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Abstract: Cloud computing offers abundant computing resources and scalable storage, but data
leakage in the cloud storage environment is a common and critical concern due to inadequate
protection measures. Revocable-attribute-based encryption (RABE) is introduced as an advanced
form of identity-based encryption (IBE), which encrypts sensitive data while providing fine-grained
access control and an effective user revocation mechanism. However, most existing RABE schemes are
not resistant to quantum attacks and are limited in their application scenarios due to the revocation
model. In this paper, we propose a RABE scheme constructed from lattices. Our scheme has several
advantages, including a near-zero periodic workload for the key generation center (KGC), ensuring
scalability as the number of users increases. Additionally, the encryptor is relieved from managing a
revocation list. Moreover, our scheme guarantees the confidentiality and privacy of other ciphertexts
even if the decryption key for a specific period is compromised. We validated the correctness of our
scheme and demonstrated its security under the assumption of learning with errors (LWE), which is
widely believed to be resistant to quantum attacks. Finally, we provide an application example of our
RABE scheme in the electronic healthcare scenario.

Keywords: revocable-attribute-based encryption; enhanced decryption key exposure; lattice-based
cryptography

MSC: 68P25; 81P94; 94A60

1. Introduction

Attribute-based encryption (ABE), introduced by Sahai and Waters [1], is regarded
as an advanced variant of identity-based encryption (IBE). Its decryption process only
becomes viable when the attributes meet the specified policy, thereby providing a crypto-
graphic primitive for encryption with fine-grained access control. ABE manifests in two
distinct forms: ciphertext-policy and key-policy. In ciphertext-policy ABE (CP-ABE) [2,3],
ciphertexts are associated with access policies and keys are associated with attributes.
Conversely, in key-policy ABE (KP-ABE) [4,5], ciphertexts are associated with attributes
and keys are associated with access policies. In this paper, we focus our discussion on
KP-ABE.

Over the years, ABE has evolved into a foundational cryptographic primitive, dis-
playing vast potential applications. Researchers have proposed numerous enhanced and
extended ABE schemes [4–8] to address essential facets such as expressiveness, efficiency,
and security. Notably, ABE schemes resistant to quantum computers, especially those based
on lattice cryptography, have received significant attention. The development of these
quantum-resistant schemes addresses vital aspects while also presenting new challenges.

In many practical applications of ABE, an efficient revocation mechanism is crucial
when users become malicious or their secret keys are compromised. Boneh and Franklin [9]
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proposed a solution where the key generation center (KGC) periodically generates keys
for all non-revoked users. However, this approach results in a periodic workload of
O(N − r) for the KGC, potentially becoming a bottleneck as the number of users grows,
where N and r represent the maximum number of users and revoked users, respectively.
Boldyreva et al. [10] introduced an indirect revocation model employing a binary tree
structure and subset-cover framework, effectively reducing the periodic workload of the
KGC to O(r log(N/r)), a more scalable approach.

Following the work of Boldyreva et al. [10], Chen et al. [11] presented the first lattice-
based indirect revocation IBE (RIBE) scheme. However, when extending this scheme to
ABE, conflicts arise between fine-grained access control and the coarse-grained binary
tree employed for user revocation, presenting challenges for security proofs. So is there a
revocable-attribute-based encryption (RABE) from lattices that the encryptor does not need
to manage the revocation list?

There have been a few exciting attempts towards addressing this problem [12–14].
However, these schemes adopt a direct revocation model proposed by Attrapadung and
Imai [15] that eliminates the need for periodic key updates by both the KGC and users.
Nevertheless, the encryptor must manage the revocation list and generate ciphertext that
can only be decrypted by non-revoked users in specific scenarios.

In practical scenarios, the leakage of decryption keys from external attacks or user
errors is frequently observed. Addressing this concern, Seo and Emura [16] introduced a
significant security concept known as decryption key exposure resistance (DKER). DKER
mandates that the exposure of decryption keys for any time period should not compromise
the confidentiality of ciphertexts encrypted for distinct time periods within the context
of RIBE schemes. By re-randomizing decryption keys, it is conceivable that the scheme
can fulfill the DKER property. Several RABE schemes, relying on number theoretical
assumptions, have been proposed to achieve DKER [17–19].

Nevertheless, the algebraic structure of lattices makes the re-randomization of a
specific key challenging. This difficulty arises because, if a user generates a new decryption
key that ensures correctness without possessing knowledge of the trapdoor, they would
also have the capability to solve the Small Integer Solution (SIS) problem. So is there a
RABE with DKER from lattices?

Katsumata et al. [20] proposed an approach to achieve the partial key re-randomization
property from lattices and constructed the first lattice-based RIBE scheme with DKER. Their
scheme adopts a two-level structure, where the first level incorporates [11] for revocation,
while the second level relies on any lattice-based HIBE scheme [21,22] to fulfill the DKER
property. However, this two-level structure cannot be extended to ABE. In ABE, multiple
users may correspond to the same policy. Consequently, a revoked user can combine
the decryption keys leaked by non-revoked users with the same policy to generate new
decryption keys for other time periods.

1.1. Related Work

Qin et al. [23] proposed a server-aided revocation model, utilizing an untrusted
server for periodic key updates instead of relying on the user. This innovative approach
enables users to achieve arbitrary period decryption while maintaining only a constant-
level secret key, thus significantly reducing the user’s workload. Recently, Wang et al. [24]
proposed a novel revocation model with a nearly negligible periodic workload for the KGC.
Unlike direct revocation, this model eliminates the need for the encryptor to manage a
revocation list. Additionally, they introduced a lattice basis delegation approach, enabling
the delegation of sampling operations to an untrusted server. This approach significantly
reduces the periodic workload associated with user decryption key generation.

Takayasu and Watanabe [25,26] integrated anonymity and DKER for the first time,
constructing a RIBE scheme with bounded DKER (B-DKER) and anonymity. Anonymity,
as defined by Boyen [27], guarantees that encrypted ciphertext must not reveal the recip-
ient’s identity. Simultaneously, B-DKER ensures the security of RIBE schemes under a
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priori bounded exposure of decryption keys, representing a weak version of DKER. In a
subsequent development, Wang et al. [24] introduced an enhanced form of DKER, named
enhanced DKER (En-DKER). En-DKER extends the requirement by ensuring that the ex-
posure of decryption keys in any time period cannot compromise the confidentiality and
anonymity of ciphertexts in other time periods.

Wang et al. [28] and Yang et al. [29] proposed two revocable CP-ABE schemes under the
learning with errors (LWE) assumption. Furthermore, Yang et al. [30] presented a revocable
and multi-authority CP-ABE from the ring learning with errors (RLWE) assumption. Dong
et al. [31] proposed a lattice-based RABE scheme with DKER. Huang et al. [32] proposed a
multiple authorities CP-ABE scheme with DKER from lattices.

1.2. Technical Overview

Here, we provide a detailed analysis of the difficulties associated with the two open
problems mentioned earlier in the introduction. Subsequently, we present the construction
approach for our lattice-based RABE with the En-DKER scheme.

First, we define the symbols that may be used in the following discussions. A, B,
and W are matrices in Zn×m

q , TA is the trapdoor of the matrix A, and u and s are random
vectors in Zn

q . BID and Wt are random matrices of identity ID and time period t in
Zn×m

q based on B and W, respectively. In addition, the KGC manages a binary tree BT
and randomly selects a particular leaf node ηID for each identity ID. Path(ηID) and
KUNodes(RLt) are two node sets, where the former represents all nodes on the path from
the leaf node ηID to the root, and the latter represents the smallest nodes subset of non-
revoked users in time period t. The detailed introduction of algorithm KUNodes is in
Lemma 8. Assuming that an identity ID has not been revoked at time period t, there
must be a node θ∗ = Path(ηID) ∩KUNodes(RLt). For each node θ ∈ BT, select a uniformly
random vector uθ in Zn

q .
We recall Chen et al.’s [11] RIBE scheme from lattices. As shown in Figure 1, the scheme

consists of six algorithms: Setup, GenSK, KeyUp, GenDK, Enc, and Dec. The algorithm GenSK
is run by the KGC to generate the secret key {skID,θ}θ∈Path(ηID) for the identity ID. The
KGC periodically runs the algorithm KeyUp, inputs the revocation list RLt, and outputs
and broadcasts the key update {kut,θ}θ∈KUNodes(RLt). If the user ID has not been revoked
at time period t, he can generate the decryption key dkID,t by adding skID,θ∗ and kut,θ∗ in
a component-wise fashion. Conversely, if the user ID is revoked, there is no intersection
node between the two node sets, uθ cannot be eliminated, and thus the decryption key
dkID,t cannot be calculated.

