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Abstract: Critical infrastructure is essential for the stability and development of modern society, and
a combination of complex network theory and game theory has become a new research direction in
the field of infrastructure protection. However, existing studies do not consider the fuzziness and
subjective factors of human judgment, leading to challenges when analyzing strategic interactions
between decision makers. This paper employs interval-valued intuitionistic fuzzy numbers (IVIFN)
to depict the uncertain payoffs in a Stackelberg game of infrastructure networks and then proposes an
algorithm to solve it. First, we construct IVIFN payoffs by considering the different complex network
metrics and subjective preferences of decision makers. Next, we propose a lexicographic algorithm to
solve this game based on the concept of a strong Stackelberg equilibrium (SSE). Finally, we conduct
experiments on target scale-free networks. Our results illustrate that in an SSE, for the defender
in a weak position, it is better to defend nodes with high degrees. The experiments also indicate
that taking fuzziness into account leads to higher SSE payoffs for the defender. Our work aims to
solve a Stackelberg game with IVIFN payoffs and apply it to enhance the protection of infrastructure
networks, thereby improving their overall security.

Keywords: infrastructure networks; Stackelberg game; interval-valued intuitionistic fuzzy theory;
strong Stackelberg equilibrium

MSC: 91A86

1. Introduction

Critical infrastructures, such as power grids, transportation systems, communication
networks, and water supply networks, play vital roles in modern society. On 7 October
2023, Hamas launched an attack on Israel, utilizing drones to target and destroy communi-
cations equipment at surveillance posts along the borders of the Gaza Strip. In response,
Israel launched thousands of missiles to destroy Gaza’s cables, cell towers, and infras-
tructure needed to keep people online. Therefore, the protection of critical infrastructure
networks has become increasingly challenging and deserves further study. Probabilistic
risk assessment (PRA) is a conventional and commonly used method for the analysis of
infrastructure investment and protection [1,2]. However, such analysis is resource-intensive
and quickly becomes complex, even for small systems. Complex network theory has
emerged as a novel approach to overcome the limitations of PRA in dealing with the
protection of infrastructure systems. Lee and Tien [3] investigated the impact of variations
in three parameters of network vulnerability, namely component vulnerabilities, service
interdependency redundancies, and system link configurations. Liu et al. [4] investigated
interdependent critical infrastructure networks and designed a cascading failure model,
examining cascading failure in both syncretic and single networks. Herrera et al. [5] pre-
sented a multilayer complex network framework taking into account the heterogeneity
of the redundant infrastructure for realistic network modeling. Recent studies have been
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conducted on complex networks such as network disintegration [6–8] and protection [9–11].
These studies have provided effective ways to obtain insights into network attacks and to
identify the systems and components that must be protected.

To deal with deliberate attacks, the combination of network science and game theory
has garnered considerable research attention. Li et al. [12] applied a simultaneous game
and defined payoffs according to the topology of the infrastructure system. They then
considered two typical strategies under a cost constraint model [13]. Fu et al. [14] proposed
a static network attack and defense game model to examine the impact of cascading failures.
Sun et al. [15] established a network attack and defense game model based on betweenness
virtual flow. Although a simultaneous game is an important game model, Stackelberg
games are more commonly used to model attack and defense scenarios in security do-
mains, as they align better with real-life situations [16]. Li et al. [17] applied a Stackelberg
game model to complex networks and evaluated the effects of cost-sensitive parameters.
Zeng et al. [18,19] proposed a false network construction method and applied Stackelberg
and Bayesian Stackelberg game models for the defense of critical infrastructure networks.
Fu et al. [20] established a Stackelberg game model based on camouflage strategies and
proposed an evolutionary rule to optimize these strategies. Qi et al. [21,22] proposed a
link-hiding rule and analyzed its impact in terms of optimization within the context of
dynamic attack and defense games played out on complex networks. Liu et al. [23] estab-
lished an attack-defensive game model based on a Stackelberg game under asymmetric
information, obtaining a defensive resource allocation strategy to optimize the network
robustness. Liu et al. [24] established a Stackelberg game model based on a 5G network
graph and proposed compact particle swarm optimization based on the location-scale
distribution to solve the Nash equilibrium.

