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Abstract: All-to-all broadcasting means to distribute the exclusive message of each node in the
network to all other nodes. It can be handled by rings, and a Hamiltonian cycle is a ring that visits
each vertex exactly once. Multiple edge-disjoint Hamiltonian cycles, abbreviated as EDHCs, have
two application advantages: (1) parallel data broadcast and (2) edge fault-tolerance in network
communications. There are three edge-disjoint Hamiltonian cycles on n-dimensional locally twisted
cubes and n-dimensional crossed cubes while n > 6, respectively. Locally twisted cubes, crossed
cubes, folded locally twisted cubes (denoted as FLTQ)), and folded crossed cubes (denoted as FCQ;;)
are among the hypercube-variant network. The topology of hypercube-variant network has more
wealth than normal hypercubes in network properties. Then, the following results are presented
in this paper: (1) Using the technique of edge exchange, three EDHCs are constructed in FLTQs
and FCQs, respectively. (2) According to the recursive structure of FLTQ; and FCQ)y,, there are three
EDHCs in FLTQ; and FCQ, while n > 6. (3) Considering that multiple faulty edges will occur
randomly, the data broadcast performance of three EDHCs in FLTQ, and FCQ), is evaluated by
simulation when 5 <n <9.

Keywords: interconnection networks; edge-disjoint Hamiltonian cycles; folded locally twisted cubes;
folded crossed cubes; fault-tolerant data broadcasting
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1. Introduction

The design of interconnection networks is one of the important issues in parallel
computing systems and data centers. An interconnection network is often modeled by
a graph, where vertices represent processing units and edges represent communication
links. Hypercubes [1,2] have become one of the most popular interconnection networks
due to their attractive features, including regularity, vertex symmetric, link symmetric,
small diameter, strong connectivity, recursive construction, partition capability, and small
link complexity. Locally twisted cubes (denoted as LTQ);,), crossed cubes (denoted as CQj),
folded locally twisted cubes (denoted as FLTQ)j), and folded crossed cubes (denoted as
FCQy) are among the hypercube-variant network. They are similar to hypercubes in that the
vertices can be one-to-one labeled with 0-1 binary strings of length 11, and their definition
is presented in Section 2. The topology of a hypercube-variant network has more wealth
than a normal hypercube in network properties, e.g., its diameter is about half that of the
same-dimensional hypercube.

Ring structures are essential to high-performance computing architectures and are
often used as a baseband for data transmission in interconnect networks and control flow in
parallel and distributed environments. Many efficient algorithms with low communication
costs have been developed based on the ring structure [3,4]. A Hamiltonian cycle in a
graph is a cycle (or ring) that visits each vertex exactly once. Hamiltonian cycles in the
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graph are said to be edge-disjoint if they do not share any common edges. In addition, k
(>2) edge-disjoint Hamiltonian cycles, abbreviated as EDHCs, also provide the edge-fault
tolerant Hamiltonicity for interconnection networks.

All-to-all broadcast means to distribute the exclusive message of each node in the
network to all other nodes. This is an important issue for high-performance computing and
communication networks, including data center operations. All-to-all broadcasts have been
dealt with previously for several network topologies, such as linear arrays, meshes, toruses,
hypercube networks, rings [5], and more. The ring is an important network topology
because of its simple structure, easy deployment, and strong fault tolerance. Consider
all-to-all communication in a network system with n nodes, where each node needs to
send a distinct message to all other nodes. Applying the ring structure, once a message
starts sending, a node can receive a new message from the previous node at each step,
keep a copy of the new message for itself, and send the received message to the next
node. Therefore, the process can be accomplished in # — 1 steps. Furthermore, one way to
achieve fault-tolerant inter-processor communication is to efficiently utilize disjoint paths
between pairs of source and destination nodes. Especially when link fault tolerance is
considered, the technique of using edge-disjoint paths is a common strategy. Therefore, if
a fault occurs on one edge of a Hamiltonian ring, messages can be transmitted along the
other Hamiltonian ring. Finally, construct multiple EDHCs applications with enhanced
edge fault-tolerance in data transmission [6,7].

