriate
integral over S0,

g(t, P) =
∫ τ̂

τ̌
ρ(τ)S(t, τ, P− ψB)dτ

=
∫ τ̂

τ̌
ρ(τ′)S0(τ

′ − t, (P− ψB)eγτ′)e−
∫ τ′

τ′−t ρ(τ′′)−γdτ′′dτ′ (5)

such that we are also able to define S(t, τ, P) for τ < t < τ̌.

t = τ + t0, τ = s, P = P0e−γs, z = S(t0, 0, P0)e−
∫ s

0 ρ(τ′)−γdτ′

S(t, τ, P) = S(t− τ, 0, Peγτ)e−
∫ τ

0 ρ(τ′)−γdτ′ = g(t− τ, Peγτ)e−
∫ τ

0 ρ(τ′)−γdτ′

=
∫ τ̂

τ̌
ρ(τ′)S0(τ + τ′ − t, (Peγτ − ψB)eγτ′)e−

∫ τ′
τ+τ′−t ρ(τ′′)−γdτ′′dτe−

∫ τ
0 ρ(τ′)−γdτ′ .

Combining the two observations, we are able to explicitly define the semigroup for
0 ≤ t ≤ τ̌,
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T(t)S0(τ, P) (6)

=

S0(τ − t, Peγτ)e−
∫ τ

τ−t ρ(τ′)−γdτ′ t ≥ τ∫ τ̂
τ̌ ρ(τ′)S0(τ + τ′ − t, (Peγτ − ψB)eγτ′)e−

∫ τ′
τ+τ′−t ρ(τ′′)−γdτ′′dτe−

∫ τ
0 ρ(τ′)−γdτ′ t < τ.

We have an explicit representation of the semigroup for t ∈ [0, τ̌]. The condition for
strong continuity immediately follows from this representation. We extend that definition
to t ≥ 0. For t = nτ̌ + δ (where 0 ≤ δ < τ̌ and n ∈ N0), we define TtS0 = Tn

τ̌ TδS0. The
following theorem is a consequence of the results above.

Theorem 1. Equation (3) defines a strongly continuous semigroup Tt on C0([0, τ̂]×R+).

As indicated above, the state space (τ, P) ∈ [0, τ̂]×R+ is possible but too large, as
for P� 1, the degradation is faster than the boosting, and hence the mass of the solution
will eventually collect in a bounded region Ω, which turns out to be invariant under the
within-host pathogen dynamics.

We obtain an upper bound P∗ for the pathogen load right after a booster event
(τ = 0): starting at (τ, P) = (0, P∗), the characteristic originating in this point is given by
P(τ) = P∗ e−γτ . The minimal time interval to the next booster event might take place is τ̌,
such that P∗ = P∗ e−γτ̌ + ψB and

P∗ =
ψ B

1− e−γτ̌
. (7)

We also introduced a minimal pathogen load P∗ right after a booster event in the same
way: now we consider booster events happening at the maximal time span τ̂, such that

P∗ =
ψ B

1− e−γτ̂
. (8)

Therewith, we can define the invariant region Ω, bounded above and below by the
characteristic starting in (τ, P) = (0, P∗), respectively, in (τ, P) = (0, P∗), and extending to
the right up to τ̂ (see Figure 2).

}

}

�∗  

�∗ 

��

��

���
v

�

v

Figure 2. Shape of Ω: The upper and lower bound of Ω are given by characteristic curves, originating
in (0, P∗) and (0, P∗). The points P∗ resp. P∗ are constructed in such a way that the characteristics hit
(τ̌, P∗ − ψB) resp. (τ̂, P∗ − ψB).
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Corollary 1. Let

Ω = {(τ, P) | 0 ≤ τ ≤ τ̂, P∗ e−γ τ ≤ P ≤ P∗ e−γ τ}. (9)

If S0 ∈ C0([0, τ̂]×R+), supp(S0) ⊂ Ω, then for all t ≥ 0 supp(TtS0) ⊂ Ω, such that (in
slight abuse of notation) Tt(C0(Ω)) ⊂ C0(Ω).

Note that in the representation of Tt given by Equation (6) the integral extends over
values (τ, P) outside of Ω, where the solution S(t, τ, P) consequently is zero. From now on,
we consider the semigroup to be acting on E = C0(Ω).

We prove the result of the following theorem in Appendix B.2.

Theorem 2. If t > 3τ̂, the semigroup Tt is compact.

3.2. Stationary Solution and Spectral Gap

After establishing the semigroup, we now turn to the spectrum of the infinitesimal
generator. For this, we follow once more the standard approach [31,32,39]: we first convert
the eigenvalue problem into a fixed point equation, then analyze the fixed point operator
(we derive suitable a priori estimates to show compactness), and use the theory of positive
operators (Krein–Rutman) to obtain information about eigenvalues and particularly the
dominant eigenvalue. The problem herein is that we will not find a strongly positive fixed
point operator, and as such, we will have to first regularize our operator before applying
the Krein–Rutman theory and related ideas. Afterwards, we will check that the results hold
for the de-regularized operator.

However, the existence of a stationary solution is simply a consequence of mass
conservation, which implies that f0 = 1 is an adjoint eigenfunction for eigenvalue 0.
Compactness properties imply that there is also an eigenfunction for eigenvalue zero [40].
The involving part is to establish a spectral gap leading to a spectral decomposition of the
underlying Banach space and the stability of the stationary solution [43].

3.2.1. Eigenvalues and Fixed Point Operator

To check for the existence of solutions, we consider the eigenvalue problem associated
with (3).

∂τS + ∂P(−γPS) = −(λ + ρ(τ))S (10)

S(0, P) = g(P) =
∫ ∞

0
ρ(τ)S(τ, P− ψB) dτ.

In the same way as above (Equation (5)), we use the method of characteristics to
transform Equation (10) into a linear integral operator. We obtain

S(0, P) =
∫ τ̂

τ̌
S(0, (P− ψB)eγτ) eγτρ(τ) e−

∫ τ
0 (λ+ρ(s))ds dτ.

Note that we know that Ω is invariant for the semigroup, such that supp(S(0, P)) ⊂
[P∗, P∗]. We are led to the definition of an operator Kλ. The kernel of this operator
eγτρ(τ) e−

∫ τ
0 (λ+ρ(s))ds is integrable due to Assumption 1(b). We also know that Ω is invari-

ant for the semigroup, such that supp(Kλ[S(0, P)]) ⊂ [P∗, P∗]. The integral itself extends
over points outside of Ω, where consequently S(0, P) = 0.

Definition 1. Let Kλ : C0[P∗, P∗]→ C0[P∗, P∗] be defined by

Kλ[g](P) =
∫ τ̂

τ̌
g((P− ψB)eγτ) eγτ ρ(τ) e−

∫ τ
0 λ+ρ(s)ds dτ. (11)
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The integral bounds of K are τ̌ and τ̂, with the understanding that g = 0 if (P−ψB)eγτ

is outside of [P∗, P∗] (see also Figure 2). To be more precise, we can define τ(P) and τ(P)
(see also Proposition A2 in Appendix B.3) such that

Kλ[g](P) =
∫ τ(P)

τ(P)
g((P− ψB)eγτ) eγτ ρ(τ) e−

∫ τ
0 λ+ρ(s) ds dτ.

Particularly, τ(P) = τ(P) for P ∈ {P∗, P∗}, such that for all g ∈ C0([P∗, P∗])

Kλ[g](P∗) = Kλ[g](P∗) = 0 (12)

which leads to technical difficulties as this equation shows that Kλ is not strictly positive.

Corollary 2. An eigenfunction of (10) for eigenvalue λ is a fixed point of Kλ. Particularly, a
stationary solution of (3) is a fixed point of K0.

3.2.2. A Priori Estimates

The first statement of the next proposition is basically a fact that the semigroup is
mass-preserving.

Proposition 1. (a) For g ∈ L∞(P∗, P∗), g ≥ 0, we find

‖K0[g]‖L1(P∗ ,P∗) = ‖g‖L1(P∗ ,P∗).