However, the aforementioned research fails to consider the problem in a fuzzy envi-
ronment. The topology of real-world infrastructure networks exhibits numerous features;
even if the same nodes are removed after an attack, the effects of the attack can vary when
measured using different network metrics [25,26]. Hence, the assessment of an attack’s
impact (i.e., the payoffs for both the attacker and the defender) naturally contains fuzziness
and uncertainty. In addition, subjective factors and human judgment are challenges in the
analysis of the strategic interactions between decision makers. Fuzzy set theory, proposed
by Zadeh [27] in 1965, provides a preliminary tool to handle these problems. Atanassov
extended the notion of fuzzy sets to intuitionistic fuzzy sets by appending a degree of
nonmembership [28,29]. Unfortunately, for attack and defense games in infrastructure net-
works, it may be difficult to identify exact values for the membership and nonmembership
degrees of impact after a confrontation. Thus, the payoffs of the game seem to be suitably
expressed with interval-valued intuitionistic fuzzy numbers (IVIFN) [30]. The IVIFN is
characterized by introducing the degrees of membership and nonmembership as whole
intervals instead of crisp values. As is known, IVIFN has been extensively applied in
the field of decision making [31–37], and the research in this field has provided several
useful methodologies. Many studies have focused on solving the simultaneous game
with IVIFN payoffs. Li [38] proved that matrix games with interval-valued intuitionistic
fuzzy set (IVIFS) payoffs have solutions, and he developed a mathematical programming
methodology by constructing a pair of auxiliary linear/nonlinear programming models
to solve these games. Xia [39] proposed several mathematical programming models to
find solutions of IVIFN matrix games based on Archimedean t-conorm and t-norm and
transformed them into a pair of primal–dual linear programming models. Kumar et al. [40]
developed a solution for a two-person zero-sum game with IVIFN payoffs by introducing
a new order function to defuzzify the IVIFNs. Naqvi et al. [41] extended the work of Li [38]
by proposing a solution for a matrix game with payoffs characterized by linguistic IVIFSs.

To the best of our knowledge, no existing literature has delved into the modeling
of fuzzy payoffs for the game in infrastructure networks. Moreover, to the best of our
knowledge, no existing research has studied a method to solve Stackelberg games in an
interval-valued intuitionistic fuzzy (IVIF) environment. These limitations highlight the
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need for further research in the area of infrastructure protection. In this paper, we evaluate
attack and defense performance using various complex network metrics and introduce a
method of constructing them as IVIFNs. Furthermore, we establish a Stackelberg game
with IVIFN payoffs where the defender (leader) commits to a strategy before the attacker
(follower) selects its own strategy. Inspired by the work of Conitzer et al. [42], we propose
a lexicographic method to solve this game. In this method, we use score and accuracy
functions to consider the risk attitude of the decision maker by defining two comparison
indices arranged in a hierarchical fashion [34]. We then conduct experiments under different
available resources and risk attitudes of both the attacker and the defender. We analyze
the results of the experiment using a scale-free network as the target. Overall, the model
and solution method proposed in this paper enable the incorporation of more payoff
information, accounting for factors such as fuzziness, uncertainty, and decision makers’
subjective preferences in the context of protecting infrastructure networks. This extension
enhances the applicability of the game model to real-world scenarios and offers a more
rational basis for strategy selection. Furthermore, this research provides insights that can
inform defenders in the protection of infrastructure networks.

2. Preliminaries

In this section, we briefly review the basic concepts of IVIFSs and IVIFNs and the
different ranking methods of the latter. We also review a classical Stackelberg game (one
attacker and one defender) and its SSE.

