
Citation: Stoyanov, B.; Nedzhibov, G.;

Dobrev, D.; Ivanova, T. Application of

Decimated Mathematical Equations

and Polynomial Root-Finding Method

in Protection of Text Messages.

Mathematics 2023, 11, 4982. https://

doi.org/10.3390/math11244982

Academic Editor: Raúl M. Falcón

Received: 15 November 2023

Revised: 14 December 2023

Accepted: 15 December 2023

Published: 17 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Application of Decimated Mathematical Equations and
Polynomial Root-Finding Method in Protection of Text Messages
Borislav Stoyanov * , Gyurhan Nedzhibov , Dimitar Dobrev and Tsvetelina Ivanova

Department of Computer Informatics, Faculty of Mathematics and Informatics, Konstantin Preslavsky University
of Shumen, 9700 Shumen, Bulgaria; g.nedzhibov@shu.bg (G.N.); d.d.dobrev@shu.bg (D.D.);
ts.r.ivanova@shu.bg (T.I.)
* Correspondence: borislav.stoyanov@shu.bg

Abstract: Cryptography is the process of transforming data so that only the recipient of the message
can read it. It uses an algorithm and a key to convert an input into an encrypted output. In this study,
we introduce a novel method for protecting readable messages through the utilization of a polynomial
root-finding technique in conjunction with the decimated output of Zaslavsky equations. The
innovative approach we have developed is a block encryption algorithm that offers both protection for
sensitive information as well as adaptability to various block sizes, including dynamically changing
block sizes. Precise security analysis is provided for the proposed algorithm using key space analysis
and strong statistical tests. The presented results show that the novel block encryption protection
provides a high level of security.
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1. Introduction

The modern communication revolution necessitates faster and more secure methods
of ensuring plain message security. It is crucial to have better options in order to be
more secure in today’s world. Cryptography is the practice of transforming data into
an unrecognizable form to protect them from being illegally obtained, altered, modified,
or accessed while being transmitted over a network. In recent years, many encryption
techniques have been introduced to securely store and transfer data in text format. Message
encryption is a deterministic scheme operating on fixed-length encryption groups of bits.
These include extensively used classical encryption schemes (RSA, Blowfish, AES, etc.) and
novel encryption schemes (based on dynamical systems [1–3] and quantum walks [4–6]).

Due to the increasing resistance to statistical attacks, the use of strong mathematical
tools in encryption schemes is becoming more and more popular. A symmetric text
encryption technique based on reversible Karhunen–Loeve expansion is proposed in [7].
The proposed algorithm is sufficiently secure based on the security measures. In Ref. [8], a
data encryption scheme based on deep learning is presented. It performs well in secrecy
capacity. In [9], a data encryption technique based on a numerical method and rotation–
translation formula is proposed. Two different ways of constructing nonlinear functions
are presented. Text encryption based on logistic, pinchers, and sine-circle equations is
described in [10]. Pseudorandom bit extraction from Lorenz and Rössler attractors is
presented in [11]. Different numerical methods for solving nonlinear dynamic systems are
available. In Ref. [12], a variant of the RSA scheme is used to secure simple input messages.
Core-adaptive Fourier decomposition for high encryption performance and security is
described in [13].

Decimation is the process of reducing the random or pseudorandom output stream
with a filtering function. Irregularly based encryption schemes can be found in [14,15].
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1.1. Motivation and Related Works

Our study was inspired by the rising demand for more complex and reliable en-
cryption as a result of the advancement in computer and network technology. The main
motivation of this paper is to design and propose an encryption method suitable for read-
able massages protection. In [9], we introduced an enhanced encryption algorithm. Our
research focuses on advancing encryption techniques, emphasizing both efficiency and
security in data protection. We developed an algorithm using numerical methods and
the rotation–translation equation to create a symmetric-key-based encryption–decryption
system. Our goal was to improve the existing encryption methods by incorporating a faster
convergent iterative approach, ensuring secure convergence of the numerical scheme, and
enhancing security through the use of a rotation–translation formula.