(b) If g ∈ C0[P∗, P∗], then Kλ[g] ∈ C0[P∗, P∗], and there is c = c(λ) > 0 such that

‖Kλ[g]‖C0[P∗ ,P∗ ] ≤ c ‖g‖C0[P∗ ,P∗ ].

In Appendix B.3, we give the proof of Proposition 1 and use the a priori estimates to
show the compactness of the operator Kλ in Proposition A2.

3.2.3. Regularized Operator

The Perron–Frobenius theory of positive operators will be useful in the proof of the
existence of a dominant eigenvalue. For the convenience of the reader, we refer to [32,44]
for the definition of basic terms. The Krein–Rutman theorem below (Theorems 3 and 4) is
an extension of the theorem to infinite dimensional Banach spaces.

Theorem 3 (Krein–Rutman Theorem, [44]). Let S be a total cone, K : S → S be a compact
positive linear operator and r(K) > 0. Then, r(K) is an eigenvalue of S that corresponds to a
positive eigenvector Ψ ∈ S+.

Theorem 4 ([44]). Let S be a solid cone and K : S → S be a compact strongly positive linear
operator. Then,

1. r(K) > 0, r(K) is a simple eigenvalue with an eigenvector in the non-empty interior So and
no other eigenvalue has a positive eigenvector;

2. | λ |< r(K) ∀ eigenvalues, λ 6= r(K).

Furthermore, the following theorem is well known (e.g., [45], Proposition 1.4).

Theorem 5. If Ki are linear positive operators on the same Banach space and K1 ≤ K2, then
‖K1‖ ≤ ‖K2‖ and r(K1) ≤ r(K2).
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Regularized Operator Kε
λ

We regularize the integral operator by replacing Kλ with a convex combination of
Kλ and a strictly positive rank 1 operator, which also preserves the L1 norm of positive
functions.

Definition 2. Let Q : C0[P∗, P∗]→ C0[P∗, P∗] be the rank-1 operator

Q[g] =
1

P∗ − P∗

∫ P∗

P∗
g(τ)dτ (13)

For ε ∈ [0, 1], introduce Kε
λ : C0[P∗, P∗]→ C0[P∗, P∗] by

Kε
λ[g] = (1− ε)Kλ[g] + εQ[g]. (14)

Furthermore, we introduce

Λε = {λ ∈ C | ∃g ∈ C([P∗, P∗],C) : Kε
λ[g] = g}.

From the definition and our knowledge about Kλ, we immediately obtain the follow-
ing corollary.

Corollary 3. (a) For ε ∈ [0, 1], λ ∈ C the operator Kε
λ is compact, and for ε ∈ (0, 1), λ ∈ R

strongly positive;
(b) The map (λ, ε)→ Kε

λ is continuous with regard to the operator norm;
(c) Furthermore, for g ≥ 0, we have

‖Kε
0[g]‖L1(P∗ ,P∗) = ‖g‖L1(P∗ ,P∗).

The adjoint eigenfunction of Kε
0 for eigenvalue 1 is f ε

0 = 1, independently on ε ∈ [0, 1].

Note that Λ0 coincides with the point spectrum of the infinitesimal generator.

Eigenvalues

Later, we will show that the semigroup has a non-negative stationary solution, that is,
that K0 has a fixed point. To prepare for that result, we show that our regularized operator
Kε

0 already has a positive fixed point.

Theorem 6. For λ = 0, Kε
λ has a fixed point for all ε ∈ [0, 1], which is positive for ε ∈ (0, 1].

Proof. Corollary 3 indicates that there is an adjoint eigenfunction of Kε
0 for eigenvalue 1,

which implies using the compactness of the operator that there also is an eigenfunction
for this eigenvalues. For ε > 0, the Krein–Rutman theorem implies the positivity of the
eigenfunction.

3.2.4. De-Regularization and Spectral Gap
Uniqueness of Fixed Point for λ = 0

Note that the next theorem looks like the Krein–Rutman Theorem. However, as K0
is not strictly positive, we need to prove that theorem via approximations of Kλ by Kε

λ.
Particularly, for λ = 0, we already know that there is an eigenfunction. The additional
information in this special case is the non-negativity of the eigenfunction.

Theorem 7. For λ ∈ R, the spectral radius of Kλ is an eigenvalue with a positive eigenfunction.
Particularly, K0 has a non-negative fixed point and spectral radius 1.
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Proof. There are positive functions gε
λ ∈ C0[P∗, P∗] with Kλ[gε

λ] = gε
λ (Theorem 6), that is,

gε
λ(P) = (1− ε)Kλ[gε

λ](P) + ε Q[gε
λ].

Let λ ∈ R be arbitrary, fixed. We normalize the eigenfunction to ‖gε
λ‖L1(P∗ ,P∗) = 1. Due

to Assumption 1(b), the function ρ(τ) e−
∫ τ

0 ρ(s)ds is bounded (supremum finite), such that

Kλ[gε
λ](P) ≤ C

∫ τ̂

τ̌
g((P− ψB)eγτ) e(γ−λ)τ dτ ≤ C‖gε‖L1(P∗ ,P∗) = C.

and
‖gε

λ‖C0[P∗ ,P∗ ] = ‖Kλ[gε
λ]‖C0[P∗ ,P∗ ] ≤ (1− ε) + ε.

The C0 norm of the family B = {gε
λ | ε ∈ (0, 1)} is uniformly bounded. Then, the set

K0[B] is also bounded in C0,1 and relatively compact in C0, such that we find a subsequence
gεn

λ in C0, εn → 0 for n → 0, that converges in C0 to a function gλ ∈ C0. As gε
λ ≥ 0, also

gλ ≥ 0. We need to exclude that gλ = 0.
As the topology C0 is stronger than the L1 topology, the sequence also converges in L1,

and hence, (the L1 norm of gε
λ is 1) also ‖gλ‖L1(P∗ ,P∗) = 1, such that gλ 6≡ 0. Additionally,

from continuity, Kλ[gλ] = gλ. We establish the existence of a non-negative fixed point.
The function gλ is also an eigenfunction for the spectral radius of Kλ: Kλ is the limit

of the family Kε
λ of compact operators depending (with regard to the operator norm)

continuously on ε; as Kε
λ[gλ] = r(Kε

λ)gε
λ, this equation carries over to ε = 0. For λ = 0 we

have r(Kε
0) = 1 and thus also r(K0) = 1.

Then, we ensure that the fixed point of the K0 solution still is unique, as it is for Kε
0

for ε > 0. Since we used the limit ε→ 0 to construct a fixed point, it is not clear if possibly
two eigenvalues merged in the eigenvalue 1, such that we have a higher dimensional
eigenspace. Ultimately, we use the knowledge that the underlying stochastic process mixes
well enough to prevent a non-unique invariant measure.

Proposition 2. If the space of fixed points of K0 has at least dimension 2, then there is a fixed point
that changes sign.

Proof. Assume there are two different fixed points g1, g2 which are independent (no
α, β ∈ R, |α|+ |β| > 0 and αg1 + βg2 = 0). Both functions are non-zero; without restriction,
both are non-negative (otherwise, we are done). Furthermore, again without restriction,
‖gi‖L1 = 1.

Consider g = g1 − g2 6≡ 0 as g1 6= g2. g is again a fixed point. If g assumes positive
and negative values, we are done. Otherwise, either g ≥ 0 or g ≤ 0.
If g ≥ 0, then

g1 ≥ g2 ≥ 0.

As gi ≥ 0, gi ∈ C0, and the L1-norm of g1 and g2 are equal, we conclude that g1 = g2,
which is a contradiction. The second case g ≤ 0 gives us a contradiction by the parallel
argument.

The next proposition is a way to express that the underlying Markov process is
well mixing.

Lemma 1. Let g ≥ 0, p0 ∈ supp(g). Then, for n ∈ N and λ ∈ R

supp(Kn
λ[g]) ⊃ [(1− e−kγτ̂)P∗ + e−kγτ̂ p0, (1− e−kγτ̌)P∗ + e−kγτ̌ p0].
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Proof. Let p0 ∈ supp(g). Then, {P ∈ [P∗, P∗] : ∃τ ∈ [τ̌, τ̂] : (P − ψB)eγτ = p0} ⊂
supp(Kλ[g]). That is,

[ψB + e−γτ̂ p0, ψB + e−γτ̌ p0] ∩ [P∗, P∗] ⊂ supp(Kλ[g]).

