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Abstract: Assume that ξ and η are two independent random variables with distribution functions
Fξ and Fη, respectively. The distribution of a random variable ξη, denoted by Fξ ⊗ Fη, is called the
product-convolution of Fξ and Fη . It is proved that Fξ ⊗ Fη is a generalized subexponential distribution
if Fξ belongs to the class of generalized subexponential distributions and η is nonnegative and not
degenerated at zero.
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1. Introduction

The distribution of the product of two independent random variables (r.v.s) is con-
sidered in this paper. If ξ and η are two real-valued independent r.v.s with distribution
functions (d.f.s) Fξ(x) = P(ξ 6 x) and Fη(x) = P(η 6 x), then the d.f. of the product ξη is

Fξ ⊗ Fη(x) := P(ξη 6 x) =
∫

(−∞,0)

(
1− Fξ

( x
y
−
))

dFη(y)

+
∫

(0,∞)

Fξ

( x
y

)
dFη(y) +

(
Fη(0)− Fη(0−)

)
1[0,∞)(x),

see, e.g., Section 1.2 of [1]. The d.f. Fξ ⊗ Fη is called the product-convolution of d.f.s Fξ and
Fη . In the case of a nonnegative r.v. η, we have Fη(0−) = 0 implying that

Fξ ⊗ Fη(x) =
∫

(0,∞)

Fξ

( x
y

)
dFη(y) + Fη(0)1[0,∞)(x).

Our interest lies in the closure properties under multiplication of independent r.v.s.
More exactly, we focus on the closure under multiplication of generalized subexponen-
tial distributions.

A d.f. F is said to be generalized subexponential or O-subexponential, denoted by F ∈ OS , if

lim sup
x→∞

F ∗ F(x)
F(x)

< ∞.

Here and further, the notation F(x) = 1− F(x), x ∈ R, denotes the tail of the d.f. F,
and for any two d.f.s F1 and F2, the symbol F1 ∗ F2 denotes their convolution:

F1 ∗ F2(x) =
∞∫
−∞

F1(x− y)dF2(y), x ∈ R.
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If Fξ and Fη are d.f.s of two independent r.v.s ξ and η, then

P(ξ + η 6 x) = Fξ ∗ Fη(x), x ∈ R.

Generalized subexponential distributions were firstly mentioned by Klüppelberg [2]
as weakly idempotent distributions. Later, class OS was studied in [3–8]. Class of d.f.s OS
is the generalization of the standard class of subexponential distributions.

A d.f. F, satisfying F(0−) = 0, is said to be subexponential, denoted F ∈ S , if

lim
x→∞

F ∗ F(x)
F(x)

= 2.

In the general case, F is said to be subexponential if F+ is subexponential, where

F+(x) := F(x)1[0,∞)(x)

is the positive part of d.f. F.
The concept of subexponentiality was introduced by Chistyakov [9]. Later, subex-

ponential distributions, together with O-subexponential distributions, found numerous
applications in applied probability including financial mathematics, risk theory, actuarial
mathematics, branching processes, queuing theory, etc., see, for instance, [10–25]. It is well
known that class S represents a subset of the class of long-tailed d.f.s L, see [9] or Section 3
of [26] for details.

A d.f. F is said to be long-tailed, denoted F ∈ L, if for any positive y,

lim
x→∞

F(x− y)
F(x)

= 1.

Similarly, as in the case of classes S ⊂ OS , one can introduce the O-version of class L
according to [3].

A d.f. F is said to belong to the class OL of generalized long-tailed distributions if for any
positive y

lim sup
x→∞

F(x− y)
F(x)

< ∞.

Similarly to the inclusion S ⊂ L, it holds thatOS ⊂ OL, see, e.g., Proposition 2.1 in [3].
Examples of d.f.s F ∈ OL \ OS can be found in [27,28]. Some useful characterizations of
class OL are given in [29]. For instance, according to results by Albin and Sundén [29],
an absolutely continuous d.f. F belongs to the class OL if and only if

F(x) = exp

−
x∫

−∞

(
a(y) + b(y)

)
dy


for some measurable functions a = a(x) and b = b(x) with a(x) + b(x) > 0, x ∈ R,
such that

lim sup
x→∞

|a(x)| < ∞, lim
x→∞

x∫
−∞

a(y)dy = ∞, lim sup
x→∞

∣∣∣∣∣∣
x∫

−∞

b(y)dy

∣∣∣∣∣∣ < ∞.