As far as the authors are aware, the studies that examine encryption algorithms
with iterative techniques include [9,11,16–19]. Publications [9,16–18] discuss encryption
techniques that use numerical methods to solve nonlinear algebraic equations. Meanwhile,
in [11], an encryption technique is considered where numerical methods are used to
solve differential equations. In [19], the use of the Zaslavsky function to construct a hash
function is demonstrated. For some more recent results based on the chaotic-map Zaslavsky
equation, we recommend [20–22] and the citations therein.

The present work is a kind of continuation and expansion of the ideas and approach
from publication [9]. Our goal is to present a new block encryption technique based on
iterative methods for simultaneous approximation of polynomial zeros in conjunction with
the decimated output of Zaslavsky equations.

1.2. Contributions

This research paper introduces a novel approach to text encryption, leveraging the
fusion of decimated mathematical equations and the polynomial root-finding method. The
proposed algorithm offers a robust and secure method for achieving block encryption,
enhancing the confidentiality and integrity of textual information.

The main contributions of our research can be summarized as follows:

• We present a decimation-based algorithm for pseudorandom byte output using two
Zaslavsky equations, which possesses respectable statistical features.

• We propose secure text encryption based on a mix of the polynomial root-finding
method and the decimated output of the novel pseudorandom generator.

• We examine the proposed encryption, and the data show that it has good key space
and excellent security properties that can withstand most common theoretical and
statistical vulnerabilities.

1.3. Article Structure

The rest of the paper is organized as follows. In Section 2, we propose basics on
polynomials, factoring polynomials, and root-finding methods. In Section 3, we propose a
novel decimation-based pseudorandom byte generation and text encryption technique. In
Section 4, some security cryptanalysis is provided. Finally, Section 5 concludes the paper.

The MATLAB source code and output results are available from [23].

2. Polynomials, Factoring Polynomials, and Root-Finding Methods

This section provides several fundamental facts about polynomials, which will be used
in the following sections. Let n ∈ Z∪ {0} be a nonnegative integer, and let a0, a1, . . . , an ∈ C
be complex numbers. Then, we call the expression

p(x) = anxn + . . . + a1x + a0 (1)

as a polynomial in the variable x with coefficients a0, a1, . . . , an. The highest power, n,
where an ̸= 0, occurring is called the degree of the polynomial. The highest degree term is
called the leading term and its coefficient an is called the leading coefficient. Moreover, if
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the leading coefficient is an = 1, we call p(x) a monic polynomial. Finally, by a root (or zero)
of a polynomial p(x), we mean a complex number α such that p(α) = 0.

2.1. Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra has several equivalent formulations and many
different proofs. One of the first proofs was provided by the famous mathematician Carl
Gauss in his 1799 doctoral dissertation.

Theorem 1 (Fundamental Theorem of Algebra). Given any positive integer n = 1 and any choice
of complex numbers a0, a1, ..., an, such that an ̸= 0, the polynomial equation

anxn + . . . + a1x + a0 = 0 (2)

has at least one solution x ∈ C.

There are several equivalent formulations of Theorem 1. The theorem is also stated
as follows.

Theorem 2. Let p(x) be a polynomial with complex coefficients of degree n. Then, p(x) has n roots.

Theorem 3 (Complex Factorization Theorem). Suppose p is a polynomial function with complex
number coefficients. If the degree of p is n ≥ 1, then p has exactly n complex roots, counting
their multiplicity. If α1, α2, . . . , αk are the distinct roots of p, with multiplicities m1, m2, . . . , mk,
respectively, then

p(x) = a(x − α1)
m1(x − α2)

m2 . . . (x − αk)
mk , (3)

where a is the leading coefficient of p(x).

It follows from Theorem 3 that a polynomial is completely defined by its zeros, their
multiplicities, and its leading coefficient.