With the same argument, we find

[ψ B + ψ Be−γτ̂ + e−2γτ̂ p0, ψ B + ψ Be−γτ̌ + e−2γτ̌ p0] ∩ [P∗, P∗] ⊂ supp(K2
λ[g])

and, if we iterate k times with operator K,

[ak, bk] ⊂ supp(Kk
λ[g])

where

ak =
k−1

∑
`=0

ψB e−` γτ̂ + e−kγτ̂ p0 = ψ B
1− e−k γτ̂

1− e− γτ̂
+ e−kγτ̂ p0 = (1− e−kγτ̂)P∗ + e−kγτ̂ p0

bk =
k−1

∑
`=0

ψB e−` γτ̌ + e−kγτ̌ p0 = ψB
1− e−k γτ̌

1− e− γτ̌
+ e−kγτ̌ p0 = (1− e−kγτ̌)P∗ + e−kγτ̌ p0.

The boundaries of the interval we obtained is a convex combination between p0 and P∗
(resp. P∗). We find that the support of any positive function expands under iteration with
K, and becomes [P∗, P∗] after an infinite number of iterations. Unfortunately, the operator
is not strictly positive, as Kλ[g](P∗) = Kλ[g](P∗) = 0, and thus, for point measures µ with
supp(µ) ⊂ {P∗, P∗}, the pairing 〈µ, Kn

λ[g]〉 = 0 for all n ∈ N. In contrast, the proposition
indicates that Kλ is semi-supporting in the L2-setting.

Theorem 8. The eigenspace of K0 for eigenvalue 1 is one-dimensional.

Proof. If this is not the case, we have an eigenfunction g ∈ C0 that changes sign (Proposi-
tion 2). That is, we find two non-negative functions g± ∈ C0, both not identically zero, with

g = g+ − g−, supp(g+) ∩ supp(g−) = ∅, supp(g+), supp(g−) 6= ∅.

As K0 is linear,
K0[g+]− K0[g−] = K[g] = g = g+ − g−.

Furthermore, as g± ≥ 0, we know that
∫ P∗

P∗
K0[g±](P) dP =

∫ P∗
P∗

g±(P) dP.
Let us focus on g+. We know that the support of g+ is strictly smaller than [P∗, P∗], as

supp(g−) 6= ∅. We also know that (Lemma 1) supp(K0[g+]) is strictly larger than that of
g+. As the integral of g+ is preserved by K0, it is not possible that g+ ≤ K0[g+]. There is
x0 ∈ supp(g+) with

g+(x0) > K0[g+](x0).

Note that g(x0) = g+(x0) as x0 ∈ supp(g+). Therewith,

g+(x0) > K0[g+](x0) ≥ K0[g+](x0)− K0[g−](x0) = K0[g](x0) = g(x0) = g+(x0)

which is a contradiction.

Spectral Gap

In the last part of this section, we establish the spectral gap. We do that in two steps:
First, we establish the dominance of the eigenvalue λd = 0 in Λ0, then we exclude that the
real parts of a sequence of elements in Λ0 can approximate λd = 0.

For general real λ, we first show that the spectral radius of Kλ is always larger zero.
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Lemma 2. For λ ∈ R arbitrary fixed, we find that r(Kλ) > 0.

Proof. We use Theorem 5, and construct a positive operator K̃ which yields a lower bound
for r(Kλ). Thereto, we rewrite Kλ as

Kλ[g](P) =
∫ τ̂

τ̌
g((P− ψB)eγτ) eγτ ρ(τ) e−

∫ τ
0 λ+ρ(s) ds dτ

=
1

γ(P− ψB)

∫ min{(P−ψB)eγτ̂ ,P∗}

max{(P−ψB)eγτ̌ ,P∗}
g(x) ρ(τ(x; P)) e−

∫ τ(x;P)
0 λ+ρ(s) ds dx

with

x = (P− ψB)eγτ ⇔ τ = τ(x; P) =
1
γ

ln
(

x
P− ψB

)
.

Now we check for points in [P∗, P∗] that are in the integration region

[max{(P− ψB)eγτ̌ , P∗}, min{(P− ψB)eγτ̂ , P∗}]

and where the integral weight is strictly positive, that is, τ(x; P) ∈ (τ̌, τ̂). Simple computa-
tions show that for P∗ < P < P∗, both conditions are given. Choose P = (P∗ + P∗)/2 as a
reference point. Then, there are δ1, δ2 > 0 such that

Kλ[g](P) ≥
∫ P+δ1

P−δ1

g(x) δ2 dx =: K̃[g](P).

Hence, r(Kλ) ≥ r(K̃λ). As K̃[g] is a positive rank one operator (compact) with eigen-
function g(x) = χ[P−δ1,P+δ1]

(P) (this is the only eigenfunction for an eigenvalue 6= 0), the
spectral radius (and only positive eigenvalue) is given by r(K̃) = 2δ1 δ2 > 0.

Proposition 3. For λ ∈ R, the operator Kλ has a fixed point if and only if λ = 0. Furthermore,
r(Kλ) is strictly increasing in λ.

Proof. We already know that r(K0) = 1. Furthermore, the eigenfunction gλ and the adjoint
eigenfunction fλ of Kλ for eigenvalue r(Kλ) are non-negative. Due to Lemma 1, gλ > 0 in
the open interval (P∗, P∗). If the support of fλ is a subset of {P∗, P∗}, then there are a, b ∈ R
such that

〈 fλ, Kλ[ f ](P)〉 = aKλ[g](P∗) + bKλ[g](P∗) = 0

according to Equation (12). That is, in this case, fλ is an adjoint eigenfunction for eigenvalue
0, which contradicts the fact that ρ(Kλ) > 0 (Lemma 2). Thus, the intersection of (P∗, P∗)
and the support of fλ is non-void, and hence 〈 fλ, gµ〉 > 0 for all λ, µ ∈ R.

Now, we use an argument by Heijmans [31]: Let λ, µ ∈ R, λ > µ and g non-negative.

Kµ[g](P) =
∫ τ̂

τ̌
g((P− ψB)eγτ) eγτ ρ(τ)e−

∫ τ
0 µ+ρ(s)dsdτ

≥ e(λ−µ)τ̌
∫ τ̂

τ̌
g((P− ψB)eγτ) eγτ ρ(τ)e−

∫ τ
0 λ+ρ(s)dsdτ = e(λ−µ)τ̌K0

λ[g](P)

Taking g = gµ, we obtain r(K0
µ) gµ(P) = K0

µ[gµ](P) ≥ e(λ−µ)τ̌K0
λ[gµ](P). If we take the

duality pairing with the positive eigenfunctional fλ on both sides, and use that 〈 fλ, gµ〉 > 0,
we obtain

r(K0
n) ≥ e(λ−n)τ̌r(K0

λ)

Hence, λ→ r(K0
λ) is continuous and strictly decreasing on R.

Theorem 9. If λ ∈ Λ0, λ 6= λd = 0, then Reλ < λd = 0.
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Proof. We basically adapt the argument ([31], Theorem 6.13) Suppose that λ ∈ Λ0 and
there is a corresponding eigenfunction gλ ∈ C0([P∗, P∗],C) such that Kλ[gλ] = gλ. Then

|gλ| = |Kλ[gλ]| =

∣∣∣∣ ∫ τ̂

τ̌
gλ((P− ψB)eγτ) ρ(τ)eγτe−

∫ τ
0 λ+ρ(s)dsdτ

∣∣∣∣
≤

∫ τ̂

τ̌
|gλ((P− ψB)eγτ)| eγτ ρ(τ)e−

∫ τ
0 <(λ)+ρ(s)dsdτ = K<(λ)[|gλ|].