2.1. Regarding the IVIF Theory

Definition 1. An IVIFS Ã in the universe of discourse Z is defined by [30] Ã =
{〈

x,
[
µL

Ã(x),

µU
Ã
(x)
]
,
[
νL

Ã(x), νU
Ã
(x)
]〉

| x ∈ Z
}

, where
[
µL

Ã(x), µU
Ã
(x)
]
∈ D[0, 1] and

[
νL

Ã(x), νU
Ã
(x)
]
∈

D[0, 1], with the condition 0 ≤ µU
Ã
(x) + νU

Ã
(x) ≤ 1, ∀x ∈ Z. Here, the intervals

[
µL

Ã(x), µU
Ã
(x)
]
,

and
[
νL

Ã(x), νU
Ã
(x)
]
, respectively, represent the membership degree and nonmembership degree

of the element x ∈ Z to Ã. For each element x, the hesitancy degree of x ∈ Z to Ã is defined as[
1 − µU

Ã
(x)− νU

Ã
(x), 1 − µL

Ã(x)− νL
Ã(x)

]
.

In [31], Xu called the pair
〈[

µL, µU], [νL, νU]〉 an IVIFN, where 0 ≤ µL ≤ µU ≤ 1,
0 ≤ νL ≤ νU ≤ 1, and 0 ≤ µU + νU ≤ 1.

Definition 2. Let ξ̃1 =
〈[

µL
1 , µU

1
]
,
[
νL

1 , νU
1
]〉

and ξ̃2 =
〈[

µL
2 , µU

2
]
,
[
νL

2 , νU
2
]〉

be any two IVIFNs;
then [30],

(1) ξ̃1 ≺ ξ̃2
(
ξ̃1 < ξ̃2

)
iff µL

1 < µL
2 , µU

1 < µU
2 , νL

1 > νL
2 and νU

1 > νU
2 ;

(2) ξ̃1 = ξ̃2 iff µL
1 = µL

2 , µU
1 = µU

2 , νL
1 = νL

2 and νU
1 = νU

2 ;
(3) ξ̃1 + ξ̃2 =

〈[
µL

1 + µL
2 − µL

1 µL
2 , µU

1 + µU
2 − µU

1 µU
2
]
,
[
νL

1 νL
2 , νU

1 νU
2
]〉

;
(4) ξ̃1ξ̃2 =

〈[
µL

1 µL
2 , µU

1 µU
2
]
,
[
νL

1 + νL
2 − νL

1 νL
2 , νU

1 + νU
2 − νU

1 νU
2
]〉

;

(5) rξ̃1 =
〈[

1 −
(
1 − µL

1
)r, 1 −

(
1 − µU

1
)r
]
,
[(

νL
1
)r,
(
νU

1
)r
]〉

.

Definition 3. Xu’s method of ranking IVIFNs is shown as follows [31]. For an IVIFN ξ̃ =〈[
µL, µU], [νL, νU]〉, the score function XSF and accuracy function XAF of the IVIFN ξ̃ can be

computed as

XSF(ξ̃) =
µL + µU − νL − νU

2
, (1)

XAF(ξ̃) =
µL + µU + νL + νU

2
, (2)

where −1 ≤ XSF(ξ̃) ≤ 1 and 0 ≤ XAF(ξ̃) ≤ 1.
Let ξ̃1 and ξ̃2 be any two IVIFNs; then,

(1) If XSF
(
ξ̃1
)
< XSF

(
ξ̃2
)
, then ξ̃1 < ξ̃2;
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(2) If XSF
(
ξ̃1
)
> XSF

(
ξ̃2
)
, then ξ̃1 > ξ̃2;

(3) If XSF
(
ξ̃1
)
= XSF

(
ξ̃2
)
, then

(i) If XAF
(
ξ̃1
)
< XAF

(
ξ̃2
)
, then ξ̃1 < ξ̃2;

(ii) If XAF
(
ξ̃1
)
> XAF

(
ξ̃2
)
, then ξ̃1 > ξ̃2;

(iii) If XAF
(
ξ̃1
)
= XAF

(
ξ̃2
)
, then ξ̃1 = ξ̃2.