2.2. Polynomial Root-Finding

Generally, polynomials’ zeros cannot be computed exactly nor expressed in closed
form. Note that there exist closed formulas for the roots of polynomials, only for polynomi-
als up to degree four. This fact was proved by Abel in 1824, and independently by Galois.
As a result, most computational methods for solving the root-finding problem are iterative.
Essentially, iterative methods work as follows: they start with an initial approximation x0
and then construct a sequence of iterations xk using an iteration formula in the hope that
this sequence converges to a root of p(x). There are two main types of iteration methods for
polynomial root-finding: those that approximate one root at a time and those that approxi-
mate all roots at once. A classic representative of methods for simultaneous approximation
of all zeros of p(x) is the famous Weierstrass method, which is defined by the sequence

xk+1 = xk − W(xk) for k = 0, 1, 2, . . . , (4)

where W : D ⊂ Cn → Cn is a vector-valued function with components

Wi(x) =
p(xi)

∏n
j ̸=i (xi − xj)

, for i = 1, . . . , n, (5)

and D is the set of all vectors with distinct components in Cn. Weierstrass sequence (4) is
well-defined under appropriate initial conditions and converges to the polynomial p’s zero
vector. Provided that all p zeros are simple, the iteration has quadratic convergence.

Matrix methods can also be used to approximate polynomial roots. Over the past few
decades, they have gained popularity for simultaneously finding polynomial roots. With
this approach, the zeros of the input polynomial p are approximated as the eigenvalues
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of the companion matrix (or generalized companion matrix). It is known that a matrix
A ∈ Cn×n is a companion matrix associated with the polynomial p(x) if

det(A − xI) = p(x) (6)

for x ∈ Cn. In mathematical terms, p denotes the characteristic polynomial of A. Thus,
eigenvalues of A coincide with the zeros α1, . . . , αn of p . Therefore, the polynomial root-
finding problem can be reduced to the eigenvalue problem: find a scalar λ ∈ C and a
nonzero vector x ∈ Cn such that

Ax = λx. (7)

The most common example of companion matrices is the well-known Frobenius companion
matrix of order n

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

 (8)

associated with the polynomial p.
This implies the use of different techniques to find matrix eigenvalues. The eigenvalues

of the companion matrix may be found by using standard versions of the balancing QR
algorithm. These versions may be found in LAPACK or its precursor EISPACK. This is how
the MATLAB roots function performs its computation.

2.3. MATLAB Functions for Root-Finding

MATLAB’s built-in functions poly, polyval, and roots can be used in the context of
zero-finding of a polynomial. Function poly converts roots to a polynomial equation. The
following syntax poly(v), when v is a vector, provides a vector whose elements are the
coefficients of the polynomial whose roots are the elements of v.

Function roots finds the polynomial roots. The following syntax roots(c) computes
the roots of the polynomial whose coefficients are elements of the vector c.

Function polyval is for polynomial evaluation. The following syntax polyval(p, x)
evaluates the polynomial p at each point in x. The argument p is a vector of length n + 1
whose elements are the coefficients (in descending powers) of an n-th degree polynomial.

MATLAB’s built-in functions poly, polyval, and roots are employed for the purpose
of locating the roots of a polynomial. The poly function transforms roots into a polynomial
equation. When given a vector v, the syntax poly(v) generates a vector containing coef-
ficients corresponding to the polynomial with roots specified by the elements of v. The
roots function determines the roots of a polynomial. Using the syntax roots(c), where c is a
vector, computes the roots of the polynomial defined by the coefficients in vector c. The
polyval function is utilized for evaluating polynomials. Using the syntax polyval(p, x), it
calculates the value of the polynomial p at each specified point in x. Here, the argument
p is a vector of length n + 1, containing coefficients (in descending powers) of an n-th
degree polynomial.

3. Secure Text Encryption Using Polynomial Root-Finding Method and Decimated
Output of Zaslavsky Equations
3.1. Proposed Decimation-Based Pseudorandom Byte Generation

In this section, we will describe the Zaslavsky-equation-based [24] pseudorandom
byte output generation.