If we iterate with K<(λ), we obtain for n ∈ N

Kn
<(λ)[|gλ|] ≤ Kn+1

<(λ)[|gλ|].

Now, we know that there is a non-negative eigenfunctional f<(λ) corresponding to the
eigenvalue r(K<(λ)) of K<(λ). We know (by the argument in the proof of Proposition 3) that
the support of f<(λ) has a non-zero intersection with (P∗, P∗).

〈 f<(λ), Kn
<(λ)[|gλ|]〉 ≤ 〈 f<(λ), Kn+1

<(λ)|gλ|〉 = r(Kε
<(λ))〈 f<(λ), Kn

<(λ)[|gλ|]〉.

For a sufficiently large n, due to the expansion property of the support under iteration with
K<(λ) (Lemma 1), we can ensure that 〈 f<(λ), Kn

<(λ)[|gλ|]〉 > 0, and thus, r(Kε
<(λ)) ≥ 1. Since

r(Kε
λ), λ ∈ R is a non-increasing function (Lemma 1) and r(Kε

λd
) = 1, it implies that<(λ) ≤ λd.

Suppose λ = λd + iη ∈ Λ0, we show that η = 0. As <(λ) = λd, we proceed

|g| = |Kλ[g]| =

∣∣∣∣ ∫ τ̂

τ̌
g((P− ψB)eγτ) eγτ ρ(τ)e−

∫ τ
0 λ+ρ(s)dsdτ

∣∣∣∣
≤

∫ τ̂

τ̌
|g((P− ψB)eγτ)| eγτ ρ(τ)e−

∫ τ
0 <(λ)+ρ(s)dsdτ = Kε

λd
[|g|],

that is, Kλd [|g|] ≥ |g|. Assume that Kλd [|g|] > |g|. As we know that the adjoint eigenvalue
of Kλd (recall λd = 0) for eigenvalue 1 is f0 = 1 (identical 1 on [P∗, P∗], see Corollary 3), we
have

〈1, |g|〉 = 〈1, Kλd [|g|]〉 > 〈1, |g|〉

which is a contradiction. Thus, Kλd [|g|] = |g|.
If we let gd to be the eigenfunction corresponding to the eigenvalue r(Kλd) = 1, we can

write that |g| = cgd for some constant c which we may assume to be one (the eigenspace of
Kλd for eigenvalue 1 is one-dimensional, Theorem 8). Hence g(P) = gd(P)eiζ(p) for some
real-valued function ζ(P). If we substitute this relation into |Kλ[g]| = |g| = gp = Kλd [gd],
we obtain ∫ τ̂

τ̌
gd((P− ψB)eγτ) eγτ ρ(τ)e−

∫ τ
0 λd+ρ(s)dsdτ

=

∣∣∣∣ ∫ τ̂

τ̌
gd((P− ψB)eγτ) eγτ eiζ(p) ρ(τ)e−

∫ τ
0 λd+iη+ρ(s)dsdτ

∣∣∣∣.
From ([32], Lemma 6.12), there exists a constant b ∈ C, |b| = 1 such that ζ(P)− ητ = b.

Substituting this relation in Kλ[g] = g, we obtain

eib
∫ τ̂

τ̌
ρ(τ)gd[(P− ψB)eγτ ]eγτe−

∫ τ
0 λd+ρ(s)dsdτ = gd(p)eiζ(p).

Thus, eibKλd [gd](P) = gd(P)eiζ(P), which in turn implies b = ζ(P), such that η = 0.
Hence, there is no element with real part λd apart from λd itself.

We then show that the spectral gap follows from an argument by Gyllenberg and
Heijmans [39].
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Theorem 10. There exists δ > 0, such that for all λ ∈ Λ0, λ 6= λd = 0, it is true that

<(λ) < λd − δ = −δ.

Proof. We know that the desired inequality is true for δ = 0. If no such δ > 0 exists, then
there is a sequence of elements λn ∈ Λ0 with <(λn)→ λd = 0. For each λn, there is a fixed
point gn of Kλn , which in turn defines an eigenfunction Sn(τ, P) of (4). This eigenfunction is
also an eigenfunction of Tt for eigenvalue eλn t. As the real values of λn converge to λd = 0,
the spectrum of the operator Tt has an accumulation point. Since Tt is compact for t > 3τ̂
(Theorem 2), that is impossible.

From here, as it is standard for the analysis of aggregation–fragmentation equations [39,46,47],
a result by Webb [43,47] immediately implies information about the asymptotic behavior of the
semigroup: the underlying Banach space can be decomposed by a spectral projection into the
eigenspace of the dominant eigenvalue 0, and a remaining part. If Σ is the stationary solution,
then (as 1 is the adjoint eigenfunction), the spectral projector is given by Π[ f ] = 〈1, f 〉Σ. The
remaining part (I −Π)[TtS0] will tend to zero for t→ ∞. To sum it up, we find:

Theorem 11. Let Σ ∈ C0(Ω) denote the non-negative stationary solution of (3), normalized to
‖Σ‖L1(Ω) = 1. Consider TtS0 for a non-negative, non-trivial initial condition S0 ∈ C0(Ω). Then,
with R̃(t) = (I −Π)[TtS0],

TtS0 = Σ 〈1, S0〉+ R̃(t)

and R̃(t)→ 0 for t→ ∞ exponentially fast in C0.

4. Reduced Model

We use the theory from Section 3 above to reduce the dimension of the model, and
investigate the behavior of the resulting equations by numerical simulation.

4.1. Fast-Slow Analysis

We intend to use the singular perturbation theory. For an intuitive introduction,
see [48], while a formal approach is given in [49]. As above, we rewrite the semigroup as
d
dt S = AS. Then, there is a stationary solution Σ(τ, P) ∈ C0(Ω) (an eigenfunction of A for
eigenvalue 0). Please note that the generator A depends on the environmental pathogen
load B (which we take to be fixed for the moment), such that the eigenfunction Σ also
depends on B. The adjoint eigenfunction is simply Σ∗(τ, P) = 1, as the semigroup is
mass-preserving,

d
dt

∫
Ω

Σ∗(τ, P) S(t, τ, P) d(τ, P) =
d
dt

∫
Ω

S(t, τ, P) d(τ, P) = 0.

Then, Σ and Σ∗ are the right and left eigenfunctions of A for eigenvalue 0. Note that
Σ∗(τ, P) = 1 is independent of B.

We define the spectral projector Π f (τ, P) = Σ(τ, P; B)
∫

Ω f (τ, P) d(τ, P) = Σ 〈1, f 〉.
Then, AΠ = ΠA and

d
dt

Π S = AΠ S = AΣ 〈1, S〉 = 0,
d
dt
(I −Π)S = A(I −Π)S.

The definition of the projector Π implies that

ΠS(t, τ, P) = Σ(τ, P; B) s(t) with s(t) =
∫

Ω
S(t, τ, P) d(τ, P).

We use these two projectors to define a new coordinate system that disentangles the
slow and fast dynamics, S = ΠS + (I −Π)S = Σ s + (I −Π)S. Until now, the considera-
tions have been made under the assumption that B is fixed. Even if B (slowly) varies with
time, we can still use these new coordinates, but now the projectors Π and (I −Π) do not
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commute with the time derivative. In the case of I −Π, we simply use the chain rule and
the fact that B′ scales with O(ε) to obtain

(I −Π)
d
dt

S =
d
dt
((I −Π)S) +O(ε).

Hence, multiplying the first model equation d
dt S = AS− ε β(P)S by (I −Π) from the

left yields

d
dt
(I −Π) S = A(I −Π) S− ε(I −Π)[β(P) (Σs + (I −Π)S)] +O(ε).

In the case of Π, we look slightly more closely, using the fact that the left eigenfunction
Σ∗ = 1 does not depend on B, such that

Π
d
dt

S(t, τ, P) = Σ(τ, P)
∫

Ω

d
dt

S(t, τ, P) d(τ, P) = Σ(τ, P)
d
dt

s(t).

If we integrate this equation over Ω, we have∫
Ω

Π
d
dt

S(t, τ, P) d(τ, P) =
d
dt

s(t).