In this work, the closure problem of the classOS with respect to the product-convolution
is actually solved. Any class of d.f.s K is called closed with respect to some operation,
if for any element from the set K, the result remains in the same class after the operation.
The classes of d.f.s S ,L,OL,OS defined in this section, together with other classes of
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d.f.s not defined in this paper, are closed with respect to certain operations. Let us limit
ourselves to the d.f. class OS , the main class considered in this paper.

Watanabe and Yamamuro ([6] Lemma 3.1) proved that the class OS is closed with
respect to the weak tail equivalence (see also [12] and [30] (Proposition A1)) for more
detailed proof). The closure of class OS with respect to the weak tail equivalence means
the following statement:

• If a d.f. F ∈ OS and F �
x→∞

G(x) for a d.f. G, then G ∈ OS .

In the same Lemma 3.1 of [6], it is proved that the classOS is closed with respect to the
convolution. The closure of O-subexponential distributions with respect to the convolution
means the following statement:

• If d.f.s Fξ and Fη of two independent r.v.s ξ and η belong to the classOS , then the convolution
Fξ ∗ Fη is O-subexponential as well.

The closure with respect to the minimum was established by Lin and Wang in [8]
(Lemma 3.1) by proving the following statement:

• If independent r.v.s ξ and η are O-subexponentially distributed, then d.f. Fξ∧η of minimum
ξ ∧ η is also O-subexponential.

One of the closure properties is the closure with respect to the product-convolution.
In such a case, the goal is to find minimal conditions for the r.v. η so that the distribu-
tion of the product ξη is O-subexponential if the distribution of the first multiplier is
O-subexponential. Theorem 5 presented in Section 3 below is the last result in such a direc-
tion. In that theorem, there is an additional technical requirement for the r.v. η, which is not
necessary. In this paper, we improve the result of Theorem 5 by removing the additional
requirement for the second random multiplier η.

The rest of the paper is organized as follows. In Section 2, the main result of the paper
is formulated. In Section 3 several related results are reviewed. In Section 4, the proof of
the main result is given. Section 5 provides several examples to demonstrate the theoretical
meaning of the obtained results. Finally, in Section 6, possible applications of the obtained
results to insurance and financial models are discussed.

2. Main Result

As mentioned above, the main result of the paper is on the product-convolution for
generalized subexponential distributions.

Theorem 1. Let ξ and η > 0 be two independent r.v.s with d.f.s Fξ and Fη . If d.f. Fξ belongs to the
class OS and r.v. η is not degenerated at zero, then the d.f. of the product Fξ ⊗ Fη belongs to the
class OS as well.

If we consider only positive random variables belonging to the classOS , then Theorem 1
shows that the class OS is closed under the product-convolution. That is, by multiplying
two independent r.v.s having generalised subexponential d.f.s with at least one of them being
positive, we will always get an r.v. with a generalised subexponential d.f. Among other things
this property gives the ability to generate a lot of new r.v.s with d.f.s from class OS .

3. Related Results

In this section, a brief review is given of the related results found in the literature,
regarding the product-convolution of distributions belonging to classes close to generalized
subexponential distributions. The following conditions for the product-convolution closure
for d.f.s from class L was obtained by Tang [31] (Theorem 1.1).

Theorem 2. Let ξ and η be two independent r.v.s with d.f.s Fξ ∈ L and Fη . Let η be nonnegative
and not degenerated at zero. Then,
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(i) Fξ ∈ L⊗ Fη ∈ L if and only if either the set D(Fξ) of all positive points of discontinuity
of d.f. Fξ is empty, or D(Fξ) 6= ∅ and

Fη

( x
a

)
− Fη

( x + 1
a

)
= o

(
Fξ ⊗ Fη(x)

)
f or all a ∈ D(Fξ),

(ii) If Fη ∈ L, then Fξ ⊗ Fη ∈ L.