However, Xu’s method of ranking IVIFNs has the shortcoming that it cannot distinguish
IVIFNs

〈[
µL

1 , µU
1
]
,
[
νL

1 , νU
1
]〉

and
〈[

µL
2 , µU

2
]
,
[
νL

2 , νU
2
]〉

if µL
1 + µU

1 = µL
2 + µU

2 and νL
1 + νU

1 =
νL

2 + νU
2 .

Definition 4. Wang and Wan’s method of ranking IVIFNs is shown as follows [34]. For an IVIFN
ξ̃ =

〈[
µL, µU], [νL, νU]〉, the score function WSF and accuracy function WAF of the IVIFN ξ̃

can be computed as

WSF(ξ̃) = λ
(

µL − νU
)
+ (1 − λ)

(
µU − νL

)
, (3)

WAF(ξ̃) = λ
(

µL + νU
)
+ (1 − λ)

(
µU + νL

)
, (4)

where −1 ≤ WSF(ξ̃) ≤ 1, 0 ≤ WAF(ξ̃) ≤ 1, and λ ∈ [0, 1] is the risk attitude parameter of the
decision maker.

Let ξ̃1 and ξ̃2 be any two IVIFNs; then,

(1) If WSF
(
ξ̃1
)
< WSF

(
ξ̃2
)
, then ξ̃1 < ξ̃2;

(2) If WSF
(
ξ̃1
)
> WSF

(
ξ̃2
)
, then ξ̃1 > ξ̃2;

(3) If WSF
(
ξ̃1
)
= WSF

(
ξ̃2
)
, then

(i) If WAF
(
ξ̃1
)
< WAF

(
ξ̃2
)
, then ξ̃1 < ξ̃2;

(ii) If WAF
(
ξ̃1
)
> WAF

(
ξ̃2
)
, then ξ̃1 > ξ̃2;

(iii) If WAF
(
ξ̃1
)
= WAF

(
ξ̃2
)
, then ξ̃1 = ξ̃2.

In this ranking method, the decision maker is considered risk-seeking when λ ∈ [0, 0.5) and risk-
averse when λ ∈ (0.5, 1]. If λ = 0.5, the decision maker is neutral to risk, and Equations (3) and (4)
are reduced to Equations (1) and (2). Therefore, Wang and Wan’s ranking method is a general
extension of Xu’s ranking method.

2.2. The Stackelberg Game

In a normal-form Stackelberg game, the defender is the leader and the attacker is the
follower. SD and SA denote the strategy sets of the defender and the attacker. The payoff
functions of the attacker and the defender can be represented as fA : SD × SA → R and
fD : SD × SA → R, respectively. The payoffs under different strategy profiles are real
numbers. In this game, the attacker obtains the defender’s mixed strategy and chooses
the best response strategy. Correspondingly, the defender has the ability to anticipate the
attacker’s preferred strategy before committing to a mixed strategy. The Stackelberg game
model is shown in Figure 1.

Figure 1. The framework of the Stackelberg game.
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2.3. The Strong Stackelberg Equilibrium

A Stackelberg equilibrium, which is the conceptual solution of Stackelberg games,
captures the optimal outcome of the defender’s strategy, since the attacker will always
respond optimally to the defender’s strategy [43]. When the attacker has multiple optimal
responses to the mixed strategy committed by the defender, a tie occurs. The attacker’s
various tie-breaking rules result in different Stackelberg equilibria. In real-world scenarios,
we typically assume that the attacker will choose the strategy that benefits the defender,
thereby leading to an SSE [44,45]. Hence, the optimal mixed strategy for the defender in an
SSE is sD ∈ ∆(SD), which maximizes max{ fD(sD, RF(sD)) : sD ∈ ∆(SD)}, where ∆(SD) is
the set of probability distributions over SD and RF(sD) = arg max{ fA(sD, sA) : sA ∈ SA}
is the reaction function for the attacker.