The following describes the previous related work on EDHCs. Rowley and Bose [7]
presented that a slightly modified degree 2r de Bruijn networks can be decomposed into
r Hamiltonian cycles when r is a power of a prime. Barth and Raspaud [8] provided two
EDHCs on the butterfly networks. Lee and Shin [9] achieved reliable all-to-all broadcasting
on meshes and hypercubes using EDHCs. Bae and Bose [6] studied EDHCs in k-ary n-
cubes and hypercubes. Petrovic and Thomassen [10] characterized the number of EDHCs
in hypertournaments. Hung et al. constructed two or multiple EDHCs in LTQ,, [11],
augmented cubes [12], twisted cubes [13], CQ,, transposition networks, and hypercube-
like networks [14], respectively. Wang et al. Ref. [15] presented that two EDHCs can be
embedded into parity cubes. Hussain et al. Ref. [16] gave a construction of three EDHCs
in Eisenstein—Jacobi networks. Albader and Bose showed how to obtain two EDHCs in
Gaussian networks [17]. In recent years, Chen obtained two edge-disjoint Hamiltonian
cycles of bubble-sort star graphs BS, when n > 4 [18]. Yang proved that there exist two
edge-disjoint Hamiltonian cycles in spined cube SQ, when n > 4 [19]. Pai [20] provided
a parallel algorithm for constructing two EDHCs in CQ,,. Li et al. Ref. [21] construct two
EDHCs in LTQ, by using a parallel algorithm. Then, Pai et al. presented that three EDHCs
can be embedded in LTQ,, [22] and CQ;, [23].

There are five papers [11,14,20,22,23] that consider the construction of two or three
EDHCs in LTQ, and CQj. Ref. [11] provided two EDHCs in LTQ,, while n > 4. Ref. [22]
presents three EDHCs in LTQ,, for n > 6. Similarly, [14] provided two EDHCs in CQ,, while
n > 4. Ref. [23] presents three EDHCs in CQj, for n > 6. Then, [20] proposed a parallel
algorithm for the construction of EDHCs to improve the sequential construction of [14].
However, there is no article that studied three EDHCs on FLTQ), (respectively, FCQy,), which
is to add folded edges on LTQ)j (respectively, CQ;). In this paper, the following results
are presented: (1) Using the technique of edge exchange, three EDHCs are constructed in
FLTQs and FCQs, respectively. (2) According to the recursive structure of FLTQ,, and FCQ,,
there are three EDHCs in FLTQ, and FCQ, while n > 6. (3) Considering that multiple
faulty edges will occur randomly, the data broadcast performance of three EDHCs in FLTQ,
and FCQ)y, is evaluated by simulation when 5 < n < 9. The rest of the paper is organized
as follows: Section 2 introduces the necessary definitions and theorems for LTQ,, CQj,
FLTQy, FCQy, and EDHCs. In Section 3, three EDHCs are presented on FLTQ,, and FCQ,
respectively. Next, in Section 4, the performance assessment of data broadcasting by using
three EDHCs on FLTQ, and FCQ, is presented. Section 5 discusses the results of the
simulations. The conclusion of this paper will be presented placed in Section 6.



Mathematics 2023, 11, 3384

3of 14

2. Preliminaries

The topology of a network is usually modeled as an undirected graph G = (V(G),
E(G)). The neighborhood of a vertex v in a graph G, denoted by N(v), is the set of vertices
adjacent to v in G. A cycle Cy, of length m in G, denoted by vy - vy -v3 - ... - Uy_1 - Uy -
vy, is a sequence (v1, V2, U3, ..., Uy—1, Um, U1) Of vertices such that (v;,, v1) € E(G) and (v;,
vi11) € E(G) for 1 <i < m — 1. For convenience, replace e € E(Cy,) with e € Cy;, and the
terms “networks” and “graphs”, “nodes” and “vertices”, “links” and “edges” are often
used interchangeably in this paper. Yang et al. gave the following definitions of locally

twisted cubes [24]:

Definition 1 ([24]). The n-dimensional locally twisted cube LTQ),, is the labeled graph with the
following recursive fashion:

(1) LTQq is the complete graph on two vertices labeled by 0 and 1. LTQ); is a graph consisting of
four vertices with labels 00, 01, 10, and 11 together with four edges (00, 01), (00, 10), (01, 11),
and (10, 11).

(2) Forn >3, LTQ, is composed of two subcubes LTQ,,_1, denoted as LTQ,,_1° and LTQ,, 1!,
such that each vertex x = 0x,_1Xp_2 - - - Xox1 € V(LTQ ,,_1°) is connected with the vertex
Y =1(x,_1Px1) X2 - -+ Xpx1 € V(LTQ ,,_1') by an edge, where x and y are called the
n-neighbors to each other.

Definition 2 ([25]). For n > 2, an n-dimensional folded locally twisted cube, denoted by FLTQy,, is

defined based on the definition of LTQ,, as follows: FLTQ), is a graph obtained from LTQ,, by adding

all complementary edges, which join a vertex u = uytt,_1 - - - upuq to another vertex il = flyil,_q
- 1iptiy for every u € V(LTQ,), where ti; =1 — u;.

For conciseness of representation, sometimes the labels of nodes are changed to the
use of decimals. For example, Figure 1 shows LTQ4 and FLTQ4, where each node is labeled
by the binary code and its corresponding decimal (inside the circle).

Figure 1. (a) LTQ4 and (b) FLTQ,4 where thick lines indicate complementary edges.