Figure 1. Chen et al.’s [11] RIBE scheme.

However, when extending Chen et al.’s [11] RIBE to RABE, conflicts arise between
fine-grained access control and the coarse-grained binary tree employed for user revocation,
presenting challenges for security proofs.

Specifically, in the security proof of [11], if the challenge identity ID∗ is revoked, the
adversary can still make secret key queries for ID∗. It should be noted that, in this case,
the challenger cannot utilize SampleRight for generation. Instead, for each θ ∈ Path(ηID∗),
a random vector is chosen as the secret key skID∗ ,θ , and uθ is assigned the value skID∗ ,θ
multiplied by [A|BID∗ ]. However, in ABE schemes, there may be multiple policies that
satisfy the challenge attribute set x∗, and a policy may correspond to multiple users as well.
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This means that there could be multiple revoked users who satisfy x∗. When responding
to the adversary’s secret key queries using the same method, there will be overlapping
node sets in Path(ηID), leading to conflicts in uθ . Furthermore, if we set uID,θ for each ID,
the update key will be directly related to the ID, which will bring us back to the original
scheme [9], where the KGC’s period workload is O(N − r).

Chen et al.’s RIBE scheme from lattices [11] does not satisfy DKER. Specifically, if the
decryption key dkID,t in time period t is exposed, the adversary can use the key update
kut,θ∗ to recover the secret key skID,θ∗ . As a result, the adversary can do whatever the user
with the identity ID can do. Katsumata et al. [20] constructed the first RIBE scheme with
DKER from lattices. As shown in Figure 2, Ā is a matrix in Zn×m

q , and TĀ is the trapdoor of
the matrix Ā. s̄ is a random vector in Zn

q . They divided the ciphertext and decryption key
into two levels, where the first level incorporates [11] for revocation, while the second level
relies on any lattice-based HIBE scheme [21,22] to fulfill the DKER property.

Figure 2. Katsumata et al.’s [20] RIBE scheme with DKER.

However, this two-level structure cannot be extended to ABE. In ABE, multiple users
may correspond to the same policy. Consequently, a revoked user can use his own partial
secret key T[Ā|BID ] and combine the decryption keys leaked by non-revoked users with
the same policy to generate new decryption keys for other time periods. Interestingly, this
issue also leads to the inability of [20] to guarantee anonymity in the event of decryption
key leakage.

As shown in Figure 3, Wang et al. [24] constructed the first RIBE scheme with En-
DKER from lattices. Luckily, their scheme provided a good solution approach. First, it
associates the ciphertext with KUNodes(RLt) so that, when the challenger replies to the
secret key query, it can be separated according to the access structure as well as whether
the node belongs to the challenge nodes set KUNodes(RLt)∗. This effectively solves the
problem encountered when [11] is extended to ABE. Furthermore, unlike partial secret key
re-randomization using a two-level structure in [20], Wang et al.’s scheme [24] achieved
full secret key re-randomization. In this way, we can cleverly avoid the collusion problem
encountered when extending [20] to ABE. By combining Wang et al.’s revocation model [24]
with the BGG+14 [33], we propose the first RABE with En-DKER from lattices.

Figure 3. Wang et al.’s [24] RIBE scheme with En-DKER.
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1.3. Our Contributions

This paper makes the following contributions:
We extend the En-DKER property proposed by Wang et al. [24] in RIBE to RABE.

Specifically, the leakage of any time period decryption keys should not compromise the
confidentiality of ciphertexts from other time periods. At the same time, adversaries are
unable to determine whether the attribute set of the ciphertext for the challenge time period
satisfies a specific policy using keys from any other time periods or policies.

By combining Wang et al.’s revocation model [24] with the BGG+14 [33], we propose
the first RABE with En-DKER from lattices. Our scheme cleverly avoids the security proof
challenges faced when extending Chen et al.’s RIBE scheme [11] to RABE and the collusion
issues encountered when extending Katsumata et al.’s RIBE with the DKER scheme [20]
to ABE. It is noteworthy that our scheme retains the advantages of near-zero periodic
workload for the KGC, and the encryptor does not need to manage a revocation list.

Finally, we validate the correctness and prove the security of our scheme under the
LWE assumption.

2. Preliminaries
2.1. Notations

In this paper, we denote the underlying security parameter as λ. We use PPT to
represent probabilistic polynomial time. We represent vectors with bold lowercase letters,
e.g., v, and matrices with uppercase letters, e.g., A. By default, all vectors are considered
column vectors. If n is a positive integer, [n] = {1, . . . , n}. For a column vector x ∈ Zn, ||x||
denotes the standard Euclidean norm. For a matrix A ∈ Rn×m, Ã is the Gram–Schmidt
orthogonalization of A, and ||A|| is the Euclidean norm of the longest column in A.

The statistical distance between two distributions D and D′ is denoted as SD(D,D′).
Two families of distributions D = {Dλ}λ∈N and D′ = {D′λ}λ∈N are considered statistically
indistinguishable if there exists a negligible function negl(·) such that SD(Dλ,D′λ) ≤ negl(λ)
for all λ ∈ N. Here, negl(·) is a function satisfying negl(λ) ≤ λ−c for every constant c > 0
and an integer Nc, where λ > Nc.

2.2. Useful Facts

Smudging. The given lemma, originally established in [34], asserts that adding large noise
often “smudges out” any small values.

Lemma 1 (Smudging Lemma). Let B1 and B2 be two polynomials over the integers, and let
D = {Dλ}λ be any B1-bounded distribution family. Define U = {Uλ}λ as the uniform distribution
over [−B2(λ), B2(λ)]. The families of distributionsD+ U and U are statistically indistinguishable
if there exists a negligible function negl(·) such that for all λ ∈ N, B1(λ)/B2(λ) ≤ negl(λ).

The definition of B-Bounded is as follows.

Definition 1 (B-Bounded). For a family of distributions D = {Dλ}λ∈N over the integers and a
bound B = B(λ) > 0, if for every λ ∈ N it holds that Prx←Dλ

[|x| ≤ B(λ)] = 1, we say that D is
B-bounded.

Leftover Hash Lemma. Here, we recall the leftover hash lemma from [21].

Lemma 2. Suppose m > (n + 1) log q + ω(log n). Then, the distribution (A, AR) is statistically
indistinguishable from the distribution (A, B), where A and B are uniformly chosen matrices in Zn×m

q ,
and R is a uniformly chosen matrix in {−1, 1}m×m. Simultaneously, Pr[||R|| > 20

√
m] ≤ negl(m).

Full-Rank Different Map. We need this tool to encode identities and time periods as
matrices in Zn×n

q .
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Definition 2. A function H : Zn
q → Zn×n

q is a full-rank different map if the matrix H(u)−H(v) ∈
Zn×n

q is full rank, for all distinct u, v ∈ Zn
q , and H is computable in O(n log q).

2.3. Background on Lattices

Lattice. Let n, m, and q be positive integers. An m-dimensional lattice, denoted as L, is
a discrete subgroup within Rm. Consider L⊥q (A), the q-ary lattice defined as {x ∈ Zm :
Ax = 0 in Zq}, where A is a matrix in Zn×m

q . For any u in Zn
q , let Lu

q (A) denote the coset
{x ∈ Zm : Ax = u in Zq}.
Discrete Gaussians. For any parameter σ > 0, the discrete Gaussian distribution is defined
ρL,σ(x) = ρσ(x)/ρσ(L), where ρσ(x) = exp

(
−π‖x‖2/σ2) and ρσ(L) = ∑x∈L ρσ(x).