A similar assertion holds for class S . The following results was proved by Xu et al. [32]
(Theorem 1.3).

Theorem 3. Let ξ and η be two independent r.v.s with d.f.s Fξ ∈ S and Fη . Let, in addition, η > 0
and Fη(0) > 0. Then,

(i) Fξ ⊗ Fη ∈ S if and only if either D(Fξ) = ∅, or D(Fξ) 6= ∅ and

Fη

( x
a

)
− Fη

( x + 1
a

)
= o

(
Fξ ⊗ Fη(x)

)
f or all a ∈ D(Fξ),

(ii) If Fη ∈ L, then Fξ ⊗ Fη ∈ S .

The assertion below on the class OL was recently proved by Cui and Wang [27]
(Theorem 1).

Theorem 4. Let ξ and η be two independent nonnegative r.v.s with d.f.s Fξ and Fη . If Fξ ∈ OL
and η is not degenerate at zero, then Fξ ⊗ Fη ∈ OL.

To our knowledge, the assertion below is the latest known result on the product-
convolution closure of d.f.s from class OS . The proof of the following theorem can be
found in [33] (Theorem 3).

Theorem 5. Let ξ and η > 0 be two independent r.v.s with d.f.s Fξ and Fη . If Fξ ∈ OS , η is not
degenerated at zero and

sup
y>0

lim sup
x→∞

Fη(yx)
Fξ ⊗ Fη(x)

< ∞,

then Fξ ⊗ Fη ∈ OS .

The main theorem of this paper improves on the last statement. Our theorem asserts
that the d.f. of the product of two r.v.s remains in the class OS if the d.f. of the first r.v.
belongs to the class OS . The second r.v. should satisfy only the natural requirements.

4. Proofs

This section provides a detailed proof of the main result. Our proof is related with cut-
ting off the second random multiplier. A similar approach was used by Cui and Wang [27]
in the proof of Theorem 4. Before the direct proof, we present two auxiliary lemmas.

Lemma 1. Let F and G be two d.f.s. If F ∈ OS and F(x) �
x→∞

G(x), then G ∈ OS .

Proof of Lemma 1. In fact, the statement of the lemma was proved by Watanabe and
Yamamuro in [6] (Lemma 3.1). For the sake of completeness, we give here a short proof of
the lemma with the additional comments useful for the future.

By definition of the class OS , we get

F ∈ OS ⇔ cF := sup
x∈R

F ∗ F(x)
F(x)

< ∞. (1)
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In addition,

F(x) �
x→∞

G(x) ⇔ 0 < lim inf
x→∞

G(x)
F(x)

6 lim sup
x→∞

G(x)
F(x)

< ∞,

implying that

F(x) �
x→∞

G(x) ⇔ c∗ := inf
x∈R

G(x)
F(x)

> 0, c∗ := sup
x∈R

G(x)
F(x)

< ∞.

For all x ∈ R,

G ∗ G(x) =
∫
R

G(x− y)dG(y) 6 c∗
∫
R

F(x− y)dG(y)

= c∗
∫
R

G(x− y)dF(y) 6
(
c∗
)2
∫
R

F(x− y)dF(y)

=
(
c∗
)2 F ∗ F(x).

Therefore,

G ∗ G(x)
G(x)

6

(
c∗
)2

c∗
F ∗ F(x)

F(x)
6

(
c∗
)2

c∗
cF.

According to relation (1), G ∈ OS . The lemma is proved.

Lemma 2. Let ξ and η be two independent r.v.s with d.f.s Fξ and Fη . In addition, let Fη(0−) = 0
and Fη(d) > 0 for some d > 0. Then, Fξ ⊗ Fη ∈ OS if and only if

(
Fξ ⊗ Fη

)
d ∈ OS , where(

Fξ ⊗ Fη

)
d(x) = P

(
ξ max(η, d) 6 x

)
, x ∈ R.