Efe [26] defined two binary strings x = xpx1 and y = y,y1 to be pair-related, denoted
x ~y, if and only if (x, y) € {(00, 00), (10, 10), (01, 11), (11, 01)}.
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Definition 3 ([26]). The vertex set of CQy, is {unuy—q1 - - - upug lu; € {0, 1}, 1< i < n}. For any
two vertices u = Uyly_1 - -+ Upg and v = Vyv,_7 - - - Vo071 of CQn, u is adjacent to v if and only if
the following conditions are established:

(1) unby—1--" Ujp1=Vp0y—1"** Viy1;

2w #v;

(B)  uj_1=v;_qifiis even;

(4) g1~ VoV 1for 1 <k < [(i-1) / 2].

Definition 4. For n > 2, an n-dimensional folded crossed cube, denoted by FCQ,,, is constructed
from CQy, by adding all complementary edges, which join a vertex u = uyu,_q - - - uyug to another
vertex il = fipfly_q - - - tiptiq for every u € V(LTQy), where il; =1 — u;.

For example, Figure 2 shows CQ, and FCQ4. According to Definition 2 (respectively,
4), FLTQ, (respectively, FCQy,) is constructed from LTQ,, (respectively, FCQ,) by adding all
complementary edges. For FLTQ, and FCQ,,, when n > 6, the main two theorems in this
paper will use the following two theorems, respectively:

Theorem 1 ([22]). For n > 6, there exist three edge-disjoint Hamiltonian cycles in LTQ,,.

Theorem 2 ([23]). For n > 6, there exist three edge-disjoint Hamiltonian cycles in CQy,.

‘3
é»«. %
-0

°‘\) &

><]

(b)

Figure 2. (a) CQy4 and (b) FCQ4 where thick lines indicate complementary edges.

In the research direction of EDHCs, briefly summarize the solution methods in [7-23].
Most of the articles use the method of recursive construction. Firstly, k (>2) EDHCs are
proposed on the small-dimensional graph class as the basis. Then, based on this, a recursive
algorithm was proposed to construct EDHCs. These methods usually remove one or more
edges in the original cycles and then connect the endpoint of the cycle to the endpoint of
another cycle to form a Hamiltonian cycle on the next dimensional graph. In addition, some
articles will go out of the cycle along the edge of a specific direction or a specific dimension.
Then, by exchanging some edges, multiple cycles are connected to form EDHCs. In this
paper, we use these two approaches at the same time, and the details are presented in
Section 3.
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3. Methods and Results

Using previous results in [20,21] and the technique of edge exchange, three EDHCs in
FLTQs and FCQs were constructed, respectively. Then, according to the recursive structure
of FLTQ,, and FCQ,,, there are three EDHCs in FLTQ,, and FCQ,, while n > 6.

3.1. Three EDHCs in FLTQ,,

In this subsection, there are two EDHCs of FLTQs5 that were built from [21]. Then, by
fine-tuning some edges in the second Hamiltonian cycle so that the remaining edges are
sufficient to configure the third Hamiltonian cycle.

Let HCy and HC; be two EDHCs of LTQ4, as shown in Figure 3. According to Def-
initions 1 and 2, FLTQs5 can be decomposed into two copies of LTQ4, and each copy has
two Hamiltonian cycles mentioned above. Divide FLTQs5 into two disjoint subcubes LTQ,!
fori € {0, 1}, and let HC,' for k € {1, 2} be the corresponding k-th Hamiltonian cycle in the
subcube LTQ,' such that each cycle maps to HCy in LTQ,. Then, the two Hamiltonian cycles
of FLTQs, namely HC;" and HC,/, can be constructed by merging of HC® and HC! for
k =1, 2 by adjusting two edges in each cycle, which are described as follows:

E(HCy/) = E(HC;®) U E(HC1Y) U {(0, 16), (4, 20)} — {(0, 4), (16, 20)} 1)

and
E(HC,) = E(HC,") U E(HC,Y) U {(2, 18), (6, 22)} — {(2, 6), (18, 22)} ()

Figure 3. Two EDHCs in LTQy4. Thick red lines (respectively, thin blue line) indicate the first
(respectively, second) Hamiltonian cycle.

For example, Figure 4 depicts the Hamiltonian cycles HCy; and HCy of FLTQs5 con-
structed from Equation (1) and Equation (2), respectively. From the drawing, readers may
imagine that the dashed line divides the entire FLTQs5 into two subcubes of equal size, and
nodes in the left and right parts are mirrored, and their labels have a difference of £16.
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Mirror, (£16) Mirror, (£16)

Figure 4. The Hamiltonian cycles (a) HC;/ and (b) HCy of FLTQs5 were constructed from Equation (1)
and Equation (2), respectively, where thick lines indicate the edges of the cycle. Complementary
edges are omitted because it is easy to judge visually and the two Hamiltonian cycles do not use them.