The following function provides a definition of the Zaslavsky formula:

yn+1 = [yn + ν(1 + µzn) + ϵνµ cos(2πyn)](mod1), (9)

zn+1 = e−r(zn + ϵ cos(2πyn)), (10)
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where
µ =

1 − e−r

r
. (11)

It depends on three constants ν, ϵ, and r, where r = 3.0, ν = 400/3, and ϵ = 0.3 as in [24].
George M. Zaslavsky introduced the novel strange attractor, a discrete-time nonlinear

dynamical system, in 1978. The Zaslavsky equation demonstrates deterministic dynamic
behavior, a crucial component of modern security algorithms [25–30]. The diagram of the
Zaslavsky equation has been provided in Figure 1. This diagram shows the random behav-
ior of the Zaslavsky map. One can choose starting values in the interval [−0.001, 0.001].

-0.002

-0.001

0

0.001

0.002

0 0.2 0.4 0.6 0.8 1

z

y

Figure 1. Plot of Zaslavsky equation.

The proposed scheme is based on the following two Zaslavsky equations:

y1,n+1 = mod(y1,n + ν(1 + µz1,n) + ϵνµ cos(2πy1,n), 1)

z1,n+1 = e−r(z1,n + ϵ cos(2πy1,n)),

y2,n+1 = mod(y2,n + ν(1 + µz2,n) + ϵνµ cos(2πy2,n), 1)

z2,n+1 = e−r(z2,n + ϵ cos(2πy2,n)),

(12)

where µ is from Equation (11) and y1,0, z1,0, y2,0, and z2,0, are floating point numbers.
The complete decimation process consists of the following steps:

1. The starting values y1,0, z1,0, y2,0, and z2,0 of Equation (12) and an output stream length
Z are determined.

2. The Zaslavsky equations are iterated initially for M times.
3. The iteration of the Equation (12) continues, and, as a result, four decimal fractions

y1,m, z1,m, y2,m, and z2,m, are generated and two of them post-processed as follows:

si = mod(abs(int(y1,m × 1014)), 2)

tj = mod(abs(int(z2,m × 1014)), 2),
(13)

where int(x) returns the integer part of x, truncating the value at the decimal point,
abs(x) returns the absolute value of x, and mod(x, y) returns the reminder after divi-
sion. Two bits si and tj, are obtained.

4. If the bit (si ⊕ tj)! = 1, return to Step 3.
5. Post-process the other two values as

sj = mod(abs(int(z1,m × 1014)), 256)

ti = mod(abs(int(y2,m × 1014)), 256),
(14)
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and the byte (sj ⊕ ti) produces part of the output sequence.
6. Return to Step 3 until the byte stream length Z is reached.

The novel decimation-based generator is implemented in MATLAB (R2023b, Math-
Works, Natick, MA, USA).

3.2. Proposed Text Encryption Technique

In this section, we describe the encryption and decryption processes of our approach.
The complete encryption process consists of the following steps (Algorithm 1):

Algorithm 1: Encryption

Input: Original text inpT, Block length Len and K PR bytes.
Output: Encrypted text encT
1: Procedure ENCR(inpT, Len, K)
2: n = length(inpT); (Extract the string length)
3: numBlocks = ceil(n/Len); (Compute the number of blocks)
4: For k = 1 : numBlocks (Count the blocks)
5: currentBlock = inpT(k); (Extract the current block)
6: K = GenPRG(Len) (Random generated array)
7: ascii_codes_xor = double(currentBlock) xor K; (Vector of ASCII codes after bit-wise XOR)
8: P = roots([1 ascii_codes_xor]); (Solving polynomial)
9: encT(k) = P; (Encrypted block)
10: endFor
11: End Procedure

Decryption is the inverse process of encryption. With ciphertext, block length, and
decryption keys, one can obtain the original text following decryption operations. The
algorithmic steps of the decryption process are summarized as follows (Algorithm 2).