The following lemmas represent crucial properties of the discrete Gaussian distribution [35].

Lemma 3. For positive integers n, m, q with m > n, q > 2, and a matrix A ∈ Zn×m
q , there

exists a negligible function negl(·) such that Pr[||x|| > σ
√

m : x← DL⊥q (A),σ] ≤ negl(n) when

σ = Ω̃(n).

Lemma 4. For positive integers n, m, q with m > 2n log q, and given A← Zn×m
q and e← DZm ,σ,

the distribution of u = Ae mod q is statistically close to the uniform distribution over Zn
q .

Trapdoor Generators. The ensuing lemma outlines properties of algorithms designed for
generating short bases of lattices.

Lemma 5. [36–38] For integers n, m, q > 0. There exist PPT algorithms with the following
properties:

• TrapGen(1n, 1m, q) → (A, TA): On inputting n, m, q, output a matrix A ∈ Zn×m
q and its

trapdoor TA ∈ Zm×m, satisfying ||TA|| ≤ O(n log q).

• There exists a gadget matrix G, which is a full-rank matrix in Zn×m
q and has a publicly known

trapdoor TG with ||T̃G|| ≤
√

5.

Sampling Algorithms. We review some sampling algorithms from [36–38].

Lemma 6. Let n, m, and q be positive integers. We have the following PPT algorithms:

• SamplePre(A, TA, σ, u)→ s: Given a matrix A ∈ Zn×m
q with trapdoor TA, a vector u ∈ Zn

q ,
and a parameter σ ≥ ||T̃A|| ·ω(

√
log m), output a vector s ∈ Zm

q satisfying A · s> = u>

and ||s|| ≤
√

mσ.

• SampleLeft(A, M, TA, σ, u) → s: Given a matrix A ∈ Zn×m
q with trapdoor TA, a matrix

M ∈ Zn×m0
q , a vector u ∈ Zn

q , and a parameter σ ≥ ||T̃A|| · ω(
√

log(m + m0)), output a
vector s ∈ Zm+m0

q distributed statistically close to DLu
q ([A|M]),σ.

• SampleRight(A, G, R, TG, σ, u)→ s: Given a matrix A ∈ Zn×m
q , the gadget matrix G with

trapdoor TG, a uniform random matrix R← {−1, 1}m×m, a vector u ∈ Zn
q , and a parameter

σ ≥ ||T̃G|| ·
√

m · ω(
√

log m), output a vector s ∈ Z2m
q distributed statistically close to

DLu
q ([A|AR+G]),σ.

Hardness Assumption. The security of our revocable ABE scheme is reduced to the
learning with errors (LWE) assumption.

Assumption 1 (Learning with Errors [39]). Let n, m, q be positive integers, and a parameter
σ ∈ R; for any PPT adversary A, there exists a negligible function negl(·) that satisfies

|Pr[A(A, s>A + e) = 1]− Pr[A(A, b) = 1]| ≤ negl(λ),
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where A← Zn×m
q , s← Zn

q , b← Zn
q , and e← χm

LWE.

Here, we set χLWE is a BLWE-bounded distribution. Moreover, Peikert [40] proved
that, if BLWE ≥ ω(log n) ·

√
n, the hardness of the LWE assumption is equivalent to the

worst-case GapSVPγ with parameter γ = 2Ω(nε).

Lattice Evaluation. Here, we review some algorithms that implement the key-homomorphic
features from [33,41].

Lemma 7. Let n, m, and q be positive integers. For any matrices B1, . . . , B` ∈ Zn×m
q , any attribute

sets x ∈ {0, 1}`, and any Boolean circuit f : x→ {0, 1} of depth≤ d, set ci = s>(Bi + xiG) + ei,
where i ∈ [`], s ∈ Zn

q , and ei ← χm
LWE, there exist algorithms (Evalpk,Evalct,Evalsim) with the

following properties:

• Evalpk( f , (B1, . . . , B`)) → B f : Given a Boolean circuit f and ` matrices (B1, . . . , B`),
output the matrix B f .

• Evalct( f , {(Bi, xi, ci)}i∈[`]) → c f : For a Boolean circuit f , ` matrices (B1, . . . , B`), an
attribute set x, and ` vectors (c1, . . . , c`), output c f . Here, c f = s>(B f + f (x)G) + e f ,
where B f = Evalpk( f , (B1, . . . , B`)), and ‖e f ‖ ≤ B

√
m · (m + 1)d with almost negligible

probability.
• Evalsim( f , {(Si, x∗i )}i∈[`], A) → S f : Given a Boolean circuit f , ` matrices S1, . . . , S` ∈

Zm×m
q , a matrix A ∈ Zn×m

q , and an attribute set x∗, output S f . Ensure AS f − f (x∗)G = B f ,
where B f = Evalpk( f , (AS1 − x∗1G, . . . , AS` − x∗`G)). If S1, . . . , S` ∈ {−1, 1}m×m, then
‖S f ‖ ≤ 20

√
m · (m + 1)d with almost negligible probability.

2.4. The Complete Subtree Method

The Complete Subtree (CS) method, introduced by Naor et al. [42], is utilized in
indirect revocation schemes to alleviate the periodic workload of the KGC. In this approach,
the system constructs a complete binary tree BT. For a non-leaf node θ ∈ BT, θl and θr
denote the left and right child nodes of θ, and η denotes the leaf node in BT. Path(η)
represents the set of nodes on the path from η to the root.

Lemma 8 (KUNodes). On inputting the revocation list RLt for time period t, the KUNodes
algorithm follows these steps: initializes two empty sets X and Y; adds Path(η) to X for each
η ∈ RLt; for each θ ∈ X, adds θl to Y if θl /∈ X, and adds θr to Y if θr /∈ X; if Y remains empty,
adds root to Y; finally, outputs Y, which is the smallest subset of nodes representing non-revoked
users during time period t.

In Figure 4a, there are no revoked users and KUNodes = {root}. However, in Figure 4b,
User 2 has been revoked and KUNodes = {2, 3}. For a non-revoked user, the node set
Path(User) must have an intersection with the node set KUNodes. For example, in Figure 4b,
we have Path(User 1) = {root, 1, 3} and KUNodes∩ Path(User 1) = 3.
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(a) No user has been revoked (b) Only User 2 has been revoked

Figure 4. A graphical description of the KUNodes algorithm.

3. The Notion of Revocable ABE with En-DKER
3.1. Syntax and Correctness

Let ID be an identity space,M be a message space, X be an attribute space, T be
a time period space, and F be a sequence of sets of functions, namely F = { f : X ` →
{0, 1}}. Our revocable ABE scheme consists of six algorithms (Setup, GenSK, NodesUp,
GenDK, Enc, Dec), defined as follows:

• Setup(1λ) → (PP,MSK): Executed by the KGC, this algorithm takes as input a
security parameter λ. It produces public parameters PP and a master secret key MSK.

• GenSK(PP,MSK, ID, f ) → SKID, f : Executed by the KGC, this algorithm takes as
input the public parameters PP, the master secret key MSK, an identity ID ∈ ID, and
a policy function f ∈ F . It produces a secret key SKID, f .

• NodesUp(BT, t,RLt) → KUNodes(RLt): Executed by the KGC, this algorithm takes
as input the binary tree BT, a time period t ∈ T , and the revocation list RLt for the
time period t. It produces and broadcasts a node set KUNodes(RLt).

• GenDK(PP,SKID, f ,KUNodes(RLt)) → DKID, f ,t: Executed by the receiver, this algo-
rithm takes as input the public parameters PP, the secret key SKID, f , and the node set
KUNodes(RLt). It produces a decryption key DKID, f ,t.