3. Stackelberg Game Model Based on Interval-Valued Intuitionistic Fuzzy Theory
3.1. Basic Assumptions

Consider a target network, such as a railway network, that is formalized in terms
of a simple undirected graph G(V, E), where V = {v1, v2, . . . , vN} is the set of nodes and
E ⊆ V × V is the set of edges (i.e., the railway stations and the railway lines, respectively,
in the railway network). Let N = |V| be the number of nodes in the network. We denote the
number of nodes in the network by N = |V|. The adjacency matrix A(G) of the network G
is defined by

(
aij
)

N×N , where aij = aji = 1 if nodes vi and vj are adjacent and aij = aji = 0
otherwise. The following assumptions are made in this model:

(1) There is only one defender, who moves first, and one attacker, who moves after
knowing the defender’s strategy commitment.

(2) Both players (i.e., the attacker and the defender) have access to complete information
about the target network and possess full knowledge of each other. This means that
they are fully informed about all possible strategy profiles and the corresponding
payoffs for both sides.

(3) The game consists of a single round, in which both players strive to adopt opti-
mal strategies.

3.2. Cost Model

For node vi, let cA
i and cD

i be the attack cost and the defense cost, respectively. The cost
cA

i or cD
i is determined by a specific referential property ri ≥ 0 associated with node vi,

which can be expressed as
cA

i = rqA
i , (5)

cD
i = rqD

i , (6)

where qA ≥ 0 is the attack cost sensitivity parameter and qD ≥ 0 is the defense cost
sensitivity parameter. In this paper, the referential property ri is set as the degree of
node vi. From Equations (5) and (6), the cost associated with a node vi is determined not
only by its degree in the network but also by the cost-sensitive parameters of the players.
The parameters qA and qD can be determined through expert experience, as well as by
considering the actual usage and resource allocation of the infrastructure network.

The available resources of both the attacker and the defender can be defined as follows:

CA = θA

N

∑
i=1

cA
i = θA

N

∑
i=1

rqA
i , (7)

CD = θD

N

∑
i=1

cD
i = θD

N

∑
i=1

rqD
i . (8)

The attack and defense cost constraint parameters are denoted by θA ∈ [0, 1] and
θD ∈ [0, 1], respectively. The values of θA and θD represent the attacker’s and defender’s
respective cost budgets for attacking or defending.



Mathematics 2023, 11, 4992 6 of 18

3.3. Strategies

Based on the cost model presented in Section 3.2, and taking the attacker as an example,
the feasible strategies presented in prior studies are defined as follows [13,17].

Suppose that X = [x1, x2, . . . , xN ] ∈ SA is an attack strategy vector, where SA repre-
sents the strategy set of the attacker. We define VA ⊆ V as the set of attacked nodes and
let xi = 1 if node vi is attacked

(
vi ∈ VA); otherwise, xi = 0. The total cost of an attack

strategy X is denoted by

CX = ∑
vi∈VA

cA
i =

N

∑
i=1

xicA
i =

N

∑
i=1

xir
qA
i . (9)

The cost constraint on the attacker is

CX =
N

∑
i=1

xir
qA
i ≤ CA = θA

N

∑
i=1

rqA
i . (10)

Similarly, the cost constraint on the defender is

CY =
N

∑
i=1

yir
qD
i ≤ CD = θD

N

∑
i=1

rqD
i . (11)

In an infrastructure network, when one node fails, its function within the network becomes
invalid. We assume that node vi will only fail if it is attacked without protection (i.e., xi = 1
and yi = 0). Conversely, if the node is defended (i.e., xi = 1 and yi = 1), it will not fail.

The attack and defense strategies defined in Equations (10) and (11) have an expansive
strategy space, especially in networks with a large size N. For instance, in a network with
N = 100, |SA| = CN/2

N = (100 × 99 × . . . × 51)/(50 × 49 × . . . × 1) ≥ 250 when θA = 0.5
and qA = 0. The size of strategy profiles |SA| × |SD| is even larger.

In real-world scenarios, it can be intuitively seen that many decision makers generally
choose a better strategy from several options. While there may exist alternative strategies,
focusing on the analysis of typical strategies holds greater relevance for decision makers.
Therefore, to facilitate the analysis, this paper will consider the following two typical attack
and defense strategies [19].