Algorithm 2: Decryption

Input: Encrypted text encT, Block length Len and K PR bytes.
Output: Decrypted text ReconT
1: Procedure DECR(encT, Len, K)
2: n = length(encT); (Extract the string length)
3: numBlocks = ceil(n/Len); (Compute the number of blocks)
4: For k = 1 : numBlocks (Count the blocks)
5: currentBlock = encT(k); (Extract the current block)
6: K = GenPRG(Len) (Random generated array)
7: p = poly(currentBlock); (Construct the monic polynomial)
8: ascii_codes = p(2 : end)xorK; (Vector of ASCII codes after reverse XOR)
9: ReconT(k)= native2unicode(ascii_codes); (Decrypted block)
10: endFor
11: End Procedure

In both algorithms described above, a syntax of the type currentBlock = encT(k) is
used, which means extracting the k-th block of encT with specified block length. At step 6
in both algorithms, an additional function GenPRG, not described as pseudocode, is used,
which generates an array of random numbers of length Len using the above-described
Zaslavsky-based pseudorandom generation scheme. We have used the following Zaslavsky
generator parameters: ϵ = 0.3, ν = 0.2, and r = 5.

The encryption and decryption schemes are shown in Figures 2 and 3.
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Figure 2. Encryption scheme.

Figure 3. Decryption scheme.

3.3. An Example of Encryption

We will use the example below to illustrate the suggested algorithm. The input text
is inpT = “Shumen University” and the encrypted symbols, using two types of block
encryption, with block lengths Len = 4 and Len = 5 are shown in Table 1. Table 1 shows
only the result of the encryption process (Procedure ENCR). The result of the decryption
(Procedure DECR) is actually the ASCII codes shown in Column 2 of Table 1.

Table 1. Example of encryption/decryption process.

Letter ASCII PR Polynomial Encrypted Letter Encrypted Letter
(Char) Code Number Coefficient (Block Length = 5) Block Length = 4

S 83 18 65 −62.8745 −0.6287
h 104 239 135 0.3295 + 1.0652i −0.0200
u 117 45 88 0.3295 − 1.0652i −0.0006 − 0.0105i
m 109 230 139 −1.3922 + 0.1368i −0.0006 + 0.0105i
e 101 252 153 −1.3922 − 0.1368i −1.5241
n 110 52 90 −89.8704 −0.0133

32 46 14 0.4709 + 1.6081i 0.0037 − 0.0096i
U 85 131 214 0.4709 − 1.6081i 0.0037 + 0.0096i
n 110 143 225 −0.5357 + 0.5174i −2.2438
i 105 229 140 −0.5357 − 0.5174i −0.0001 − 0.0105i
v 118 136 254 −253.4214 −0.0001 + 0.0105i
e 101 246 147 0.2639 + 0.9013i −0.0059
r 114 16 98 0.2639 − 0.9013i −0.9553
s 115 159 236 −1.0233 −0.0262
i 105 122 19 −0.0830 0.0008 − 0.0076i
t 116 229 145 −143.3466 0.0008 + 0.0076i
y 121 148 237 −1.6533 −2.3700

The last two columns of Table 1 contain the output array of complex numbers, which
is the encrypted text the receiver obtains.
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4. Security Analysis

The key space is a group of numbers that can be used in the initial of the pseudo-
random generation. The proposed technique has five initial values y1,0, z1,0, y2,0, z2,0, M,
and Block length. As mentioned in the IEEE Standard for Floating-point Arithmetic [31],
the computation accuracy of the 64-bit double-precision number is about 1014. Conse-
quently, the key space exceeds 2256 bits. This is substantial enough to thwart brute-force
attempts [32,33], and it is larger than the key size of the pseudorandom output algorithms
proposed in [9,11,19,34–37].

Using NIST [38] (National Institute of Standards and Technology) and Ent [39] appli-
cations, we attempted to determine the algorithm’s unpredictability.

Array E outputs numbers (ei) as bytes according to the formula si = mod(abs(int(ei ×
1014)), 256). Generating pseudorandom bytes using decimation, 2000 arrays of 125,000 bytes
are produced.