• Enc(PP, x,KUNodes(RLt), µ)→ CTx,t: Executed by the sender, this algorithm takes as
input the public parameters PP, an attribute set x ∈ X l , the node set KUNodes(RLt),
and a message µ ∈ M. It produces a ciphertext CTx,t.

• Dec(CTx,t,DKID, f ,t)→ µ′: Executed by the receiver, this algorithm takes as input the
ciphertext CTx,t and the decryption key DKID, f ,t. It produces a message µ′ ∈ M.

Correctness. A revocable ABE scheme is correct if, for all λ ∈ N, ID ∈ ID, t ∈ T , µ ∈ M,
x ∈ X `, and f ∈ F that satisfy f (x) = 0, it holds that

Pr


µ′ = µ

(PP,MSK)← Setup(1λ)

SKID, f ← GenSK(PP,MSK, ID, f )
KUNodes(RLt)← NodesUp(BT, t,RLt)

DKID, f ,t ← GenDK(PP,SKID, f ,KUNodes(RLt))

CTx,t ← Enc(PP, x, t,KUNodes(RLt), µ)

µ′ ← Dec(CTx,t,DKID, f ,t)


= 1− negl(λ).
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3.2. Security Model of Revocable ABE with En-DKER

We first extend the En-DKER property proposed by Wang et al. [24] in RIBE to RABE.
Specifically, the En-DKER property of the RABE scheme, in addition to possessing the
features of DKER, also satisfies that adversaries are unable to determine whether the
attribute set of the ciphertext for the challenge time period satisfies a specific policy using
keys from any other time periods or policies, which is analogous to the anonymity property
of the IBE scheme.

Then, we provide the formal definition of selective security via a game between an
adversary A and the challenger C. Set a global variable tcu ∈ T with an initial value of 1 to
facilitate the generation of the decryption key DKID, f ,t of any time period queried by A.
This is particularly useful as the revocation list RL is dynamically updated following the
time period t.

Initialize: C establishes a binary tree BT. A sets the challenge attribute sets x(0) and x(1),
the challenge time period t∗, and the challenge node set KUNodes(RLt∗)

∗.
Setup Phase: C executes the Setup algorithm, providing the public parameters PP to A.
Query Phase: A adaptively makes the following queries to C:

1. A sets Q0 = {ID} for user registration queries. C randomly selects an unassigned
leaf node ηID for ID. (At the conclusion of the query, C acquires RL∗t∗ based on
KUNodes(RLt∗)

∗ and BT.)
2. A sets Q1 = {ID, f } for the secret key queries; C replies with the corresponding secret

key SKID, f ← GenSK(PP,MSK, ID, f ). This is subject to the constraint ID ∈ Q0; if
f (x(0)) = 0 or f (x(1)) = 0, ID ∈ RL∗t∗ .

3. Let tcu = 1, and loop through the following steps:

(a) A sets Q2 = {(ID, f , tcu)} for the decryption key queries; C replies with the
decryption key DKID, f ,tcu ← GenDK(PP,SKID, f ,KUNodes(RLtcu)). This is subject
to the constraint ID ∈ Q0; ID /∈ RLtcu ; if tcu = t∗, f (x(0)) 6= 0 and f (x(1)) 6= 0.

(b) A setsQ3 = {(ID, tcu)} for revocation queries, C adds ID to the revocation list RL
and updates RLtcu+1 = RL. Then, C sent KUNodes(RLtcu+1) to A. This is subject
to the constraint ID ∈ Q0; RLt∗ = RL∗t∗ .

(c) tcu = tcu + 1.

Challenge Phase: A sets challenge plaintexts µ(0) and µ(1). C randomly chooses a bit b←
{0, 1} and replies with the ciphertext CTx(b),t∗ ← Enc(PP, x(b), t∗,KUNodes(RLt∗)

∗, µ(b)).

Guess: A outputs a guess b′ of b and succeeds if b′ = b. The advantage of A is defined as

AdvSEL-En-CPA
RABE,A (λ) = |Pr[b = b′]− 1/2|.

Definition 3. A revocable ABE with En-DKER scheme is selectively secure if, for any PPT
adversaries A, AdvSEL-En-CPA

RABE,A (λ) is at most negligible.

4. Revocable ABE with En-DKER from Lattices
4.1. Our Construction

In our scheme, we set the message space M = {0, 1}, the identity space ID ⊂
Zn

q \ {0n}, the attribute space X = {0, 1}, a sequence of sets of functions F = f : {0, 1}l →
{0, 1}, and the time period space T ⊂ Zn

q . For any B ∈ N, let UB denote the uniform
distribution on Z∩ [−B, B]. H(·) is a full-rank different map defined in Definition 2 and G
is a gadget matrix defined in Lemma 5.

To ensure the decryption algorithm outputs⊥with almost negligible probability when
f (x) = 1, we follow the approach of [12,13] and set an encoding function encode : {0, 1} →
{0, 1}k with k = ω(log λ). For each µ ∈ {0, 1}, we define encode(µ) = (µ, 0, . . . , 0) ∈
{0, 1}k. In addition, our system parameters satisfy the following constraints:

• For sampling: m > 2n log q and σ >
√

m ·ω(
√

m).
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• For correctness: k = ω(log λ), O((m + 1)d(m5/2σ + m3/2Bbig)) < q/4BLWE.
• For security: n = O(λ), χLWE = UBLWE

, where BLWE ≥ ω(log n) ·
√

n.
• For smudging: χbig = UBbig

, where Bbig > (mσ2 + 1)2λ+1.

Now, we describe our revocable ABE with En-DKER from lattices construction.

Setup(1λ) → (PP,MSK): On inputting a security parameter λ, the detailed process is
as follows:

1. Run the algorithm TrapGen(1n, 1m, q) to generate (A, TA), where A ∈ Zn×m
q .

2. Choose random matrices {Bi}i∈[`], W in Zn×m
q , and a random matrix U in Zn×k

q .
3. Build a binary tree BT with at least N leaf nodes. For each node θ ∈ BT, select a

random matrix Dθ in Zn×m
q .

4. Output PP = {A, {Bi}i∈[`], W, U, {Dθ}θ∈BT}, MSK = {TA,BT}.

GenSK(PP,MSK, ID, f ) → SKID, f : On inputting the public parameters PP, the master
secret key MSK, an identity ID ∈ ID, and a policy function f ∈ F , the detailed process is
as follows:

1. If ID belongs to a newly registered user in the system, then randomly pick an unas-
signed leaf node ηID from BT and store ID in it.

2. Compute B f = Evalpk( f , (B1, . . . , B`)).
3. For each θ ∈ Path(ηID), generate KID, f ,θ ∈ Z3m×m

q , satisfying [A|B f |Dθ ]KID, f ,θ = G.

(a) Choose a random matrix K′ID, f in D2m×m
Z,σ and set ZID, f = [A|B f ]K′ID, f ∈ Zm×m

q .

(b) Sample K′′ID, f ,θ ← SampleLeft(A, Dθ , TA, σ, G− ZID, f ).

(c) Divide K′ID, f and K′′ID, f ,θ into two parts, K′1,ID, f , K′2,ID, f and K′′1,ID, f ,θ , K′′2,ID, f ,θ
with m rows per part. Then, generate

KID, f ,θ =

[ (
K′1,ID, f + K′′1,ID, f ,θ

)> (
K′2,ID, f

)> (
K′′2,ID, f ,θ

)> ]>
.

4. Output SKID, f = {KID, f ,θ}θ∈Path(ηID).

NodesUp(BT, t,RLt) → KUNodes(RLt): On inputting the binary tree BT, a time period
t ∈ T , and the revocation list RLt for the time period t, the KGC generates and broadcasts a
set KUNodes(RLt) for the time period t.