That E(FLTQs) - {E(HCy/) U E(HCy)} includes two Cy4 cycles: CigA=0-4-27-3-28-
12-19-11-20-16-15-23-8-24-7-31-0and C;s =1-25-6-2-29-5-26-10-21-13
-18-22-9-17-14-30 - 1. The third Hamiltonian cycle of FLTQs, HCy, can be constructed
as follows:

E(HCy) = E(C16™) U E(C16%) U {(1, 3), (5, 7), (27, 29), (30, 31)} — {(1, 30), (3, 27), (5, 29), (7, 31)} 3)

Figure 5a illustrates the construction of HCy, where the bold lines indicate the edges
that will be added to HCy in Equation (3). Then, lines with cross marks are the edges that
will be removed from HCy in Equation (3). In fact, the construction of the third Hamiltonian
cycle mentioned above is accomplished using the edge-swapping technique. Therefore,
with the above adjustments, it is necessary to modify the edge set of HC, obtained from
Equation (2) by swapping two edge sets, {(1, 3), (5, 7), (27, 29), (30, 31)} and {(1, 30), (3, 27),
(5,29), (7, 31)}, as follows:

E(HC,) = E(HCy) U {(1, 30), (3,27), (5,29), (7, 31)} — {(1, 3), (5, 7), (27, 29), (30, 31)} @)

Figure 5. The Hamiltonian cycles (a) HCy and (b) new HC, of FLTQs were constructed from
Equations (3) and (4), respectively.

Similarly, Figure 5b illustrates the construction of the new HC,/, where the bold dash
lines indicate the edges that will be added to HC,/ in Equation (4). Then, lines with cross
marks are edges that will be removed from HC, in Equation (4). Starting from any starting
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node, visit the paths formed by the edges in Figure 5a,b in turn, and finally obtain two
EDHCs. The results are shown below.

Lemma 1. The three Hamiltonian cycles HCy for i =1, 2, 3 constructed from Equations (1)—(4) are
edge-disjoint in FLTQs.

Clearly, | E(FLTQs) | = (6 x 32) / 2 = 96. Since each Hamiltonian cycle has 32 edges
in FLTQs, all edges of FLTQs are exhausted when the above three EDHCs are constructed.
Finally, the construction algorithm was provided as follows (Algorithm 1):

Algorithm 1: Constructing 3 EDHCs in FLTQs

Input: FLTQs
Output: 3 EDHCs HCy/, HCy, HCy

Step1 HC; =0-1-13-15-9-11-7-6-14-12-8-10-2-3-5-4-0;
Step2 HC; =0-2-6-4-12-13-11-10-14-15-3-1-7-5-9-8-0;
Step 3 E(HCy) = E(HC;%) U E(HC1') U {(0, 16), (4, 20)} - {(0, 4), (16, 20)};

Step 4 E(HC,/) = E(HC,%) U E(HC,') U {(2, 18), (6, 22)} - {(2, 6), (18, 22)};

Step5Cigt =0-4-27-3-28-12-19-11-20-16-15-23-8-24-7-31-0;

Step 6 C16® =1-25-6-2-29-5-26-10-21-13-18-22-9-17-14-30-1;

Step 7 E(HCy) = E(C16™) U E(C16®) U {(1, 3), (5, 7), (27, 29), (30, 31)} - {(1, 30), (3, 27), (5, 29), (7, 31)};
Step 8 E(HC,/) = E(HCy) U {(1, 30), (3, 27), (5,29), (7, 31)} — {(1, 3), (5, 7), (27, 29), (30, 31)};

Step 9 Return HCy/, HCy/, HCy;

Theorem 3. For n > 5, there exist three edge-disjoint Hamiltonian cycles in FLTQ,,.

Proof of Theorem 3. First, according to Lemma 1, this theorem holds when n = 5. By
Definition 2, FLTQ),, is a graph obtained from LTQ, by adding all complementary edges.
According to Theorem 1, there exist three EDHCs in LTQ,, while n > 6. Therefore, this
theorem is proved. U

3.2. Three EDHCs in FCQ,,

There are two EDHCs of FCQs that were built from [20]. Then, we adjust some of the
edges in the second Hamiltonian cycle so that the remaining edges can be used to construct
the third Hamiltonian cycle.