The NIST application (version sts-2.1.2) includes 15 tests for randomness. The software
calculates how many streams pass the particular test. Based on the confidence interval, an
acceptable proportion range can be determined as

p̂ ± 3

√
p̂(1 − p̂)

m
,

where p̂ = 1−α and m is the number of binary streams. There should be at least 1000 sequences
of 1,000,000 bits. The value of m in our file is 3000. In this case, the confidence level is

0.99 ± 3

√
0.99(0.01)

2000
= 0.99 ± 0.0066746.

The proportion should lie above 0.9833254 with exception of random excursion and
random excursion variant tests. Only when a sequence has more than 500 cycles do these
two tests become relevant.

Ten subintervals make up the interval between 0 and 1. Each subinterval’s corre-
sponding p-values are counted. Applying a χ2 test and figuring out a p-value for the
goodness-of-fit check on the p-values acquired for any test, p-value of the p-values, can
also be used to specify uniformity:

χ2 =
10

∑
i=1

(Fi − s/10)2

s/10
,

where s is the sample size and Fi is the number of p-values in the subinterval i. A p-value
is calculated as p-valueT = IGAMC(9/2, χ2/2), where IGAMC is the complementary
incomplete gamma function. If p-valueT ≥ 0.0001, it is subsequently possible to regard the
sequences as uniformly distributed.

We will present the particular tests briefly [38]: the ratio of ones to zeros throughout
the whole sequence is the frequency test’s main focus. The goal of this test is to assess
whether a sequence has about the same amount of ones and zeros as would be predicted for
a really random sequence. The percentage of ones in M-bit blocks is the block frequency test’s
main emphasis. The goal of this test is to evaluate if an M-bit block has a frequency of ones
that is around M/2, as would be predicted by the randomness assumption. The maximum
excursion (from zero) of the random walk, which is determined by the cumulative total
of the adjusted (−1, +1) numbers in the stream, is the main focus of the cumulative sums.
Finding out if the cumulative sum of the partial streams that occur in the tested stream
deviates too much or too little from the cumulative sum’s expected behavior for random
streams is the aim of the test. The primary issue with the sequence is the overall number of
runs, where a run is an unbroken string of identical bits. A run of length k is limited before
and after by a bit with the opposite value, and it is made up of precisely k identical bits. The
runs test is used to check if there are as many runs of ones and zeros as one would anticipate
from a random sequence. The longest run of ones within M-bit blocks is the test’s main focus.
The aim of this test is to see if the longest run of ones in the sequence being evaluated is
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consistent with the longest run of ones that would be anticipated in a random sequence. The
rank of the entire sequence’s disjoint submatrices is the rank main concern. This test looks
for linear dependency between the original sequence’s fixed-length substrings. The discrete
Fourier transform of the sequence’s peak heights is the main emphasis of Fourier. This test’s
objective is to find periodic features—repetitive patterns that are close to one another in the
tested sequence that would contradict the idea of randomness.

The focus of nonoverlapping templates is the number of occurrences of prespecified target
strings. The purpose of this test is to detect generators that output too many occurrences of
a given aperiodic pattern. The focus of the overlapping template matching is the number of
occurrences of prespecified target streams. Overlapping template matching is concerned with
the number of instances of prespecified target streams. In the universal test, the number of
bits between matching patterns is measured (this is related to the length of the compressed
sequence). The purpose of the test is to detect without loss of information whether or not
the stream can be significantly compressed. We can consider a significantly compressible
stream to be nonrandom. By using approximate entropy, the frequency of overlapping blocks
of two consecutive/adjacent lengths (m and m + 1) is compared against the expected result
for a random sequence. While using serial, the frequency of all possible overlapping
m-bit patterns in the entire stream is determined. The goal is to determine whether the
number of occurrences of 2m m-bit overlapping patterns is approximately the same as
expected for a random stream. There is uniformity in random sequences, meaning that
every m-bit pattern has the same chance of appearing as every other m-bit pattern. Linear
complexity refers to the length of a linear feedback shift register (LFSR). Using this test,
we can determine whether the stream is complicated enough to be considered random.
Counting the number of cycles with exactly K visits in a cumulative sum random walk is
known as random excursion. In a cumulative sum random walk, partial sums are used to
transfer a (0, 1) sequence into the correct (−1,+1) stream.