GenDK(PP,SKID, f ,KUNodes(RLt)) → DKID, f ,t: On inputting the public parameters PP,
the secret key SKID, f , and the node set KUNodes(RLt), the detailed process is as follows:

1. Set θ∗ = Path(ηID) ∩ KUNodes(RLt). If θ∗ = ∅, outputs ⊥. Otherwise, continue the
following steps.

2. Compute Wt = W +H(t)G.
3. Generate DKID, f ,t ∈ Z4m×k

q , satisfying [A|B f |Dθ∗ |Wt]DKID, f ,t = U .

(a) Choose a random matrix K̃ID, f ,t ∈ χ4m×k
big . Set HID, f ,t = [A|B f |Dθ∗ |Wt]K̃ID, f ,t

and send to the server.
(b) The server samples K̃′ ID, f ,t ← SamplePre(G, TG, σ, U−HID, f ,t) and sends to the

user.
(c) Compute K̃′′ ID, f ,t = K f ,θ∗ K̃′ ID, f ,t, satisfying [A|B f |Dθ∗ ]K̃′′ ID, f ,t = U−HID, f ,t,

where K̃′′ ID, f ,t ∈ Z3m×k
q .

(d) Divide K̃ID, f ,t into four parts: K̃1,ID, f ,t, K̃2,ID, f ,t, K̃3,ID, f ,t, K̃4,ID, f ,t, and K̃′′ ID, f ,t

into three parts: K̃′′1,ID, f ,t, K̃′′2,ID, f ,t, K̃′′3,ID, f ,t, with m rows per part. Then,
generate

DKID, f ,t =

[ (
K̃1,ID, f ,t + K̃′′1,ID, f ,t

K̃2,ID, f ,t + K̃′′2,ID, f ,t

)> (
K̃3,ID, f ,t + K̃′′3,ID, f ,t

K̃4,ID, f ,t

)> ]>
.
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4. Output DKID, f ,t = DKID, f ,t.

Enc(PP, x,KUNodes(RLt), µ)→ CTx,t: On inputting the public parameters PP, an attribute
set x = {x1, . . . , x`} ∈ X `, the node set KUNodes(RLt), and a message µ ∈ M, the detailed
process is as follows:

1. Choose a random vector s in Zn
q .

2. Choose random matrices Ri, Sθ , and V in {−1, 1}m×m, where i ∈ [`], θ ∈ KUNodes(RLt).
3. Choose noise e← χk

LWE and a noise vector e′ ← χm
LWE.

4. Generate CTx,t = {cin, {ci}i∈[`], {cθ}θ∈KUNodes(RLt), ct, cout}, where

cout = s>U +
⌊ q

2
⌋
· encode(µ) + e ∈ Zk

q,
cin = s>A + e′ ∈ Zm

q ,
ct = s>Wt + e′V ∈ Zm

q ,
i ∈ [`] : ci = s>(Bi + xiG) + e′Ri ∈ Zm

q ,
θ ∈ KUNodes(RLt) : cθ = s>Dθ + e′Sθ ∈ Zm

q .

5. Output CTx,t.

Dec(CTx,t,DKID, f ,t) → µ′: On inputting the ciphertext CTx,t and the decryption key
DKID, f ,t, the detailed process is as follows:

1. If f (x) = 1, outputs ⊥. Otherwise, continue the following steps.
2. Compute c f = Evalct( f , {(xi, Bi, ci)}`i=1) ∈ Zm

q .
3. Compute c′ = cout − [cin|c f |cθ∗ |ct]DKID, f ,t ∈ Zk

q.
4. Output µ′ by computing encode(µ′) = b q

2 · c′e.

Correctness. We analyze the correctness of the scheme.

1. When f (x) = 1, the probability of the last k − 1 coordinates being 0 is 2−(k−1) =

2−ω(log λ), which is negligible in λ. Consequently, the decryption algorithm outputs ⊥
with all but negligible probability.

2. When f (x) = 0, according to the correctness of the Evalct algorithm, we have c f =

s>B f + e′R f . Therefore,

c′ = cout − [cin|c f |cθ∗ |ct]DKID, f ,t

= s>U +
⌊ q

2

⌋
· encode(µ)− s>[A|B f |Dθ∗ |Wt]DKID, f ,t + noise

=
⌊ q

2

⌋
· encode(µ) + noise,

where

noise = e− e′>[Im|R f |Sθ∗ |V]DKID, f ,t

= e− e′>[Im|R f |Sθ∗ |V]


K̃1,ID, f ,t + K′1,ID, f K̃′ ID, f ,t + K′′1,ID, f ,θ∗ K̃

′
ID, f ,t

K̃2,ID, f ,t + K′2,ID, f K̃′ ID, f ,t

K̃3,ID, f ,t + K′′2,ID, f ,θ∗ K̃
′
ID, f ,t

K̃4,ID, f ,t

.

Correctness now follows since noise is small and should not affect
⌊ q

2
⌋
· encode(µ).

Moreover, the following inequalities hold except with negligible probability:

• From Lemma 2, we have ||S|| and ||Vθ∗ || ≤ 20
√

m.
• From Lemma 7, we have ||R f || ≤ 20

√
m · (m + 1)d.

• Because e← χk
LWE and e′ ← χm

LWE, we have ||e|| ≤ BLWE

√
k and ||e′|| ≤ BLWE

√
m.
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||noise|| = ||e− e′>[Im|R|Sθ∗ |V]DKID, f ,t||

≤ ||e||+ ||e′>|| · ||[Im|R|Sθ∗ |V]DKID, f ,t||

≤ O(BLWE(m + 1)d(m5/2σ + m3/2Bbig)) < q/4,

and we can obtain µ by computing encode(µ) = b q
2 · c′e.

4.2. Security Proof

We show that our RABE construction is secure in the following theorem:

Theorem 1. Our proposed RABE scheme with En-DKER is IND-CPA secure under the assumption
that the LWE problem is hard.

Proof. We consider a sequence of games, and the change between each successive game
is only by a negligible amount neglx(λ). Let PA,x(λ) be the function that represents the

probability of the adversary A correctly guessing the challenge bit b in Game
(b)
x . The first

game is the original IND-CPA secure game for our RABE scheme, so the advantage of A
is AdvSEL-En-CPA

RABE,A (λ) = |PA,0(λ)− 1/2|. The final hybrid is one where the ciphertext is
independent with the bit b, and the advantage of the adversary A is zero, so the advantage
ofA is PA,4(λ) = 1/2. So, for all λ ∈ N, we have AdvSEL-En-CPA

RABE,A (λ) ≤ ∑x∈[4] |PA,x−1(λ)−
PA,x(λ)| ≤ ∑x∈[4] neglx(λ).

The Series of Games. Let A be the adversary in the security definition of the RABE
with En-DKER and adhere to the security model defined in Section 3.2. We consider the
following series of games.

Game(b)0 : This is the original IND-CPA secure game for our RABE scheme, and B chooses a
random bit b← {0, 1}.

Game(b)1 : In this game, we change the generation way of matrices {Bi}i∈[`], {Dθ}θ∈BT,
and W.

1. Choose random matrices R∗i , S∗θ , and V∗ in {−1, 1}m×m, where i ∈ [`] and θ ∈ BT.

2. For each i ∈ [`], θ ∈ BT, we set Bi = AR∗i − x(b)i G, W = AV∗ −H(t∗)G,

Dθ =

{
AS∗θ , if θ ∈ KUNodes(RLt∗)

∗

AS∗θ + G, otherwise
.

We show that Game
(b)
0 is statistically indistinguishable from Game

(b)
1 . By Lemma 2,

(A, AR∗i , AS∗θ , AV∗) is statistically close to (A, Bi, Dθ , W), where Bi, Dθ , W are the indepen-
dently random matrices in Zn×m

q , i ∈ [`] and θ ∈ BT. Moreover, the difference between

(AR∗i , AS∗θ , AV∗) and (AR∗i − x(b)i G, AS∗θ + G, AV∗ − H(t∗)G) is merely syntactic. So,
there exists a negligible function negl1(·) satisfying |PA,0(λ)−PA,1(λ)| ≤ negl1(λ) for any
adversary A.