Proof of Lemma 2. According to Lemma 1, it is sufficient to prove that(
Fξ ⊗ Fη

)
d(x) �

x→∞
Fξ ⊗ Fη(x). (2)

The simple estimate

Fξ ⊗ Fη(x) = P(ξη > x) 6 P
(
ξ max(η, d) > x

)
=
(

Fξ ⊗ Fη

)
d(x), x > 0,

gives that

lim sup
x→∞

Fξ ⊗ Fη(x)(
Fξ ⊗ Fη

)
d(x)

6 1. (3)

On the other hand, for positive x

Fξ ⊗ Fη(x) = P(ξη > x) > P(ξη > x, η > d)

= P(ξ max{η, d} > x, η > d)

= P(ξ max{η, d} > x)− P(ξ max{η, d} > x, η 6 d)

=
(

Fξ ⊗ Fη

)
d(x)− P(ξd > x, η 6 d)

>
(

Fξ ⊗ Fη

)
d(x)− Fη(d)P(ξ max{η, d} > x)

= Fη(d)
(

Fξ ⊗ Fη

)
d(x).
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Therefore,

lim inf
x→∞

Fξ ⊗ Fη(x)(
Fξ ⊗ Fη

)
d(x)

> Fη(d) > 0. (4)

Estimates (3) and (4) imply relation (2). The lemma is proved.

Proof of Theorem 1. R.v. η is nonnegative and not degenerated at zero. Hence, there
exists d > 0 such that Fη(d) > 0. By means of Lemma 2, it is sufficient to prove that(

Fξ ⊗ Fη

)
d ∈ OS where (

Fξ ⊗ Fη

)
d(x) = P(ξηd 6 x)

with ηd = max{η, d}. It is clear that

((
Fξ ⊗ Fη

)
d

)∗2
(x) =

(
Fξ ⊗ Fη

)
d ∗
(

Fξ ⊗ Fη

)
d(x) = P(ξ1ηd1 + ξ2ηd2 > x),

where ηd1 = max{η1, d}, ηd2 = max{η2, d} and random vectors (ξ1, η1), (ξ2, η2) are sup-
posed to be independent copies of the vector (ξ, η). Temporally denote

ξ+1 = max{ξ1, 0} and ξ+2 = max{ξ2, 0}.

For a positive x, we have

((
Fξ ⊗ Fη

)
d

)∗2
(x) 6 P

(
ξ+1 ηd1 + ξ+2 ηd2 > x

)
= P

(
ξ+1 ηd1 + ξ+2 ηd2 > x, ηd1 6 ηd2

)
+ P

(
ξ+1 ηd1 + ξ+2 ηd2 > x, ηd2 < ηd1

)
6 P

((
ξ+1 + ξ+2

)
ηd2 > x, ηd1 6 ηd2

)
+ P

((
ξ+1 + ξ+2

)
ηd1 > x, ηd2 6 ηd1

)
= 2P

((
ξ+1 + ξ+2

)
ηd2 > x, ηd1 6 ηd2

)
6 2P

((
ξ+1 + ξ+2

)
ηd2 > x

)
= 2

∫
[0,∞)

F∗2
ξ+

( x
y

)
dFηd(y)

6 2 sup
d6y<∞

F∗2
ξ+

(
x
y

)
Fξ+

(
x
y

) ∫
[d,∞)

Fξ+

( x
y

)
dFηd(y)

= 2 sup
d6y<∞

F∗2
ξ+

(
x
y

)
Fξ+

(
x
y

) Fξ+ ⊗ Fηd(x), (5)

where Fξ+ denotes the d.f. of r.v. ξ+ = max{ξ, 0}, and Fηd denotes the d.f. of r.v. ηd.
It is clear that for a positive x

Fξ+ ⊗ Fηd(x) = P
(
ξ+ηd > x, ξ > 0

)
+ P

(
ξ+ηd > x, ξ 6 0

)
= P

(
ξηd > x, ξ > 0

)
6 P

(
ξηd > x

)
=
(

Fξ ⊗ Fη

)
d(x).