Random excursion variant determines how many times a particular state is visited in a
cumulative sum random walk. We use this test to determine how the random walk deviates
from the expected number of visits to various states.

The output results for the first 13 tests can be found in Table 2. With the exception
of the random excursion variant test, the minimum pass rate for each statistical test is
approximately 1966 for a sample size of 2000 byte arrays. For a sample size of 1237 bytes of
strings, the random excursion variant test has a minimum pass rate of approximately 1214.
Table 3 tabulates eight p-values calculated by the random excursion test.

Table 2. NIST test suite results.

NIST Test p-Value Success Rate

Frequency 0.028244 1979/2000
Block frequency 0.941144 1982/2000
Cumulative sums forward 0.653773 1979/2000
Cumulative sums reverse 0.335324 1978/2000
Runs 0.288249 1978/2000
Longest run of ones 0.092877 1981/2000
Rank 0.692112 1978/2000
Fourier 0.133788 1975/2000
Nonoverlapping templates 0,477237 1980/2000
Overlapping templates 0.144915 1981/2000
Universal 0.304126 1982/2000
Approximate entropy 0.666245 1979/2000
Serial one 0.138464 1985/2000
Serial two 0.698285 1979/2000
Linear complexity 0.510153 1976/2000
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Table 3. NIST random excursion test results.

State p-Value Success Rate

−4 0.667562 1228/1237
−3 0.510572 1228/1237
−2 0.998566 1222/1237
−1 0.638812 1224/1237
+1 0.803584 1225/1237
+2 0.758478 1217/1237
+3 0.852332 1226/1237
+4 0.559731 1232/1237

Table 4 shows that the random excursion variant test outputs 18 randomness probabil-
ity numbers: p-values.

Table 4. NIST random excursion variant test results.

State p-Value Success Rate

−9 0.894055 1225/1237
−8 0.343294 1226/1237
−7 0.626963 1226/1237
−6 0.019209 1223/1237
−5 0.460086 1228/1237
−4 0.750448 1226/1237
−3 0.594875 1228/1237
−2 0.331738 1226/1237
−1 0.772760 1226/1237
+1 0.040947 1229/1237
+2 0.593192 1231/1237
+3 0.460086 1227/1237
+4 0.406370 1232/1237
+5 0.368547 1230/1237
+6 0.403493 1233/1237
+7 0.013779 1234/1237
+8 0.122036 1232/1237
+9 0.248871 1225/1237

From the results in Tables 2–4, we see that all the p-values are uniformly distributed
over the (0, 1) interval. For all the performed tests, the total numbers of acceptable arrays
are within the expected confidence levels. Based on this, the novel pseudorandom byte
generator passed without error in NIST suite.

The Ent application includes six tests on bit or byte sequences. We tested a stream of
250,000,000 bytes (2,000,000,000 bits) of the decimation-based pseudorandom scheme and
tabulated the output data in Table 5. In addition, there are 999,998,680 zero occurrences
with fraction 0.499999, and 1,000,001,320 ones with fraction 0.500001. The novel algorithm
passed all the Ent tests successfully.

Table 5. Ent test results.