Game(b)2 : In this game, we change the generation way of the secret key SKID, f for secret
key query of (ID, f ), mainly divided into the following three cases:

• Case 1: f (x(b)) = 0. In this case, the user ID must have been revoked before the
challenge time period t∗, i.e. Path(ηID) ∩KUNodes(RLt∗)

∗ = ∅, as per the secret key
query restriction in the security model. So, for each θ ∈ Path(ηID), Dθ = AS∗θ + G.

1. Perform operation 3.(a) in algorithm GenSK.
2. Sample K′′ID, f ,θ ← SampleRight(A, S∗θ , G, TG, σ, G− ZID, f ).

• Case 2: f (x(b)) 6= 0 and ID /∈ RLt∗ . In this case, Dθ∗ = AS∗θ∗ , where θ∗ = Path(ηID) ∩
KUNodes(RLt∗). So, the challenger cannot use G and algorithm SampleRight to sample
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K′′ID, f ,θ∗ . Furthermore, ZID, f can only be randomly selected once, so we need to use
the SampleRight algorithm to sample K′ID, f .

1. Sample K′′ID, f ,θ∗ ← D
2m×m
Z,σ and set ZID, f = [A|Dθ∗ ]K′′ID, f ,θ∗ .

2. For other nodes θ ∈ Path(ηID) and θ 6= θ∗, the challenger computes K′′ID, f ,θ ←
SampleRight(A, S∗θ , G, TG, σ, ZID, f ).

3. Compute R∗f = Evalsim

(
f , {(x(b)i , R∗i )}`i=1, A

)
and obtain a low-norm matrix

R∗f ∈ Zm×m
q such that AR∗f − f (x(b))G = B f . By the definition, we have R∗f ≤

20
√

m · (m + 1)d. Moreover, σ =
√

5 · (1 + ||R∗f ||) · v(
√

logm) as needed for
algorithm SampleRight.

4. Sample K′ID, f ← SampleRight(A, R∗f ,− f (x(b))G, TG, σ, G− ZID, f ).

• Case 3: f (x(b)) 6= 0 and ID ∈ RLt∗ . In this case, Path(ηID)∩KUNodes(RLt∗) = ∅, and
Dθ = AS∗θ + G, for each θ ∈ Path(ηID).

1. Perform the operation 3.(a) in algorithm GenSK.
2. Sample K′′ID, f ,θ ← SampleRight(A, S∗θ , G, TG, σ, G− ZID, f ).

We show that Game
(b)
1 is statistically indistinguishable from Game

(b)
2 . By Lemma 6 ,

K′ID, f and K′′ID, f ,θ sampled via algorithm SampleLeft and algorithm SampleRight are statis-

tically close to randomly chosen in D2m×m
Z,σ . Moreover, ZID, f = [A|B f ]K′ID, f and ZID, f =

[A|Dθ∗ ]K′′ID, f ,θ∗ are statistically indistinguishable from a random matrix selected in Zn×2m
q .

So, there exists a negligible function negl2(·) satisfying |PA,1(λ)−PA,2(λ)| ≤ negl2(λ) for
any adversary A.

Game(b)3 : In this game, we change the generation way of the decryption key DKID, f ,t for
decryption key query of (ID, f , t), when f (x(b)) = 0, ID /∈ RLt∗ and t 6= t∗.

1. Sample K̂t ← SampleRight(A, V∗, (H(t)−H(t∗))G, TG, σ, G).
2. Perform the operation 2.(a) and 2.(b) in algorithm GenDK to generate K̃ID, f ,t and

K̃′ ID, f ,t.
3. Compute K̂′′ID, f ,t = K̂tK̃′ ID, f ,t, satisfying [A|Wt]K̂′′ID, f ,t = U−HID, f ,t.

4. Divide K̂′′ID, f ,t into two parts: K̂′′1,ID, f ,t and K̂′′2,ID, f ,t, with m rows per part. Set

D̂KID, f ,t =

 (
K̃1,ID, f ,t + K̂′′1,ID, f ,t

K̃2,ID, f ,t

)> (
K̃3,ID, f ,t

K̃4,ID, f ,t + K̂′′2,ID, f ,t

)> > ∈ Z4m×k
q .

We show that Game
(b)
2 is statistically indistinguishable from Game

(b)
3 . Recall in Game

(b)
2

DKID, f ,t =

[ (
K̃1,ID, f ,t + K̃′′1,ID, f ,t

K̃2,ID, f ,t + K̃′′2,ID, f ,t

)> (
K̃3,ID, f ,t + K̃′′3,ID, f ,t

K̃4,ID, f ,t

)> ]>
.

By the triangle inequality for statistical distance and Lemma 1, when Bbig > (mσ2 +

1)2λ+1, there exists a negligible function neglsmudge(·) for all λ ∈ N,

SD(K̃1,ID, f ,t + K̃′′1,ID, f ,t, K̃1,ID, f ,t + K̂′′1,ID, f ,t)

≤ SD(K̃1,ID, f ,t + K̃′′1,ID, f ,t, K̃1,ID, f ,t) + SD(K̃1,ID, f ,t, K̃1,ID, f ,t + K̂′′1,ID, f ,t)

≤ mk · neglsmudge(·) + mk · neglsmudge(·)
= 2mk · neglsmudge(·).
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In the remaining 3m rows, each m row’s statistical distance is equal to mk ·neglsmudge(·).
So, in the adversary’s view,

|PA,2(λ)−PA,3(λ)| ≤ 5mk · neglsmudge(·).

Game(b)4 : In this game, we change the generation way of the matrix A and the ciphertexts.

1. Choose a random matrix A in Zn×m
q .

2. Choose c∗out ← Zk
q and c∗in, c∗i , c∗θ , c∗t∗ ← Zm

q , where θ ∈ KUNodes(RLt∗)
∗ and i ∈ [`].

It remains to be shown that Game
(b)
3 and Game

(b)
4 are computationally indistinguishable

under the hardness of the LWE problem. If there exists a non-negligible function δ(·) such
that |PA,3(λ)−PA,4(λ)| ≥ δ(·), we can also construct an LWE algorithm B under A such
that AdvLWE

B (λ) ≥ δ(λ) for all λ ∈ N.

LWE Instance: B begins by obtaining an LWEn,q,σ challenger of two random matrices
A ∈ Zn×m

q , U ∈ Zn×k
q and two vectors c ∈ Zk

q, c′ ∈ Zm
q , where c ∈ Zk

q and c′ ∈ Zm
q are either

random or c′ = s>A + e′ and c = s>U + e for some random vector s ∈ Zn
q and e← χk

LWE,
e′ ← χm

LWE.

Public Parameters: A sets the challenge attributes x(0) and x(1), time period t∗, and node

set KUNodes(RLt∗)
∗. Then, B sets the public parameters PP as in Game

(b)
3 : Uniformly

random matrices R∗i , S∗θ , and V∗ in {−1, 1}m×m, Bi = AR∗i + x(b)i G, W = AV∗ −H(t∗)G,

Dθ =

{
AS∗θ , if θ ∈ KUNodes(RLt∗)

∗

AS∗θ + G, otherwise
,

where i ∈ [`] and θ ∈ BT.

Query Phase: B answers A’s user registration, secret key, decryption key, and revocation

queries as in Game
(b)
3 .

Challenge Phase: A sets two messages µ(0), µ(1) ∈ {0, 1}. B computes c∗in = c′, c∗i =

c′R∗i , c∗θ = c′S∗θ , and c∗t∗ = c′V∗, c∗out = c + encode(µ(b)) ·
⌊ q

2
⌋
, where i ∈ [`] and θ ∈

KUNodes(RLt∗)
∗.