That is, multiplying d
dt S = AS− ε βS by Π from the left, and integrating over gives us

an equation for s(t) (recall Π A = 0)

d
dt

s(t) = −ε s(t)
∫

Ω
β(P)Σ(τ, P; B) d(τ, P)− ε 〈1, β(P) (I −Π)S〉.

All in all, our model becomes

d
dt

s(t) = −ε s(t)
∫

Ω
β(P)Σ(τ, P; B) d(τ, P)− ε 〈1, β(P) (I −Π)S〉

d
dt
(I −Π) S = A(I −Π) S− ε(I −Π)[β(P) (ΠS + (I −Π)S)] +O(ε)

d
dt

I = ε
∫

Ω
β(P) (Σ(τ, P; B) s(t) + (I −Π)S) dP dτ − εαI

d
dt

R = ε αI

d
dt

B = ε (a + ξ I − σB).

That is, only (I −Π) S is the fast variable, while all other variables are slow.
Fast system. If we take ε = 0, we find for, the fast variable,

d
dt
(I −Π) S = A(I −Π) S.

Due to the spectral gap, we know that (I −Π) S→ 0. Therefore, (I −Π) S = 0 forms
the slow manifold.
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Slow system. Now we use the slow time T = εt, and the result for the slow manifold, and
obtain the reduced model

d
dT

s = −s
∫

Ω
β(P)Σ(τ, P; B) d(τ, P) (15)

d
dT

I = s
∫

Ω
β(P)Σ(τ, P; B)d(τ, P)− αI (16)

d
dT

R = αI (17)

d
dT

B = a + ξ I − σB. (18)

The model suggests that the distribution of the susceptible population is always in its
(quasi) steady state, and hence the force of infection becomes

∫
Ω β(P)Σ(τ, P; B) d(τ, P).

Behavior of the Reduced Model: A Simulation Study

We show the dependency of Σ on B.

Lemma 3. If Σ(τ, P) is a stationary solution of (3) for ψB = 1 with
∫

Ω Σ d(τ, P) = 1, then

S(τ, P; B) =
1

ψ B
Σ(τ, P/(ψB))

is a stationary solution for a given value of ψ B with
∫

Ω S d(τ, P) = 1.

Proof. We suppress the multiplicative factor 1
ψ B that only ensures that the norm is pre-

served. Let P̃ = P/(ψB).

∂τS + ∂P(−γPS) =
∂

∂τ
Σ(τ, P/(ψB)) +

∂

∂P
(−γPΣ(τ, P/(ψB)))

=
∂

∂τ
Σ(τ, P̃) +

∂

∂P̃
(−γP̃Σ(τ, P̃)) = −ρ(τ)Σ(τ, P/(ψB)) = −ρ(τ)S(τ, P; B)

and for the boundary value we obtain∫ τ̂

τ̌
ρ(τ)S(τ, (P− ψB); B) dτ =

∫ τ̂

τ̌
ρ(τ)Σ(τ, (P− ψB)/ψB) dτ = Σ(0, P̃) = S(0, P; B).

As we are not interested in S(τ, P), but only in the marginal distribution
∫

S(τ, P) dτ, it
is convenient to use the underlying stochastic process to obtain a numerical approximation
of the function (kind of Monte-Carlo integration): we determine the realizations of the
random variable T that is distributed according to the time between two booster events.
To keep things simple, we use a uniform distribution on [τ̌, τ̂]. With this aspect, it is
straightforward to compute a realization of the time course of the pathogen load Pt (also see
Figure 1). After dismissing a burn-in phase, we sample at discrete time points the values of
Pt; the histogram of those values is proportional to

∫
S(τ, P) dτ (see Figure 3).
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**

Figure 3. Black: equilibrium solution Σ(P) =
∫

S(τ, P) dτ (T is assumed to be uniformly distributed
between τ̌ = 2, τ̂ = 10, ψ B = 1, γ = 0.2). The support of that function is in the interval [P∗, P∗], as
expected. Gray: β(P) = β0 max{0, 1− π0/P}, where we use π0 = 3 and (for this figure) β0 = 1.

The transition from susceptible to infected corresponds to a massive replication of
pathogens, which (at a short time scale), cannot be controlled any more by the immune
system. A branching process, going from the sub- to the supercritical parameter range,
can suit as a toy model for that process. Inspired by that idea, we use the probability to
take off for a branching process as β(P) and define β(P) = β0 max{0, 1− π0/P} (Figure 3).
With these two components and equipped with Lemma 3, we are able to determine the
incidence’s dependency on B. As we have an SIR model, we do not have stationary
solutions to address. However, if we assume that the class of susceptible is reduced
relatively slowly, we can identify parameter combinations where infections take off: given
that a and I, the environmental pathogen load B asymptotically tends to

B = (a + ξ I)/σ.

If we feed this pathogen level into the incidence, we obtain for the r.h.s. of I′

F(a, I) = s
∫

Ω
β(P)Σ(τ, P; B)d(τ, P)

∣∣∣∣
(a+ξ I)/σ

− αI.

The incidence grows if F(a, I) > 0, and decreases if F(a, I) < 0. We need to emphasize
that, here, we use a kind of quasi-steady state for B. In more realistic cases, B and I will
change on similar time scales, such that F(I, a) mainly yields a heuristic about the behavior
to expect, and not a rigorous threshold argument.

Although cholera is the infection that inspired this model, we are rather interested in
the model structure than in realistic parameters. Therefore, we do not even try to determine
parameters suited for cholera but focus on the discussion of the model for a fairly arbitrary
set of parameters (see Appendix A), which then yield Figure 4. On the left side of the figure,
we find a structure resembling typical bistable behavior. This is not a coincidence: If a
is small, without additional shedding by infected individuals, the pathogen load in the
environment is too small to trigger an epidemic. However, for a certain parameter range of
a, the positive feedback (infected shed pathogens which in turn additionally infect further
individuals) is able to trigger an epidemic: If I is small, the incidence stays low, if I is large,
the number of infections increases further. Only if a is large, such that the pathogen load in
the environment becomes supercritical, can an epidemic happen without a considerable
number of initial infections.
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I'>0

I'<0

a = 15

a = 20.5

a = 20.8

Figure 4. Left: I′ = F(a, I), right: three simulations differing in the choice of a. Black: I(t), gray:
B(t)/20 (B is scaled to be comparable with the prevalence). Parameter values are given in the
Appendix A.

Accordingly, for the three scenarios shown on the right in Figure 4, all parameters
are fixed except a, and I(0) = B(0) = 0 in all cases. For the chosen parameter values,
we observe that there is a threshold value of a between 20.5 and 20.8, which determines
whether an epidemic can take place. For example, for smaller a (a = 15), the pathogen
load tends to a positive equilibrium, while the incidence is identically zero. The pathogen
cannot accumulate sufficiently high in the susceptible host to trigger an infection. If we
further increase a (a = 20.5), then we again have a positive equilibrium (approximately)
for the bacterial compartment, but now there is also a small but positive incidence. The
pathogen concentration is large enough to trigger infections once in a while, but we are still
in a region, where this small incidence is not able to cause a larger outbreak. Only if we
further increase a (a = 20.8), then we reach the situation where an epidemic takes place: in
the initial time interval, the bacteria reach a plateau, where they are able to increase the
prevalence to a certain level. Then, the combined pathogen load due to natural sources
(described by a) and shedding is able to trigger the positive feedback, and we obtain a steep
increase in the prevalence.

This model behavior can be compared with the incidence of cholera: due to the life
cycle of V. cholerae, their abundance undergoes seasonal changes, which can be modeled
by the different values of a. If they are barely present, the incidence of cholera is zero.
However, there are also situations, where we have a low, fluctuating incidence and there
are distinct outbreaks of larger cholera epidemics. The reason for these different figures is
under discussion, but the main idea is the change of V. cholerae abundance, as our model
also seems to hint.