(1) High-degree strategy (HS): In this case, the attacker and the defender allocate all
their resources to the nodes with the highest degree. Although the number of nodes
selected is small, they have relatively high importance.

(2) Low-degree strategy (LS): In this scenario, the attacker and defender allocate all their
resources to nodes with the lowest degree. Although the selected nodes may have
lower importance, their quantity is greater.

To obtain an HS (or LS), the nodes are initially sorted in either descending or ascending
order based on their referential property. Subsequently, the targets of the attack (or defense)
set are incrementally added in this ordered sequence, while continuously checking for any
violation of the cost constraint. This process is terminated when adding one more node
into the set results in a violation of the constraint.

3.4. Payoffs

To better address uncertainty in attack and defense games in infrastructure networks, it
is appropriate to define the payoff for a decision maker as an IVIFN, which is more realistic
when dealing with the decision maker’s fuzziness. The payoff functions of the attacker
and the defender under this circumstance can be represented as f̃A : SD × SA → IVIFN
and f̃D : SD × SA → IVIFN, respectively. Consider the target network G(V, E), and let
V̂ ⊆ V be the set of failing nodes and Ê ⊆ E be the set of removed edges. When a node
fails, it loses its ability to maintain its functionality, resulting in the removal of all edges
connected to it. Ĝ = (V, E − Ê) denotes the network topology that remains after the attack
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and defense game is played in a single round. From the perspective of both the attacker
and the defender, the change in network topology in the target network G is considered to
be the universe of discourse Z. The “satisfaction with the effect of the attack or defense”
for the attacker and the defender, when the attacker chooses strategy i and the defender
takes strategy j, is represented by the IVIFN on Z, denoted by

〈[
µAL

ij , µAU
ij

]
,
[
νAL

ij , νAU
ij

]〉
and

〈[
µDL

ij , µDU
ij

]
,
[
νDL

ij , νDU
ij

]〉
, respectively. Because there are only two typical strategies

considered in this paper, we have i, j ∈ {1, 2}, where strategy 1 represents the HS and
strategy 2 represents the LS.

To comprehensively show the effect of the attack and the defense on the target net-
work, we adopt the network efficiency (Ψ) and the size of the largest connected component
(Γ) as the functions measuring the network performance. Let G̃ = (V, E − Ẽ) be the
network in which all attacked nodes become failing nodes without any defense. The alter-
ations in the network topology under the strategy profiles (i,j) can be quantified utilizing
Equations (12)–(15). Furthermore, these equations serve as references for the IVIFN payoffs
of the attacker and the defender.

ΨA
ij =

Ψ(G)− Ψ(Ĝ)

Ψ(G)
∈ [0, 1], (12)

ΓA
ij =

Γ(G)− Γ(Ĝ)

Γ(G)
∈ [0, 1], (13)

ΨD
ij =

Ψ(G)− Ψ(Ĝ)

Ψ(G)
e−

Ψ(Ĝ)−Ψ(G̃)
Ψ(G) ∈ [0, 1], (14)

ΓD
ij =

Γ(G)− Γ(Ĝ)

Γ(G)
e−

Γ(Ĝ)−Γ(G̃)
Γ(G) ∈ [0, 1]. (15)

Obviously, both ΨA
ij and ΓA

ij can be used to represent the membership degree with

respect to the attacker’s satisfaction, while both ΨD
ij and ΓD

ij can be used to represent the
nonmembership degree with respect to the defender’s dissatisfaction. The membership
and nonmembership degrees may vary within certain ranges, and it is more appropriate
to consider them as intervals

[
µAL

ij , µAU
ij

]
and

[
νDL

ij , νDU
ij

]
. In this paper, the membership

degree of the attacker and the nonmembership degree of the defender can be obtained
based on the aforementioned network metrics, as follows:

µAL
ij =

1
4

max
{

ΨA
ij , ΓA

ij

}
+

3
4

min
{

ΨA
ij , ΓA

ij

}
, (16)