When the LWE challenge is pseudorandom,

c∗out = c + encode(µ(b)) ·
⌊ q

2
⌋
= s>U + encode(µ(b)) ·

⌊ q
2
⌋
+ e,

c∗in = c = s>A + e′,
c∗t∗ = s>(AV∗ −H(t∗)G +H(t∗)G) + e′V∗ = s>Wt + e′V∗,

i ∈ [`] : c∗i = s>(AR∗i − x(b)i G + x(b)i G) + e′R∗i = s>(Bi + x(b)i G) + e′R∗i ,
θ ∈ KUNodes(RLt∗)

∗ : c∗θ = (s>A + e′)S∗θ = s>Dθ + e′S∗θ ,

the ciphertexts are distributed exactly as in Game
(b)
3 . When the LWE challenge is random,

the ciphertexts are distributed exactly as in Game
(b)
4 .

Guess: A outputs a guess b′ of b. Then, B outputs A’s guess as the answer to the LWEn,q,σ
challenge it is trying to solve.

Note that, when the LWE challenge is pseudorandom, A’s view is as in Game
(b)
3 ; when

the LWE challenge is random, A’s view is as in Game
(b)
4 . So, if the LWE assumption holds,

there exists a negligible function negl4(·), satisfying |PA,3(λ)−PA,4(λ)| ≤ negl4(λ).

5. Application in Practice

In this section, we provide an application example of our RABE scheme with En-DKER
in the electronic healthcare scenario.
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As shown in Figure 5, the system primarily consists of three entities: KGC, patient,
and doctor. The KGC is responsible for generating secret keys for system users and
periodically publishing a set of nodes representing the non-revoked users. As the data
owner, the patient encrypts their electronic medical record (EMR) and shares with attending
physicians. Additionally, doctors can periodically generate their decryption keys, and only
doctors who satisfy the access policy and have not been revoked can decrypt and access
the EMR information of the patient.

Figure 5. Electronic medical application.

Our scheme also satisfies the En-DKER property, ensuring that the leakage of decryp-
tion keys from any time period should not compromise the confidentiality of ciphertexts
from other time periods. Additionally, adversaries cannot determine whether the attribute
set of ciphertext for the challenge time period satisfies a specific policy using keys from any
other time periods or policies.

6. Conclusions

To enhance the practicality of the lattice-based RABE scheme, we extend the En-DKER
property from RIBE to RABE. This extension ensures that the leakage of any time period
decryption keys should not compromise the confidentiality of ciphertexts from other time
periods. Additionally, adversaries are unable to determine whether the attribute set of
the ciphertext for the challenge time period satisfies a specific policy using keys from any
other time periods or policies. Building upon the BGG+14 scheme, we then construct the
first RABE with En-DKER from lattices. Our scheme retains advantages such as near-zero
periodic workload for the KGC, and the encryptor is relieved from managing a revocation
list. Finally, we validate the correctness and prove the security of our scheme under the
LWE assumption.

However, this scheme is based on the LWE assumption, which requires complex
inverse algorithms and matrix multiplication for trapdoor generation, making it unsuit-
able for practical applications. In the future, we plan to extend the approach to the ring
LWE assumption, aiming to develop a more advantageous scheme that addresses the
computational complexity and storage requirements.

Author Contributions: Methodology, Q.W.; validation, J.L. and Z.W.; formal analysis, Y.Z.; writing—
original draft preparation, Q.W.; writing—review and editing, Z.W. and Y.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors are thankful to the anonymous referees for their helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 4986 16 of 17

References
1. Sahai, A.; Waters, B. Fuzzy identity-based encryption. In Proceedings of the Advances in Cryptology–EUROCRYPT 2005: 24th

Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, 22–26 May
2005; Proceedings 24; Springer: Berlin/Heidelberg, Germany, 2005; pp. 457–473.

2. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-policy attribute-based encryption. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy (SP’07), Oakland, CA, USA, 20–23 May 2007; IEEE: Piscataway Township, NJ, USA, 2007; pp. 321–334.

3. Waters, B. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. In Proceedings
of the International Workshop on Public Key Cryptography, Taormina, Italy, 6–9 March 2011; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 53–70.

4. Attrapadung, N.; Libert, B.; De Panafieu, E. Expressive key-policy attribute-based encryption with constant-size ciphertexts. In
Proceedings of the Public Key Cryptography–PKC 2011: 14th International Conference on Practice and Theory in Public Key
Cryptography, Taormina, Italy, 6–9 March 2011; Proceedings 14; Springer: Berlin/Heidelberg, Germany, 2011; pp. 90–108.

5. Hohenberger, S.; Waters, B. Attribute-based encryption with fast decryption. In Proceedings of the Public-Key Cryptography–
PKC 2013: 16th International Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, 26 February–1 March
2013; Proceedings 16; Springer: Berlin/Heidelberg, Germany, 2013; pp. 162–179.

6. Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-based encryption for fine-grained access control of encrypted data. In
Proceedings of the 13th ACM Conference on Computer and Communications Security, Taormina, Italy, 6–9 March 2006; pp. 89–98.

7. Lewko, A.; Waters, B. New proof methods for attribute-based encryption: Achieving full security through selective techniques.
In Proceedings of the Annual Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 180–198.

8. Itkis, G.; Shen, E.; Varia, M.; Wilson, D.; Yerukhimovich, A. Bounded-collusion attribute-based encryption from minimal
assumptions. In Proceedings of the Public-Key Cryptography–PKC 2017: 20th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, 28–31 March 2017; Proceedings, Part II 20; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 67–87.

9. Boneh, D.; Franklin, M. Identity-based encryption from the Weil pairing. SIAM J. Comput. 2003, 32, 586–615. [CrossRef]
10. Boldyreva, A.; Goyal, V.; Kumar, V. Identity-based encryption with efficient revocation. In Proceedings of the 15th ACM

Conference on Computer and Communications Security, Alexandria, VA, USA, 27–31 October 2008; pp. 417–426.
11. Chen, J.; Lim, H.W.; Ling, S.; Wang, H.; Nguyen, K. Revocable identity-based encryption from lattices. In Proceedings of the

Information Security and Privacy: 17th Australasian Conference, ACISP 2012, Wollongong, NSW, Australia, 9–11 July 2012;
Proceedings 17; Springer: Berlin/Heidelberg, Germany, 2012; pp. 390–403.

12. Luo, F.; Al-Kuwari, S.; Wang, H.; Wang, F.; Chen, K. Revocable attribute-based encryption from standard lattices. Comput. Stand.
Interfaces 2023, 84, 103698. [CrossRef]

13. Ling, S.; Nguyen, K.; Wang, H.; Zhang, J. Revocable predicate encryption from lattices. In Proceedings of the Provable Security:
11th International Conference, ProvSec 2017, Xi’an, China, 23–25 October 2017; Proceedings 11; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 305–326.

14. Meng, F. Directly Revocable Ciphertext-Policy Attribute-Based Encryption from Lattices. Cryptology ePrint Archive, Paper
2020/940, 2020. Available online: https://eprint.iacr.org/2020/940 (accessed on 31 July 2020).

15. Attrapadung, N.; Imai, H. Attribute-based encryption supporting direct/indirect revocation modes. In Proceedings of the
Cryptography and Coding: 12th IMA International Conference, Cryptography and Coding 2009, Cirencester, UK, 15–17 December
2009; Proceedings 12; Springer: Berlin/Heidelberg, Germany, 2009; pp. 278–300.

16. Seo, J.H.; Emura, K. Revocable identity-based encryption revisited: Security model and construction. In Proceedings of the
Public-Key Cryptography–PKC 2013: 16th International Conference on Practice and Theory in Public-Key Cryptography, Nara,
Japan, 26 February–1 March 2013; Proceedings 16; Springer: Berlin/Heidelberg, Germany, 2013; pp. 216–234.

17. Qin, B.; Zhao, Q.; Zheng, D.; Cui, H. (Dual) server-aided revocable attribute-based encryption with decryption key exposure
resistance. Inf. Sci. 2019, 490, 74–92. [CrossRef]

18. Cheng, L.; Meng, F. Server-aided revocable attribute-based encryption revised: Multi-user setting and fully secure. In Proceedings
of the Computer Security–ESORICS 2021: 26th European Symposium on Research in Computer Security, Darmstadt, Germany,
4–8 October 2021; Proceedings, Part II 26; Springer: Berlin/Heidelberg, Germany, 2021; pp. 192–212.