It might also be interesting that at least some cholera epidemics share in the onset
the sharp increase in cases, followed by a low decline, e.g., the outbreak in Katsina (Nige-
ria) in 1982 [50]. An interpretation might be that the pathogen load rapidly increases on
a high level, also increasing the prevalence. In contrast to SIR-type models, where the
increase is stopped by the depletion of the susceptible class, we rather find here a satura-
tion in the incidence function: also, if B becomes arbitrarily large, the force of infection∫

Ω β(P)Σ(τ, P; B)d(τ, P) stays bounded (β(P) is bounded). This property of our model’s
force of infection is in line with other model approaches [1,18].
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5. Discussion

The main contribution of this work is that we have developed a novel framework for
linking the within-host and between-host dynamics of cholera. We have also provided a
rigorous mathematical analysis of this novel structure that can be applied to other multi-
scale disease models. We did this by assigning each susceptible individual with a pathogen
load that grows through the uptake of contaminated food and water (booster event) from
the environment and decreases between two booster events through elimination by the
immune system. The transition from susceptible to infected took place at a certain pathogen-
load dependent rate. This rate was only positive if a critical pathogen threshold was
surpassed. We further took the population dynamics to occur on a slower time scale in
comparison to the within-host dynamics. We analyzed the model on the fast time scale and
showed the existence of an invariant solution. This was performed by the construction of a
semigroup and analysis of the spectrum of its infinitesimal generator. We then used the
results obtained from the spectral analysis to reduce the dimension of the original multi-
scale model on the slow time scale to an SIR model and performed numerical simulations
on the resulting model.

Our work provided a mathematical framework for utilizing the methods used in
aggregation–fragmentation models [32,35] in the analysis of multi-scale disease models.
The interplay between the booster events and the immune responses when the pathogen
load is sub-critical can be compared to the mechanisms of integrate and fire neural models,
which have been used before to address the spread of infections [51,52]. The underlying
mechanism of our model is a velocity-jump process, where the jumps are fostered by the
booster events. Velocity-jump processes are close to age structured models, as both consist
of a transport equation with a nonlocal term. This nonlocal term, however, is focused at
age 0 in age-structured models (the boundary condition—which can be newborns or new
infections in other cases—addresses age zero, see, e.g., [20,21])), but is distributed over all
states in velocity-jump processes. On that, velocity-jump processes are often more complex
to analyze [33,36].

The numerical simulations showed three different parameter regions for the infection
dynamics: In the first region, the V. cholerae bacteria were present in the environment but there
were no cholera cases (incidence is zero); in the next region, few cholera cases would occur
once in a while (the incidence was low such that larger outbreaks could not occur), and in the
third parameter region, a full outbreak of the disease could be observed. Through the results
of these simulations, we can qualitatively explain the different outcomes that occur when the
infection is introduced in a region. The abundance of the bacteria in the environment was seen
as a driving force in the occurrence of an epidemic which was in line with other studies [1]
that highlight the role of environmental reservoirs in the infection process. Nevertheless, we
have to emphasize that our set of parameters is not specific to cholera and therefore we only
obtain an overview of what could happen. The incidence term derived from our model is close
to other saturated incidence terms used for the disease [1,18,19] which have been found to be
more realistic. However, our incidence can drop to zero if the pathogen levels are low which,
contrasts with the other models that maintain positive values.

Our study had several limitations: To reduce the complexity of the analysis, we did
not explicitly account for the role of immune responses which would have made our within-
host model more robust. We also focused on structuring the susceptible class even though
more information can be gained from a postulation of the same for the infected class. Finally,
the aim of this study was to gain insights on the model structure and the mathematical
theory and therefore we did not use parameters specific to cholera in the simulations,
nor did we perform parameter estimation. Parameters derived from empirical findings
could be considered to make the model more sophisticated. We intend to investigate the
aforementioned issues in our future work.
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Appendix A

We again emphasize that we did not try to obtain realistic parameter values for cholera,
as the aim of the present paper was to make a proposal for a modeling approach, and the
analysis of this approach. For Figure 4, we used the following, rather arbitrary parameter
values.

Table A1. Parameter values.

Parameter Value

τ̌ 2
τ̂ 10
γ 0.2
α 12
ζ 2000
σ 10

β(P) β0 max{0, 1− π0/P}
β0 0.01
π0 3
s(0) 100

I(0), B(0) 0

Appendix B

In this Appendix, we provide the proofs of some of the theorems and propositions.

Appendix B.1

In this section, we show that Assumption 1 is satisfied by a wide range of random variables.

Proposition A1. Let ϕ ∈ C1([0, τ̂)), supp(ϕ) ⊂ [τ̌, τ̂],
∫ τ̂

0 ϕ(s) ds = 1, and assume that there
is z ∈ C1(R+) and m > 0 such that ϕ(τ) = z(τ)(τ̂ − τ)m. Then, the hazard rate ρ(τ) satisfies
Assumption 1.

Proof. The conditions (2) are obviously satisfied. We now show (a)–(d) from Assumption 1.
(a) ∫ τ

0
ρ(τ)dτ =

∫ τ

0

ϕ(τ)

1−
∫ τ

0 ϕ(s)ds
dτ = − ln

(
1−

∫ τ

0
ϕ(s)ds

)
implies that limτ→τ̂

∫ τ
0 ρ(τ)dτ = ∞.

(b) Note that the function ρ(τ)e−
∫ τ

0 ρ(s) ds is continuous for τ < τ̂. If we can show that
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this function converges to 0 for τ → τ̂, it is already bounded (sup(. . .) < ∞). We use the
formula derived in (a) and obtain

lim
τ→τ̂

ρ(τ)e−
∫ τ

0 ρ(s) ds = lim
τ→τ̂

ϕ(τ)

1−
∫ τ

0 ϕ(s)ds
e−
∫ τ

0
d
ds

(
−ln
(

1−
∫ s

0 ϕ(τ′)dτ′
) )

ds

= lim
τ→τ̂

ϕ(τ)

1−
∫ τ

0 ϕ(s)ds

(
1−

∫ τ

0
ϕ(s)ds

)
= lim

τ→τ̂
ϕ(τ) = 0.

(c)

∫ τ̂

τ̌
ρ2(τ)e−

∫ τ
0 ρ(s)dsdτ =

∫ τ̂

τ̌

(
ϕ(τ)

1−
∫ τ

0 ϕ(s)ds

)2 (
1−

∫ τ

0
ϕ(s)ds

)
dτ =

∫ τ̂

τ̌

ϕ2(τ)

1−
∫ τ

0 ϕ(s)ds
dτ.

We discuss the asymptotic of the integrand for τ → τ̂ for the case ϕ(τ) = z(τ)(τ̂− τ)m

for some smooth z(τ). For the denominator, we obtain

1−
∫ τ

0
ϕ(s)ds =

∫ τ̂

τ̌
ϕ(s)ds =

∫ τ̂

τ̌
z(τ) (τ̂ − s)mds = O((τ̂ − s)m+1).

Therewith,

ϕ2(τ)

1−
∫ τ

0 ϕ(s)ds
=
O((τ̂ − s)2m)

O((τ̂ − s)m+1)
= O((τ̂ − s)m−1)

which is integrable, as we assume m > 0.
(d) Note that∫ τ̂

τ̌
| ρ′(τ) | e−

∫ τ
0 ρ(s)dsdτ =

∫ τ̂

τ̌

∣∣∣∣ d
dτ

(
ϕ(τ)

1−
∫ τ

0 ϕ(s)ds

)∣∣∣∣ (1−
∫ τ

0
ϕ(s)ds

)
dτ

≤
∫ τ̂

τ̌
|ϕ′(τ)| dτ +

∫ τ̂

τ̌

ϕ2(τ)

1−
∫ τ

0 ϕ(s)ds
dτ

which is integrable, as seen previously.

Appendix B.2

In this section, we show the proof of Theorem 2. The Arzelà–Ascoli theorem provides a
criterion for checking the compactness of a subset in the space of continuous functions [40].
To prove the compactness of the semigroup, we first iterate the boundary condition and
express it as integral over boundary values at earlier times. We then check whether the
C1 estimates of the transformed integral are bounded in C0. If this is satisfied, it implies
compactness by the Arzelà–Ascoli theorem.