Hence, the estimate (5) implies that

((
Fξ ⊗ Fη

)
d

)∗2
(x)(

Fξ ⊗ Fη

)
d(x)

6 sup
z>0

F∗2
ξ+
(z)

Fξ+(z)
(6)
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for all positive x’s.
If z > 0, then

F∗2
ξ+
(z) = P

(
ξ+1 + ξ+2 > z,

)
= P

(
ξ+1 + ξ+2 > z, ξ1 > 0, ξ2 > 0

)
+ P

(
ξ+1 + ξ+2 > z, ξ1 > 0, ξ2 < 0

)
+ P

(
ξ+1 + ξ+2 > z, ξ1 < 0, ξ2 > 0

)
= P

(
ξ1 + ξ2 > z, ξ1 > 0, ξ2 > 0

)
+ P

(
ξ1 > z, ξ1 > 0, ξ2 < 0

)
+ P

(
ξ2 > z, ξ1 < 0, ξ2 > 0

)
6 P

(
ξ1 + ξ2 > z

)
+ 2P

(
ξ1 > z

)
= F∗2ξ (z) + 2Fξ(z),

and

Fξ+(z) = P(ξ+ > z, ξ > 0) + P(ξ+ > z, ξ < 0)

= P(ξ > z, ξ > 0) = P(ξ > z)

= Fξ(z).

Hence,

sup
z>0

F∗2
ξ+
(z)

Fξ+(z)
6 2 + sup

z>0

F∗2ξ (z)

Fξ(z)
< ∞ (7)

by (1) because of Fξ ∈ OS . The inequality (6) and the last estimate (7) imply that

lim sup
x→∞

((
Fξ ⊗ Fη

)
d

)∗2
(x)(

Fξ ⊗ Fη

)
d(x)

< ∞.

Therefore,
(

Fξ ⊗ Fη

)
d ∈ OS as required. The theorem is proved.

5. Examples

In Section 2, it was mentioned that with the help of Theorem 1, the new d.f.s belonging
to the class OS can be constructed using the product-convolution. In this section, we
present two examples that demonstrate this procedure.

Example 1. Let ξ be the classical Peter and Paul r.v., i.e.,

P(ξ = 2k) = 2−k, k ∈ N.

For this r.v., the tail of the d.f. is

Fξ(x) = 1(−∞,2)(x) + 2−blog2 xc
1[2,∞)(x),

where the symbol bac denotes the integer part of the real number a. It follows from this (for details
see [34]) that

lim sup
x→∞

Fξ

(
x
2

)
Fξ(x)

< ∞

implying Fξ ∈ OS , because for a positive x

Fξ ∗ Fξ(x)
Fξ(x)

6 2
Fξ

(
x
2

)
Fξ(x)

.
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It follows from Theorem 1 that the d.f. of the product ξη belongs to the class of
O-subexponential distributions for each r.v. η > 0 with condition P(η = 0) < 1.

In particular, if η1 is an independent copy of ξ, then the d.f. Fξ ⊗ Fη1 of r.v. ξη1 with
local probabilities

P(ξη1 = 2n+1) =
n

2n+1 , n ∈ N,

and the tail function

Fξ ⊗ Fη1(x) = 1(−∞,4)(x) +
(
blog2 xc+ 1

)
2−blog2 xc

1[4,∞)](x)

= 1(−∞,4)(x) =
∞

∑
k=2

k + 1
2k 1[2k ,2k+1)](x)

belongs to the class OS .
If r.v. η2 = U is uniformly distributed in the interval [0, 1], then the d.f. Fξ ⊗ FU with

the tail function

Fξ ⊗ FU (x) =
min{1,x/2}∫

0

2−
⌊

log2

(
x
u

)⌋
du +

∫
[0,1]∩(x/2,∞)

du

= 1(−∞,0)(x) +
(

1− x
3

)
1[0,2)(x) + x1[2,∞)](x)

∞∫
x

2−blog2 ycdy
y2

= 1(−∞,0)(x) +
(

1− x
3

)
1[0,2)(x) +

∞

∑
k=1

1
2k

(
1− x

3 · 2k

)
1[2k ,2k+1](x)

belongs to the class OS as well.