µAU
ij =

3
4

max
{

ΨA
ij , ΓA

ij

}
+

1
4

min
{

ΨA
ij , ΓA

ij

}
, (17)

νDL
ij =

1
4

max
{

ΨD
ij , ΓD

ij

}
+

3
4

min
{

ΨD
ij , ΓD

ij

}
, (18)

νDU
ij =

3
4

max
{

ΨD
ij , ΓD

ij

}
+

1
4

min
{

ΨD
ij , ΓD

ij

}
, (19)

where µAL
ij , µAU

ij , νDL
ij , νDU

ij ∈ [0, 1] and µAL
ij ≤ µAU

ij , νDL
ij ≤ νDU

ij . We divide the original

intervals
[
min

{
ΨA

ij , ΓA
ij

}
, max

{
ΨA

ij , ΓA
ij

}]
and

[
min

{
ΨD

ij , ΓD
ij

}
, max

{
ΨD

ij , ΓD
ij

}]
into smaller

intervals and halve the value range to enhance the accuracy.
Specifically, when more nodes are successfully attacked, the defender’s dissatisfaction

and the attacker’s satisfaction increase. To incorporate the subjective preferences of both
the attacker and the defender, we modify the expression to reflect the nonmembership of
the attacker and the membership of the defender. This can be obtained as follows:
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νAL
ij =

(
1 − µAU

ij

)(1 − µAU
ij

)
(

1 − µAL
ij

) e−
|V̂|
|V|−ε, (20)

νAU
ij =

(
1 − µAU

ij

)
e−

|V̂|
|V|−ε, (21)

µDL
ij =

(
1 − νDU

ij

)(1 − νDU
ij

)
(

1 − νDL
ij

) e−
|V̂|
|V|−ε, (22)

µDU
ij =

(
1 − νDU

ij

)
e−

|V̂|
|V|−ε, (23)

where ε is a parameter that represents the hesitancy degree of the attacker and the de-
fender, with a higher value of ε indicating a greater degree of hesitancy. Let |V̂| denote
the number of failing nodes and |V| the total number of nodes. Obviously, we have
νAL

ij , νAU
ij , νDL

ij , νDU
ij ∈ [0, 1] and νAL

ij ≤ νAU
ij , νDL

ij ≤ νDU
ij . As |V̂| increases, the member-

ship degree of the defender and the nonmembership degree of the attacker decrease.

Because e−
|V̂|
|V| ≤ 1, it is obvious that the IVIFNs that we propose satisfy the condition

µAU
ij +

(
1 − µAU

ij

)
e−

|V̂|
|V| ≤ 1,

(
1 − νDU

ij

)(
1 − e−

|V̂|
|V|

)
+ νDU

ij ≤ 1 (i.e., µAU
ij + νAU

ij ≤ 1,

µDU
ij + νDU

ij ≤ 1). Therefore, we can obtain the 2 × 2 payoff matrix in Figure 2 based on

Equations (16)–(23), where f̃A(i, j) =
〈[

µAL
ij , µAU

ij

]
,
[
νAL

ij , νAU
ij

]〉
and f̃D(i, j) =

〈[
µDL

ij , µDU
ij

]
,[

νDL
ij , νDU

ij

]〉
. The row player is the attacker, and the column player is the defender.

Figure 2. Payoff matrix of the IVIFS game for the attacker.

The process of generating the IVIFN payoffs of the attacker and the defender under
different strategy profiles is shown in Figure 3.
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Figure 3. The process used to generate the IVIFN payoffs of the attacker and the defender in the
proposed game model. A network with 10 nodes is shown as an example, and we focus on one game
result where the attacker and defender choose strategies involving red and blue nodes, respectively.