Let HCy and HC; be two EDHCs of CQy, as shown in Figure 6. According to Definitions
3 and 4, FCQs5 can be decomposed into two copies of CQ4, and each with two of the
aforementioned Hamiltonian cycles. Partition FCQs into two disjoint subcubes CQ,! for
i €{0,1}, and let HC,! for k € {1, 2} be the corresponding k-th Hamiltonian cycle in the
subcube CQy' such that each cycle maps to HCy in CQy. Next, the two Hamiltonian cycles
of FCQs, HCyr and HCy, can be constructed by merging HC,” and HC;! for k = 1, 2 by
adjusting two edges in each cycle, which are described as follows:

E(HCy) = E(HC;) U E(HC1Y) U {(0, 16), (2, 18)} — {(0, 2), (16, 18)} (5)

and

For example, Figure 7 depicts the Hamiltonian cycles HCy; and HC, of FCQs according
to Equations (5) and (6), respectively. From the drawing, readers may imagine that the
dotted line divides the whole FCQs into two subcubes of equal size, and nodes in the left
and right parts are mirrored, and their labels differ by +16.
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AT AN

8

Figure 6. Two EDHCs in CQ,. Thick red lines and thin blue lines indicate the first and second
Hamiltonian cycles, respectively.

That E(FCQs) — { E(HCy/) U E(HCy) } includes four Cg cycles: Cg =0-2-29-7-24 -
26-5-31-0,Cg8=1-19-12-20-11-25-6-30-1,Cg¢ =3-17-14-22-9-27-4-28-3,
and Ci4P =8-10-21-15-16 - 18 - 13 - 23 - 8. The third Hamiltonian cycle of FCQs, HCy/,
can be constructed as follows:

E(HCy) = E(Cg™) U E(CgP) U E(Cs®) U E(CsP) U {(0, 1), (2, 3), (16, 17), (18, 19)} —

@)
{(0,2), (1,19), (3,17), (16, 18)}

Mirror (+16) Mirror (+16)

Figure 7. The Hamiltonian cycles (a) HCy and (b) HCy of FCQs according to Equation (5) and
Equation (6), respectively, where thick lines indicate the edges of the cycle. Complementary edges
are omitted because it is convenient for intuitive judgment and the two Hamiltonian cycles do not
use them.

Figure 8a depicts the construction of HCy, where the bold lines indicate the edges
that will be added to HCy by Equation (7). Then, lines marked with crosses are the
edges that will be removed from HCy by Equation (7). Again, the construction of the
third Hamiltonian cycle mentioned above is obtained using the edge-swapping technique.
Therefore, with the above fine-tuning, it is necessary to adjust the edge set of HC,/ obtained
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from Equation (6) by swapping two edge sets, {(0, 1), (2, 3), (16, 17), (18, 19)} and {(0, 2),
(1,19), (3,17), (16, 18)}, as follows:

E(HCy) = E(HCy) U {(0,2), (1,19), 3, 17), (16, 18)} — {(0, 1), (2, 3), (16, 17), (18, 19)}  (8)

Figure 8. The Hamiltonian cycles (a) HCy and (b) new HC, of FCQs were constructed from
Equation (7) and Equation (8), respectively.

Similarly, Figure 8b illustrates the construction of the new HC,, where the bold dash
lines indicate the edges that will be added to HC,/ in Equation (8). Then, lines with cross
marks are edges that will be removed from HCy in Equation (8). Starting from any node,
visit the paths formed by the edges in Figure 8a,b in sequence, and finally obtain two
EDHC s, and hence the result is shown below.

Lemma 2. The three Hamiltonian cycles HCy for i =1, 2, 3 constructed from Equations (5)—(8) are
edge-disjoint in FCQs.

Clearly, | E(FCQs)! = (6 x 32) / 2 = 96. Since each Hamiltonian cycle of FCQs has
32 edges, all edges of FCQs5 are exhausted when the above three EDHCs are constructed.
Finally, the construction algorithm was provided as follows (Algorithm 2):

Algorithm 2: Constructing 3 EDHCs in FCQs

Input: FCQs

Output: 3 EDHCs HCy/, HCy, HCy

Step1 HC; =0-2-6-4-12-13-11-10-14-15-5-7-1-3-9
Step2 HC; =0-1-11-9-15-13-7-6-14-12-8-10-2-3-5-
Step 3 E(HCy/) = E(HC,®) U E(HC,') U {(0, 16), (2, 18)} - {(0, 2), (16
Step 4 E(HC,/) = E(HC,) U E(HC,') U {(8, 24), (10, 26)} - {(8, 10), (
Step5Cg?=0-2-29-7-24-26-5-31-0;

Step6 CgP=1-19-12-20-11-25-6-30-1;

Step7 Cg¢ =3-17-14-22-9-27-4-28-3;

Step 8 C14P =8-10-21-15-16-18-13-23-8;

Step 9 E(HCy) = E(Cs”) U E(CsP) U E(Cs€) U E(CsP) U {(0, 1), (2, 3), (16, 17), (18, 19)} - {(0, 2), (1,
19), (3, 17), (16, 18)};

Step 10 E(HCy) = E(HCy) U {(0, 2), (1,19), (3, 17), (16, 18)} - {(0, 1), (2, 3), (16, 17), (18, 19)};

Step 11 Return HCy/, HCy/, HCy;

’
7

, 18)};
24, 26)};

8-0
4-0

Theorem 4. For n > 5, there exist three edge-disjoint Hamiltonian cycles in FCQ;,.