Proof. If t > τ̂, the booster event has already occurred, we have

S(t, τ, P) = g(t− τ, Peγτ) e−
∫ τ

0 ρ(τ′)−γdτ′

such that,
S(t, τ, P− ψB) = g(t− τ, (P− ψB )eγτ) e−

∫ τ
0 ρ(τ′)−γdτ′

and therefore

g(t, P) =
∫ τ̂

τ̌
ρ(τ)S(t, τ, P− ψB) dτ =

∫ τ̂

τ̌
g(t− τ, (P− ψB)eγτ) ρ(τ)e−

∫ τ
0 ρ(τ′)−γdτ′ dτ.
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Assuming t > 2τ̂, we iterate twice to express the boundary value g(t, P) as an inte-
gral over the boundary value at earlier times. We already know that g(t, P) =

∫ τ̂
τ̌ g(t − τ′,

(P− ψB) eγτ′) ρ(τ′)e−
∫ τ′

0 ρ(s)−γdsdτ′ and thus,

g(t− τ, (P− ψB)eγτ) =
∫ τ̂

τ̌
g(t− τ − τ′, ((P− ψB)eγτ − ψB) eγτ′) ρ(τ′)e−

∫ τ′
0 ρ(s)−γdsdτ′

which yields

g(t, P)

=
∫ τ̂

τ̌

( ∫ τ̂

τ̌
g(t− τ − τ′, ((P− ψB)eγτ − ψB)eγτ′)ρ(τ′)e−

∫ τ′
0 ρ(s′)−γds′dτ′

)
ρ(τ)e−

∫ τ
0 ρ(s)−γdsdτ

=
∫ τ̂

τ̌

∫ τ̂

τ̌
g(t− τ − τ′, ((P− ψB)eγτ − ψB) eγτ′) ρ(τ′)e−

∫ τ′
0 ρ(s′)−γds′ρ(τ)e−

∫ τ
0 ρ(s)−γdsdτ′dτ.

To transform the integral, we let

u = t− τ − τ′ (A1)

v = ((P− ψB)eγτ − ψB)eγτ′ = (P− ψB)er(τ+τ′) − ψBerτ′

thus

v = (P− ψB)er(t−u) − ψBerτ′ (A2)

erτ′ =
(P− ψB)er(t−u) − v

ψB
, τ′ = τ′(u, v; t, P) =

1
γ

ln
(
(P− ψB)er(t−u) − v

ψB

)
(A3)

and therefore
τ = τ(u, v; t, P) = t− u− τ′(u, v; t, P). (A4)

Then, we find the derivatives of τ(u, v; t, P) and τ′(u, v; t, P) with respect to t and P.

∂tτ
′(u, v; t, P) =

1
r

(
γψB(P− ψB)er(t−u)

ψB((P− ψB)er(t−u) − v)

)
=

(P− ψB)er(t−u)

(P− ψB)er(t−u) − v
.

Since (P− ψB)er(t−u) − v = erτ′ , ∂tτ
′(u, v; t, P) will be bounded for all feasible values

of u, v, t, P.

∂Pτ′(u, v; t, P) =
1
r

(
ψBer(t−u)

ψB((P− ψB)er(t−u) − v)

)
=

1
γ

(
er(t−u)

(P− ψB)er(t−u) − v)

)
.

This derivative is also bounded. Thus, τ′(u, v; t, P) is bounded in C1 with regard to t
and P.
Since τ(u, v; t, P) = t− u− τ′(u, v; t, P), the function τ(u, v; t, P) = t− u− τ′(u, v; t, P) is
C1 with regard to t and P.

Transformation of the integral domain: The integral domain reads (τ, τ′) ∈ [τ̌, τ̂]× [τ̌, τ̂].
Due to (A1)

t− 2τ̌ ≤ u ≤ t− 2τ̂.

Furthermore, for a given v, we have according to (A2)

v ∈ [(P− ψB)eγ(t−u) − ψBeγτ̌ , (P− ψB)eγ(t−u) − ψBeγτ̂ ]
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which implies that the integral boundaries transform to

∫ τ̂

τ̌

∫ τ̂

τ̌

(
....
)

dτ′dτ =
∫ t−2τ̂

t−2τ̌

∫ (P−ψB)eγ(t−u)−ψBeγτ̂

(P−ψB)eγ(t−u)−ψBeγτ̌

(
....
)
|det

∂(τ, τ′)

∂(u, v)
|dudv.

Transformation of the infinitesimal: From (A3) and (A4),

τ(u, v; t, P) = t− u− τ′(u, v; t, P)

τ′(u, v; t, P) =
1
γ

ln
(
(P− ψB)er(t−u) − v

ψB

)
.

We find the Jacobian of τ(u, v; t, P) and τ′(u, v; t, P) with regard to u and v. Therefore,
we first consider their derivatives.

∂uτ′(u, v; t, P) =
−(P− ψB)eγ(t−u)

(P− ψB)eγ(t−u) − v

∂vτ′(u, v; t, P) =
−1

r
(
(P− ψB)eγ(t−u) − v

)
∂uτ(u, v; t, P) = −1− ∂uτ′(u, v; t, P)

∂uτ(u, v; t, P) = −∂uτ′(u, v; t, P).

All four derivatives are C1 with regard to t and P. Thus, the determinant of the
Jacobian also

|det J(u, v; t, P)| = |det
(

∂uτ(u, v; t, P) ∂vτ(u, v; t, P)
∂uτ′(u, v; t, P) ∂vτ′(u, v; t, P)

)
|

is in C1 with regard to t and P. Taking all the elements together we obtain

g(t, P)

=
∫ τ̂

τ̌

∫ τ̂

τ̌
ρ(τ′)g(t− τ − τ′, ((P− ψB)eγτ − ψB)eγτ′)e−

∫ τ′
0 ρ(s′)−γds′ρ(τ)e−

∫ τ
0 ρ(s)−γdsdτ′dτ

=
∫ t−2τ̂

t−2τ̌

∫ (P−ψB)eγ(t−u)−ψBeγτ̂

(P−ψB)eγ(t−u)−ψBeγτ̌
ρ(τ′(u, v; t, P))g(u, v)e−

∫ τ′(u,v;t,P)
0 ρ(s′)−γds′

ρ(τ(u, v; t, P))e
∫ τ(u,v;t,P)

0 ρ(s)−γds|det J(u, v; t, P)|dudv.

As the derivative of t and P no longer acts on g(.) and all the expressions are C1 with
regard to t and P, for t̄ > 2τ̂, we can obtain an estimate of the form

‖g(t, P)‖C1([2τ̂,t̄ ]×[0,P∗ ]) ≤ C( t̄ )‖g(t, P)‖C0([0,t̄ ]×[0,P∗ ])

≤ C( t̄ )‖TtS0‖C0([0,t̄ ],C0(Ω)) ≤ C( t̄ )‖S0‖C0(Ω).

That is, the boundary conditions are smooth for t > 2τ̂, and—as the transport of
the boundary conditions into the region Ω is also smooth—this inequality implies for
t > 3τ̂ that

‖TtS0‖C0([3τ̂,t̄],C1(Ω)) ≤ C( t̄ )‖S0‖C0(Ω).

Note that for t > 3τ̂, the integral extends to S0. Therefore, the semigroup is eventually
compact by Arzelà–Ascoli.