19. Xu, S.; Yang, G.; Mu, Y. Revocable attribute-based encryption with decryption key exposure resistance and ciphertext delegation.
Inf. Sci. 2019, 479, 116–134. [CrossRef]

20. Katsumata, S.; Matsuda, T.; Takayasu, A. Lattice-Based Revocable (Hierarchical) IBE with Decryption Key Exposure Resistance.
In Proceedings of the Public-Key Cryptography–PKC 2019: 22nd IACR International Conference on Practice and Theory of
Public-Key Cryptography, Beijing, China, 14–17 April 2019; Proceedings, Part II 22; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 441–471.

21. Agrawal, S.; Boneh, D.; Boyen, X. Efficient lattice (h) ibe in the standard model. In Proceedings of the Eurocrypt, Nice, Frence, 30
May–3 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6110, pp. 553–572.

22. Cash, D.; Hofheinz, D.; Kiltz, E.; Peikert, C. Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 2012, 25, 601–639. [CrossRef]

http://doi.org/10.1137/S0097539701398521
http://dx.doi.org/10.1016/j.csi.2022.103698
https://eprint.iacr.org/2020/940
http://dx.doi.org/10.1016/j.ins.2019.03.053
http://dx.doi.org/10.1016/j.ins.2018.11.031
http://dx.doi.org/10.1007/s00145-011-9105-2


Mathematics 2023, 11, 4986 17 of 17

23. Qin, B.; Deng, R.H.; Li, Y.; Liu, S. Server-aided revocable identity-based encryption. In Proceedings of the Computer
Security–ESORICS 2015: 20th European Symposium on Research in Computer Security, Vienna, Austria, 21–25 September 2015;
Proceedings, Part I 20; Springer: Berlin/Heidelberg, Germany, 2015; pp. 286–304.

24. Wang, Q.; Huang, H.; Li, J.; Yuan, Q. Revocable IBE with En-DKER from Lattices: A Novel Approach for Lattice Basis Delegation.
Cryptology ePrint Archive, Paper 2023/1028, 2023. Available online: https://eprint.iacr.org/2023/1028 (accessed on 3 July 2023).

25. Takayasu, A.; Watanabe, Y. Lattice-based revocable identity-based encryption with bounded decryption key exposure resistance.
In Proceedings of the Information Security and Privacy: 22nd Australasian Conference, ACISP 2017, Auckland, New Zealand,
3–5 July 2017; Proceedings, Part I 22; Springer: Berlin/Heidelberg, Germany, 2017; pp. 184–204.

26. Takayasu, A.; Watanabe, Y. Revocable identity-based encryption with bounded decryption key exposure resistance: Lattice-based
construction and more. Theor. Comput. Sci. 2021, 849, 64–98. [CrossRef]

27. Boyen, X.; Waters, B. Anonymous hierarchical identity-based encryption (without random oracles). In Proceedings of the
Advances in Cryptology-CRYPTO 2006: 26th Annual International Cryptology Conference, Santa Barbara, CA, USA, 20–24
August 2006; Proceedings 26; Springer: Berlin/Heidelberg, Germany, 2006; pp. 290–307.

28. Wang, S.; Zhang, X.; Zhang, Y. Efficient revocable and grantable attribute-based encryption from lattices with fine-grained access
control. IET Inf. Secur. 2018, 12, 141–149. [CrossRef]

29. Yang, K.; Wu, G.; Dong, C.; Fu, X.; Li, F.; Wu, T. Attribute Based Encryption with Efficient Revocation from Lattices. Int. J. Netw.
Secur. 2020, 22, 161–170.

30. Yang, Y.; Sun, J.; Liu, Z.; Qiao, Y. Practical revocable and multi-authority CP-ABE scheme from RLWE for Cloud Computing. J.
Inf. Secur. Appl. 2022, 65, 103108. [CrossRef]

31. Dong, X.; Hu, Y.; Wang, B.; Liu, M.; Gao, W. Lattice-based revocable attribute-based encryption with decryption key exposure
resistance. IET Inf. Secur. 2021, 15, 428–441. [CrossRef]

32. Huang, B.; Gao, J.; Li, X. Efficient lattice-based revocable attribute-based encryption against decryption key exposure for cloud
file sharing. J. Cloud Comput. 2023, 12, 1–15. [CrossRef] [PubMed]

33. Boneh, D.; Gentry, C.; Gorbunov, S.; Halevi, S.; Nikolaenko, V.; Segev, G.; Vaikuntanathan, V.; Vinayagamurthy, D. Fully
key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In Proceedings of the Advances in
Cryptology–EUROCRYPT 2014: 33rd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, 11–15 May 2014; Proceedings 33; Springer: Berlin/Heidelberg, Germany, 2014; pp. 533–556.

34. Asharov, G.; Jain, A.; López-Alt, A.; Tromer, E.; Vaikuntanathan, V.; Wichs, D. Multiparty computation with low communication,
computation and interaction via threshold FHE. In Proceedings of the Advances in Cryptology–EUROCRYPT 2012: 31st Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 15–19 April 2012;
Proceedings 31; Springer: Berlin/Heidelberg, Germany, 2012; pp. 483–501.

35. Gentry, C.; Peikert, C.; Vaikuntanathan, V. Trapdoors for hard lattices and new cryptographic constructions. In Proceedings of
the Fortieth Annual ACM Symposium on Theory of Computing, Victoria, BC, Canada, 17–20 May 2008; pp. 197–206.

36. Micciancio, D.; Peikert, C. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In Proceedings of the Eurocrypt, Cambridge,
UK, 15–19 April 2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7237, pp. 700–718.

37. Ajtai, M. Generating hard instances of the short basis problem. In Proceedings of the Automata, Languages and Programming:
26th International Colloquium, ICALP’99 Prague, Czech Republic, 11–15 July 1999; Proceedings 26; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 1–9.

38. Alwen, J.; Peikert, C. Generating shorter bases for hard random lattices. Theory Comput. Syst. 2011, 48, 535–553. [CrossRef]
39. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 2009, 56, 1–40. [CrossRef]
40. Peikert, C. Public-key cryptosystems from the worst-case shortest vector problem. In Proceedings of the Forty-First Annual

ACM Symposium on Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 333–342.
41. Gorbunov, S.; Vaikuntanathan, V.; Wee, H. Predicate encryption for circuits from LWE. In Proceedings of the Annual Cryptology

Conference, Santa Barbara, CA, USA, 16–20 August 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 503–523.
42. Naor, D.; Naor, M.; Lotspiech, J. Revocation and tracing schemes for stateless receivers. In Proceedings of the Advances in

Cryptology—CRYPTO 2001: 21st Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2001;
Proceedings 21; Springer: Berlin/Heidelberg, Germany, 2001; pp. 41–62.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://eprint.iacr.org/2023/1028
http://dx.doi.org/10.1016/j.tcs.2020.10.010
http://dx.doi.org/10.1049/iet-ifs.2017.0225
http://dx.doi.org/10.1016/j.jisa.2022.103108
http://dx.doi.org/10.1049/ise2.12033
http://dx.doi.org/10.1186/s13677-023-00414-w
http://www.ncbi.nlm.nih.gov/pubmed/36937653
http://dx.doi.org/10.1007/s00224-010-9278-3
http://dx.doi.org/10.1145/1568318.1568324

	Introduction
	Related Work
	Technical Overview
	Our Contributions

	Preliminaries
	Notations
	Useful Facts
	Background on Lattices
	The Complete Subtree Method

	The Notion of Revocable ABE with En-DKER
	Syntax and Correctness
	Security Model of Revocable ABE with En-DKER

	Revocable ABE with En-DKER from Lattices
	Our Construction
	Security Proof

	Application in Practice
	Conclusions
	References