Proof of Theorem 4. First, when n = 5, this theorem holds by Lemma 2. Then, according to
Definition 4, FCQ),, is constructed by adding all complementary edges to CQ;. By Theorem
2, there exist three EDHCs in CQ,, while n > 6. Therefore, this theorem is proved. O
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4. Performance Evaluation

In this section, considering that multiple faulty edges will occur randomly, the per-
formance of data broadcasting is simulated and evaluated by two and three EDHCs in
FLTQ; and FCQ, when 5 < n < 9. In this paper, three EDHCs of FLTQ),, (respectively, FCQj)
are improved from the two EDHCs of LTQ,, [11] (respectively, CQ,, [14]). Therefore, the
construction of three EDHCs has adopted the method in Section 3, and the construction of
two EDHCs has adopted the method of [11] and [14]. For two kinds of networks, some C
programs are used to implement data broadcasting according to two and three EDHCs, re-
spectively. To speed up the evaluation, the simulation was carried out by using a 5.10 GHz
Intel® Core™ i9—12900 CPU and 32 GB RAM under the Linux operating system.

For each dimension # and number of faulty edges m while 6 <n <9and 1 <m <10,
the program randomly generates 1,000,000 instances of number-list (s, f1, f2, . . ., fn) with
f1#f2 # ... # fu for FLTQ, and FCQ;, where s and f; are the source node and faulty edge
label, respectively. In general, when the source node s needs to send a distinct message
to all other nodes. Applying the ring structure, once a message starts sending, a node
can receive a new message from the previous node at each step, keep a copy of the new
message for itself, and send the received message to the next node. Considering that m
faulty edges will appear randomly and increase the probability of successful broadcast to
all nodes, the source node s send the messages to the next nodes simultaneously in two
directions through three Hamiltonian cycles.

Firstly, this study is interested in evaluating the broadcast success rate, abbreviated as
BSR, which is the ratio of the number of successful data broadcasts over generated instances.
Then, when the broadcast fails, the program computes three statistical quantities related
to the number of unreachable nodes: (a) mean, (b) standard deviation, and (c) maximum
number. More descriptions of the simulation process are available on the website [27] as
Supplementary Materials.

Table 1 (respectively, Table 2) shows the simulation results of BSR for data broadcasting
in FLTQ, adopting two EDHCs (respectively, three EDHCs) as the broadcasting channels
in two directions, respectively. When the number of faulty edges m > 4 in Table 1 and
m > 6 in Table 2, sometimes the broadcast fails. Then, Tables 3 and 4 show two quantities
mentioned above that are calculated by the usual way in statistics.

Table 1. BSR of fault-tolerant data broadcasting in FLTQ,, using two EDHCs while 1 < m < 10.

m 1 2 3 4 5 6 7 8 9 10

FITQs 1.000 1.000 1.000 0943 0.829 0.686 0540 0.410 0.303 0216
FLTQ¢ 1.000 1.000 1.000 0970 0903 0.807 0.696 0583 0476  0.382
FLTQ; 1.000 1.000 1.000 0984 0942 0877 0.795 0704 0.612 0.522
FITQg 1.000 1.000 1.000 0990 0963 0918 0858 0.786 0.709 0.629
FLTQy9y 1.000 1.000 1.000 0993 0975 0943 0.898 0.842 0.779 0711

Table 2. BSR of fault-tolerant data broadcasting in FLTQ,, using three EDHCs while 1 < m < 10.

m 1 2 3 4 5 6 7 8 9 10

FLTQs 1.000 1.000 1.000 1.000 1.000 0930 0.796 0.636 0481 0.348
FLTQ¢ 1.000 1.000 1.000 1.000 1.000 0970 0.897 0.790 0.668 0.545
FLTQ, 1.000 1.000 1.000 1.000 1.000 0989 0955 0.897 0.820 0.730
FITQg 1.000 1.000 1.000 1.000 1.000 0994 0976 0940 0.887 0.822
FLTQy 1.000 1.000 1.000 1.000 1.000 0997 0987 0967 0934 0.889

According to Tables 1-4, Figure 9a,b are drawn, respectively. Obviously, BSR decreases
as the number of faulty edges increases, and the mean of the number of unreachable nodes
increases as the dimension of FLTQ),, increases.
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Table 3. In FLTQ;,, while 5 < n < 9 and 6 < m < 10, the mean and standard deviation of the number
of unreachable nodes by using two EDHCs.

m 6 7 8 9 10
FLTQs5 6.7 (5.8) 7.5 (6.1) 8.3 (6.4) 9.2 (6.7) 10.1 (6.9)
FLTQs 13.8 (11.7) 15.1 (12.2) 16.4 (12.6) 17.8 (13.1) 19.3 (13.4)
FLTQ; 28.0 (23.1) 30.0 (23.9) 32.1 (24.6) 34.5 (25.5) 36.8 (26.1)
FLTQg 56.2 (45.6) 59.5 (46.8) 63.2 (48.3) 66.9 (49.5) 70.6 (50.8)
FLTQq 112.1(89.8)  118.1(92.1)  1239(947)  130.0(96.8)  136.1(98.9)

Numbers in parentheses are standard deviations.