Ent Test Input of Bits Input of Bytes

Entropy 1.000000 7.999999
Optimum compression Reduce size by 0% Reduce size by 0%
χ2 square 0.00, exceed 95.29 % 241.59, exceed 71.73%
Arithmetic mean value 0.5000 127.5015
Monte Carlo for π 3.14140229 (error 0.01%) 3.14140229 (error 0.01%)
Serial correlation −0.000039 −0.000004

The proposed algorithm has been shown to be of high quality through various sta-
tistical tests. To the best of our knowledge, papers using iterative methods and chaotic
functions for data encryption are [9,11,16–18]. Table 6 provides a summary of the computed
values of our proposed scheme in comparison to other algorithms. In [16,18], there is a lack
of sufficient statistical data to enrich the comparative analysis.
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Table 6. Comparison of our proposed symmetric encryption with other schemes.

Encryption Schemes Key Size Correlation Entropy Arithmetic Mean

Proposed 2256 −0.000004 7.999999 127.5015
Stoyanov 2020 [9] 2248 −0.000002 7.999999 127.5055
Ali-Pacha 2022 [11] - - 7.981570 -
Murillo-Escobar [34] 2128 −0.002100 7.994500 -
Hana 2020 [19] 2128 - 7.983400 -
AES-128 [35,36] 2128 −0.002100 7.954880 127.5281
Stoyanov 2015 [37] 2100 0.000001 7.999998 127.4982
Othman 2015 [17] - - 7.21 -

Based on the positive test outputs and theoretical investigations, we can infer that the
proposed readable text encryption based on a numerical method and rotation–translation
formula demonstrates satisfactory statistical characteristics and offers a reasonable level
of security. From the obtained results, it is confirmed that the new algorithm is not
inferior in terms of parameters to the similar techniques indicated in the above tables. The
disadvantages of the described algorithm are that in some cases the encrypted text is slightly
larger than the input text due to the fact that the output symbols are in complex numbers.

The suggested encryption is dependent on the chaotic system’s initial key parameters
and system parameters, which were constructed using the two Zaslavsky equations. If any
initial key values change, the encrypted output will be changed significantly; see Column 5
and Column 6 from Table 1. Consequently, the suggested encryption can survive the chosen
plain text attack [40].

5. Conclusions

In conclusion, this research has presented an advancement in the field of text en-
cryption, offering a promising avenue for enhancing data security in applications ranging
from secure communication to data storage. By amalgamating decimated mathematical
equations and polynomial root-finding methods, this innovative approach reveals new
horizons for the development of encryption algorithms, with practical and theoretical
implications. Our proposed encryption technique is based on a polynomial root-finding
method and the output of the Zaslavsky equations. The proposed scheme uses monic
polynomials and adds additional randomness by using the decimated Zaslavsky equations.
The encryption approach proposed in this paper can be implemented using another chaotic
function instead of the Zaslavsky one, such as Lorenz or Rössler equations.

Through extensive experimentation and analysis, we have demonstrated the efficacy
and resilience of our method against a spectrum of cryptographic attacks. Our security
analysis shows that the novel encryption technique can be successfully used in communi-
cation security. As the digital environment continues to evolve and threats to data security
persist, approaches based on hybrid techniques open new avenues for encryption tech-
niques with both theoretical reliability and practical utility. The potential implications of
this research are profound, promising a more secure and adaptive future for information
protection. This study represents a step towards enhancing the confidentiality and integrity
of digital information, paving the way for further exploration and refinement in the field of
cryptographic methods.

We believe that the areas in which our proposed encryption technique may have
application include secure messaging and communication platforms, email encryption,
data storage, and IoT (Internet of Things) security. It could also be applied in some key
moments in blockchain technologies, such as key management. Blockchain systems rely
on cryptographic keys for various purposes, including wallet addresses and transaction
signing. Our encryption approach should seamlessly integrate with key management
systems. On the other hand, blockchain networks often require fast transaction processing
and validation. Encryption methods that are computationally intensive may not be ideal
for use within a blockchain network. Efficiency and speed are crucial factors to consider.



Mathematics 2023, 11, 4982 12 of 13

In future steps, we want to experiment with encryption-then-compression of readable
messages in order to decrease output file size. We also intend to use turbo codes with secret
keys to provide high error correction levels. One of our objectives is to implement the
proposed algorithm on a reprogrammable integrated circuit.
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