Appendix B.3

In this section, we provide the proof for the Proposition 1 on a priori estimates. We
further use these estimates to show the compactness of operator Kλ in Proposition A2.
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Proof. (Proposition 1). (a) Note that the integrand is non-negative for g ≥ 0. Thus,

∫ P∗

P∗
K0[g](P) dP =

∫ P∗

P∗

∫ τ̂

τ̌
g((P− ψB) eγτ) eγτ ρ(τ) e−

∫ τ
0 ρ(s) ds dτ dP

=
∫ τ̂

τ̌

∫ P∗

P∗
g((P− ψB) eγτ) dP eγτ ρ(τ) e−

∫ τ
0 ρ(s) ds dτ

where we exchanged the integrals with the understanding (as above) that g becomes zero
outside of [P∗, P∗]. We now change the integration variable, x = (P− ψB)eγτ . For any
τ ∈ (τ̌, τ̂), we have

(P∗ − ψB)eγτ = P∗ e−γ(τ̂−τ) < P∗ and (P∗ − ψB)eγτ = P∗ e−γ(τ̌−τ) > P∗

such that
∫ P∗

P∗
g((P− B) eγτ) eγτdP =

∫ P∗
P∗

g(x) dx and we proceed

∫ P∗

P∗
K0[g](P) dP =

∫ τ̂

τ̌

∫ P∗

P∗
g(x) dx ρ(τ) e−

∫ τ
0 ρ(s) ds dτ

= ‖g‖L1(P∗ ,P∗)

∫ τ̂

τ̌
ρ(τ) e−

∫ τ
0 ρ(s) ds dτ = ‖g‖L1(P∗ ,P∗).

(b) If g ∈ C0[B, P∗], then K̂λ[g] is continuous for any P ∈ [P∗, P∗], as the integral kernel
is smooth. The a priori estimate follows as before,

|Kλ[g](P)| ≤
∫ τ̂

τ̌
|g((P− ψB) eγτ)| eγτ ρ(τ) e−

∫ τ
0 λ+ρ(s) ds dτ

≤ C(λ)
∫ τ̂

τ̌
eγτ ρ(τ) e−

∫ τ
0 ρ(s) ds dτ‖g‖C0[P∗ ,P∗ ] ≤ c(λ) ‖g‖C0[P∗ ,P∗ ].

Based on this observation, we obtain a proper C0,1 estimate from which we deduce
compactness by the Arzelà–Ascoli theorem.

Proposition A2. There is a c > 0 such that ‖Kλ[g]‖C0,1[P∗ ,P∗ ] ≤ c ‖g‖C0[P∗ ,P∗ ]. The operator
Kλ : C0[P∗, P∗]→ C0[P∗, P∗] is compact.

Proof. Wealreadyknowthat ‖Kλ[g]‖C0[P∗ ,P∗ ] ≤ c(λ) ‖g‖C0[P∗ ,P∗ ]. Wenowestimate | d
dP Kλ[g](P)|

by ‖g‖C0[P∗ ,P∗ ].
In the following, we need to use the correct boundaries in the integral defining Kλ[g](P)

(until now, we simply said that g becomes zero if the argument is outside [P∗, P∗]). For a
given P, we compute the τ-value, where the upper (lower) boundary of Ω hits P− ψB. For
the upper bound, we have

P− ψB = P∗ e−γτ ⇔ τ =
1
γ

ln
(

P∗

P− ψB

)
.

The intersection with the lower boundary is the same expression where we use P∗
instead of P∗. Accordingly, we define

τ(P) =

{
1
γ ln(P∗/(P− ψB)) for P > ψB + P∗e−γτ̂

τ̂ else
,

τ(P) =

{
1
γ ln(P∗/(P− ψB)) for P < ψB + P∗

τ̌ else
.
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Note that τ and τ are Lipschitz continuous, and the derivative is zero for the constant
part, respectively,

τ′(P) = τ′(P) =
−1

γ(P− ψB)

in the non-constant part. As P ≥ P∗ > ψB, the derivative is bounded. With these prelimi-
naries, we start to estimate.∣∣∣∣ d

dP
Kλ[g](P)

∣∣∣∣ =

∣∣∣∣ d
dP

∫ τ̂

τ̌
g((P− ψB) eγτ) eγτ ρ(τ) e−

∫ τ
0 λ+ρ(s) ds dτ

∣∣∣∣
=

∣∣∣∣ d
dP

∫ τ(P)

τ(P)
g((P− ψB) eγτ) eγτ ρ(τ) e−

∫ τ
0 λ+ρ(s) ds dτ

∣∣∣∣
≤

∣∣∣∣g((P− ψB) eγτ(P)) eγτ(P) ρ(τ(P)) e−
∫ τ(P)

0 λ+ρ(s) ds τ′(P)
∣∣∣∣

+

∣∣∣∣g((P− ψB) eγτ(P)) eγτ(P) ρ(τ(P)) e−
∫ τ(P)

0 λ+ρ(s) ds τ′(P)
∣∣∣∣

+

∣∣∣∣ ∫ τ(P)

τ(P)
g′((P− ψB) eγτ) e2γτ ρ(τ) e−

∫ τ
0 λ+ρ(s) ds dτ

∣∣∣∣.
We estimate the three terms, one after the other.∣∣∣∣g((P− ψB) eγτ(P)) eγτ(P) ρ(τ(P)) e−

∫ τ(P)
0 λ+ρ(s) ds τ′(P)

∣∣∣∣
≤ ‖g‖C0[P∗ ,P∗ ] eγτ̂ max{1, e<(λ) τ̂} ρ(τ̂)e−

∫ τ(P)
0 ρ(s) ds |τ′(P)| ≤ C(λ) ‖g‖C0[P∗ ,P∗ ]

as τ(P) is Lipschitz-continuous, and ρ(τ) e−
∫ τ

0 ρ(s) ds is bounded (Assumption 1). Similarly,∣∣∣∣g((P− ψB) eγτ(P)) eγτ(P) ρ(τ(P)) e−
∫ τ(P)

0 λ+ρ(s) ds τ′(P)
∣∣∣∣ ≤ C(λ) ‖g‖C0[P∗ ,P∗ ].

For the third term, we integrate by parts and proceed

∫ τ(P)

τ(P)
g′((P− ψB) eγτ) e2γτ ρ(τ) e−

∫ τ
0 λ+ρ(s) ds dτ

=
1

γ(P− ψB)

∫ τ(P)

τ(P)
eγτ ρ(τ) e−

∫ τ
0 λ+ρ(s) ds d

dτ
g((P− ψB) eγτ) dτ

=
1

γ(P− ψB)
eγτ(P) ρ(τ(P)) e−

∫ τ(P)
0 λ+ρ(s) ds g((P− ψB) eγτ(P))

− 1
γ(P− ψB)

eγτ(P) ρ(τ(P)) e−
∫ τ(P)

0 λ+ρ(s) ds g((P− ψB) eγτ(P))

− 1
γ(P− ψB)

∫ τ(P)

τ(P)
g((P− ψB)eγτ)

d
dτ

(
eγτ ρ(τ) e−

∫ τ
0 λ+ρ(s) ds

)
dτ.

We again estimate the three terms, where the first two terms follow the same scheme
as above,∣∣∣∣ 1

γ(P− ψB)
eγτ(P) ρ(τ(P)) e−

∫ τ(P)
0 λ+ρ(s) ds g((P− ψB) eγτ(P))

∣∣∣∣ ≤ C(λ) ‖g‖C0[P∗ ,P∗ ]

(note that P− ψB ≥ P∗ − ψB > 0) and similarly for the second term. For the third term,
we remark
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∫ τ(P)

τ(P)

∣∣∣∣ d
dτ

(
e(γ−λ)τ ρ(τ) e−

∫ τ
0 ρ(s) ds

)∣∣∣∣ dτ

≤ (γ + |λ|)e(γ+|<(λ)|)τ̂
∫ τ(P)

τ(P)
ρ(τ) e−

∫ τ
0 ρ(s) ds dτ + e(γ+|<(λ)|)τ̂

∫ τ(P)

τ(P)
|ρ′(τ)| e−

∫ τ
0 ρ(s) ds dτ

+e(γ+|<(λ)|)τ̂
∫ τ(P)

τ(P)
ρ2(τ) e−

∫ τ
0 ρ(s) ds dτ.

Due to Assumption 1, all three integrals are finite. Hence,∣∣∣∣ 1
γ(P− ψB)

∫ τ(P)

τ(P)
g(P− ψB)

d
dτ

(
eγτ ρ(τ) e−

∫ τ
0 λ+ρ(s) ds

)
dτ

∣∣∣∣ ≤ C(λ)‖g‖C0[P∗ ,P∗ ].

Therewith, the C0,1 estimate for Kλ is established, and the compactness is a conse-
quence of the Arzelà–Ascoli theorem.
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