Table 4. In FLTQ;,, while 5 < n <9 and 6 < m < 10, the mean and standard deviation of the number
of unreachable nodes by using three EDHCs.

m 6 7 8 9 10
FLTQs 25 (2.7) 3.0 (3.2) 3.6 (3.5) 4.3 (4.0) 5.0 (4.4)
FLTQ, 46 (5.3) 5.4 (5.9) 6.3 (6.6) 7.3(7.3) 8.4 (8.0)
FLTQ; 9.1 (10.4) 10.2 (11.3) 114 (12.1) 12.8 (13.1) 14.2 (14.0)
FLTQg 25.3 (27.4) 28.2 (29.4) 31.1 (31.5) 34.1 (33.3) 374 (35.1)
FLTQ, 58.9 (61.4) 65.9 (65.7) 70.1 (67.8) 74.8 (70.5) 81.1 (73.7)

Numbers in parentheses are standard deviations.

=8 FL.TQ5 (3HC) === FLTQ5 (2HC) number of faulty edge m10 9 8§ W7 M6
FLTQ9 (3HC) FLTQ9 (2HC) . ;
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number of faulty edge (b) Mean and Standard deviation of number of

() BSR the unreachable nodes

Figure 9. (a) BSR and (b) the mean and standard deviation of the number of unreachable nodes in
FLTQ, while5 <n <9and 6 <m < 10.

Table 5 (respectively, Table 6) shows the simulation results of BSR for data broadcasting
in FCQ, adopting two EDHCs (respectively, three EDHCs) as the broadcasting channels in
two directions, respectively. Then, Tables 7 and 8 show two quantities mentioned above
that are calculated by the usual way in statistics.

Table 5. BSR of fault-tolerant data broadcasting in FCQ,, using two EDHCs while 1 < m < 10.

m 1 2 3 4 5 6 7 8 9 10

FCQs 1.000 1.000 1.000 0943 0.830 0.688 0542 0412 0304 0.218
FCQs 1.000 1.000 1.000 0970 0901 0.804 0.692 0578 0471 0375
FCQ; 1.000 1.000 1.000 0983 0941 0875 0793 0701 0.607 0.516
FCQg 1.000 1.000 1.000 0990 0963 0917 0857 0785 0.707 0.627
FCQg9 1.000 1.000 1.000 0993 0975 0942 0.897 0842 0.778 0.709
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Table 6. BSR of fault-tolerant data broadcasting in FCQ,, using three EDHCs while 1 < m < 10.

m 1 2 4 5 6 7 8 9 10
FCQs 1.000 1.000 1.000 1.000 1.000 0933 0.802 0.645 0492 0.360
FCQs 1.000 1.000 1.000 1.000 1.000 0970 0.898 0.792 0.670  0.547
FCQ; 1.000 1.000 1.000 1.000 1.000 0989 0955 0.896 0818 0.727
FCQs 1.000 1.000 1.000 1.000 1.000 0994 0940 0940 0.888 0.821
FCQ¢ 1.000 1.000 1.000 1.000 1.000 0997 0987 0967 0934 0.889

Table 7. In FCQ;,, while 5 <n <9 and 6 < m < 10, the mean and standard deviation of the number
of unreachable nodes by using two EDHCs.

M 6 7 8 9 10
FCQs 6.3 (5.5) 7.0 (5.8) 7.8 (6.1) 8.6 (6.4) 95 (6.7)
FCQs 13.4 (11.4) 14.6 (11.9) 15.9 (12.4) 17.3 (12.8) 18.7 (13.2)
FCQ; 27.4 (23.0) 29.5 (23.9) 31.6 (24.6) 33.9 (25.4) 36.2 (26.1)
FCQs 55.3 (45.4) 59.0 (46.9) 62.6 (48.4) 66.3 (49.6) 70.2 (50.8)
FCQq 1119 (90.4)  1167(92.0)  1232(94.6)  129.7(96.9)  136.0 (99.2)

Numbers in parentheses are standard deviations.