Example 2. Let ξ be an r.v. with tail function

Fξ(x) = 1(−∞,1)(x) +
e
x2 e−x

1[1,∞)(x).

According to the results presented in [12,35,36], the limit

lim
x→∞

Fξ ∗ Fξ(x)
Fξ(x)

exists, implying that Fξ ∈ OS .
It follows from Theorem 1 that the d.f. of the product ξη is O-subexponential if η > 0 and

P(η = 0) < 1.

If η1 is an independent copy of ξ, then the d.f. of ξη1 belongs to the class OS . In this
case, the tail function is the following:

P(ξη1 > x) = Fξ ⊗ Fη1(x) =
∫

(1,∞)∩(x,∞)

e
y2 e−y

(
1 +

2
y

)
dy +

e2

x2

x∫
1

e−
(

y+ x
y

)
)
(

1 +
2
y

)
dy

= 1(−∞,1)(x) +
e
x2

(
e−x +

x∫
1

(
1 +

2
y

)
e1−y−x/ydy

)
1[1,∞)](x)

If η2 is a discrete uniform r.v. with parameter three, i.e.,

P(η2 = 0) = P(η2 = 1) = P(η2 = 2) =
1
3

,
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then the d.f. Fξ ⊗ Fη2 is also O-subexponential with the tail function

Fξ ⊗ Fη2(x) = 1(−∞,0)(x) +
2
3
1[0,1)(x) +

1
3

(
1 +

e
x2 e−x

)
1[1,2)(x)

+
e

3x2

(
e−x + e−x/2)

1[2,∞)(x).

6. Conclusions

In this work, we established that O-subexponential distributions satisfied the closure
property with respect to the product convolution. This means that for any independent
random variables ξ and η with a d.f. Fξ ∈ OS , the product d.f. Fξη = Fξ ⊗ Fη also belongs
to the class OS , only if the r.v. η is nonnegative and not degenerated at zero. Since the class
OS is also closed with respect to the usual convolution, see [6] (Lemma 3.1), it follows from
the obtained results that the distribution function of the sum

Sθξ
n := θ1ξ1 + θ2ξ2 + . . . θnξn (8)

remains in the classOS for any fixed n, if r.v.s {θ1, θ2, . . . , θn, ξ1, ξ2 . . . , ξn} are independent,
Fξk ∈ OS for all k ∈ {1, 2, . . . , n}, and the r.v.s {θ1, θ2, . . . , θn} are nonnegative and not
degenerated at zero.

The sums of random variables (8) are usually applied in risk theory. From the point of
view of insurance risk theory, the sum (8) describes the so-called discrete-time stochastic
risk model with insurance and financial risks. In such a model, each ξk is interpreted as the
net loss (the total claim amount minus the total premium income) of an insurance company
during period k, θk is the corresponding stochastic discount factor to the origin and the
sum Sθξ

n represents the stochastic present value of the aggregate net losses. For details,
see [37–43].

From a financial point of view, the sum (8) describes the behaviour of an investment
portfolio consisting of n distinct asset classes or lines of business. In such a case, r.v. ξk,
k ∈ {1, 2, . . . , n}, could correspond to the loss incurred from the kth instrument. As for the
role of random weights, there could be different viewpoints: θk, k ∈ {1, 2, . . . , n}, could
be treated as a stochastic discount factor of the kth asset class or, for instance, as a weight
corresponding to the kth instrument in the portfolio. Then, the random sum Sθξ

n would
correspond to the present value of the total loss of a portfolio at the present moment in the
former case, and the total weighted portfolio loss in the later case. For details, see [34,44–50].

It should be noted that for both actuarial and financial models, it is not enough to
know which regularity class the d.f. of Sθξ

n belongs to. We still need to find asymptotic
formulas for distributions of large values of such a sum. The results obtained in this paper
simplify the research on the behaviour of the large values of sum Sθξ

n .
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