Table 8. In FCQ;,, while 5 <n <9 and 6 < m < 10, the mean and standard deviation of the number

of unreachable nodes by using three EDHCs.

m 6 7 8 9 10
FCQ;5 2.6 (2.7) 3.1(3.1) 3.6 (3.6) 43(3.9) 5.0 (4.3)
FCQs 44 (5.0) 52 (5.7) 6.0 (6.4) 7.0 (7.1) 8.1(7.7)
FCQ; 9.3 (10.6) 103 (11.4) 11.6 (12.4) 12.9 (13.3) 14.4 (14.3)
FCQs 253 (27.6) 31.0 (31.5) 31.0 (31.5) 33.9 (33.3) 37.3(35.2)
FCQy 60.0 (62.6) 64.9 (64.3) 70.2 (67.5) 75.5 (70.8) 80.8 (73.8)

Numbers in parentheses are standard deviations.

According to Tables 5-8, Figure 10a,b are drawn, respectively. Clearly, BSR decreases
as the number of faulty edges increases, and the mean of unreachable nodes increases as

the dimension of FCQ,, increases.
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Figure 10. (a) BSR and (b) the mean and standard deviation of the number of unreachable nodes in

FCQ, while5 <n<9and 6 <m < 10.
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5. Discussion

From Tables 1-8 and Figures 9 and 10, the simulation results of FLTQ,, and FCQ,, are
very similar, and there are four phenomena as follows:

e  According to the main Theorems 3 and 4, there exist three edge-disjoint Hamiltonian
cycles in FLTQ, and FCQ, while n > 5. The research results provide three EDHCs
as broadcasting channels and transmission in two directions, no matter what scale
of FLTQ,, and FCQ,, for 5 < n <9, its transmission can reach 100% success when the
number of faulty edges m < 5. The intuitive prediction is that BSR should present a
decreasing function to the number of faulty edges. As expected, all simulations are
consistent with this phenomenon. For example, take FCQs in Table 5 as an example
for illustration. If BSR > 80% is required, then it only allows seven faulty edges. It
can tolerate eight faulty edges while allowing no more than half of the broadcasts
to fail. Accordingly, this means that the least number of faulty edges, the larger the
corresponding BSR.

e Form > 6, BSR increases with expanding the scale of FLTQ,, and FCQ)j,. The reason
is obvious since when m is fixed, the edge failures that occur in Hamiltonian cycles
will reduce their probability as the network expands, thus leading to an increase in
the success rate. For example, take FLTQs and FLT()e in Table 1 as an example for
illustration. All edges of FLTQs are used in 3 EDHCs, but 6/7 edges of FLTQg are used
in 3 EDHCs. When m = 10, BSR increases from 0.348 in FLTQs to 0.545 in FLTQ.

e  For m > 6, the number of unreachable nodes increases with expanding the scale of
FLTQ, and FCQ),. The size of Hamiltonian cycles is equal to the size of the network.
The larger the scale of networks, the larger the number of unreachable nodes. For
example, take FCQg and FCQg in Table 8 as an example for illustration. The size of
FCQ, is 2", then | V(FCQg) | =256 and | V(FCQg) | =512. When m = 10, the mean of
the unreachable nodes increases from 37.3 in FCQg to 80.8 in FCQy.

e In this paper, three EDHCs of FLTQ, (respectively, FCQ,) are compared with the
two EDHCs of LTQ)j, [11] (respectively, CQ; [14]). According to Figures 9a and 10a,
the BSR of three EDHCs is better than that of two EDHCs in both FLTQ,, and FCQ),.
Moreover, the smaller the size of the network, the greater the gap between the BSRs.
In addition, observing Figures 9b and 10b, it can be found that the average number
of unreachable nodes of the three EDHCs is 0.3~0.7 of that of the two EDHCs. In
broadcast applications on FLTQ, and FCQ),,, the three EDHCs in this paper are better
than the two EDHCs in [11,14].

6. Conclusions

This paper first investigates the construction of three EDHCs in FLTQ)j,. Then, the same
method is also applied to FCQy, thus, the research results of the three EDHCs of FCQn are
also obtained. Next, use the three EDHCs of FLTQ,, and FCQ),, as transmission channels to
realize fault-tolerant data broadcasting. Considering that multiple faulty edges will appear
randomly, the performance of data broadcasting is evaluated by simulation with three
EDHCs in FLTQ,, and FCQ;, when 5 < n < 9. The research results provide three EDHCs as
broadcasting channels and transmission in two directions, and the transmission can reach
100% success when the number of faulty edges m < 5. Generally, networks with higher
edge connectivity can construct more EDHCs. As future work, the study is interested in
seeing if there are four EDHCs on FLTQ,, or FCQ;, when n > 7. The question of whether a
Hamiltonian cycle exists in a given graph is NP-complete. While the number of edges of
seven-dimensional FLTQ or FCQ has been increased to 128, it may not be easy to find the
answer only by using the technique of edge exchange. So, this remains an open question.

Supplementary Materials: Three edge-disjoint Hamiltonian cycles in FLTQ5; and FCQj5, simula-
tion description, examples, detailed results, and tables can be viewed at the following website:
http://210.240.238.53 / threeHC1 (accessed on 1 June 2023).
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