4. The Lexicographic Method to Solve a Stackelberg Game with IVIFN Payoffs
4.1. The Lexicographic Method

To solve a Stackelberg game in a crisp condition, Conitzer and Sandholm proposed a
multiple linear programming (Multi-LP) algorithm to obtain an SSE solution [42]. Inspired
by Multi-LP and the concept of SSE, for a Stackelberg game with the payoffs of IVIFNs, we
propose a lexicographic solution method to obtain the optimal strategy profile. For every
pure attacker strategy t ∈ SA, let pt

i represent the probability that the defender commits

to the defense strategy i ∈ SD and the vector pt =
(

pt
1, pt

2, . . . , pt
|SD |

)
denotes the mixed

strategy for the defender. We can derive a mixed strategy for the defender such that (1) pure
strategy t is the optimal response for the attacker and (2) the mixed strategy maximizes the
defender’s utility under this constraint. The mixed strategy can be derived by solving the
following fuzzy mathematical programming model:

max ∑
i∈SD

pt
i f̃D(i, t)

s.t.

 ∑i∈SD
pt

i f̃A(i, j) ≤lex ∑i∈SD
pt

i f̃A(i, t), ∀j ∈ SA
∑i∈SD

pt
i = 1

pt
i ≥ 0, i ∈ SD

,
(24)

where ∑i∈SD
pt

i f̃A(i, j) = ⟨[1 − ∏i∈SD
(1 − µAL

ij )pt
i , 1 − ∏i∈SD

(1 − µAU
ij )pt

i ], [∏i∈SD
(νAL

ij )pt
i ,

∏i∈SD
(νAU

ij )pt
i ]⟩, ∑i∈SD

pt
i f̃A(i, t) = ⟨[1 − ∏i∈SD

(1 − µAL
it )pt

i , 1 − ∏i∈SD
(1 − µAU

it )pt
i ],

[∏i∈SD
(νAL

it )pt
i , ∏i∈SD

(νAU
it )pt

i ]⟩, and ∑i∈SD
pt

i f̃D(i, t) = ⟨[1 − ∏i∈SD
(1 − µDL

it )pt
i , 1 − ∏i∈SD

(1 − µDU
it )pt

i ], [∏i∈SD
(νDL

it )pt
i , ∏i∈SD

(νDU
it )pt

i ]⟩ are IVIFNs. The lexicographic order relation
is ≤lex . From Wang’s ranking method in Definition 4, for IVIFNs ∑i∈SD

pt
i f̃A(i, j) and

∑i∈SD
pt

i f̃A(i, t), we have ∑i∈SD
pt

i f̃A(i, j) ≤lex ∑i∈SD
pt

i f̃A(i, t) if and only if

(1) WSF
(
∑i∈SD

pt
i f̃A(i, j)

)
< WSF

(
∑i∈SD

pt
i f̃A(i, t)

)
or

(2) WSF
(
∑i∈SD

pt
i f̃A(i, j)

)
= WSF

(
∑i∈SD

pt
i f̃A(i, t)

)
and WAF

(
∑i∈SD

pt
i f̃A(i, j)

)
≤ WAF(

∑i∈SD
pt

i f̃A(i, t)
)
.

According to Definitions 2 and 4, Equation (24) can be converted into a lexicographic
max mathematical programming model as follows:
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lex max

(
WSF

(
∑

i∈SD

pt
i f̃D(i, t)

)
, WAF

(
∑

i∈SD

pt
i f̃D(i, t)

))

s.t.

 ∑i∈SD
pt

i f̃A(i, j) ≤lex ∑i∈SD
pt

i f̃A(i, t), ∀j ∈ SA
∑i∈SD

pt
i = 1

pt
i ≥ 0, i ∈ SD

,

(25)

where lex max indicates the operation of lexicographic maximization.
We develop a lexicographic approach to solve Equation (25) in the sense of Pareto

optimality and divide this approach into two stages.
As the scoring function takes priority over the accuracy function in the objective

function, the programming model in the first stage is constructed as

max WSF

(
∑

i∈SD

pt
i f̃D(i, t)

)

s.t.

 ∑i∈SD
pt

i f̃A(i, j) ≤lex ∑i∈SD
pt

i f̃A(i, t), ∀j ∈ SA
∑i∈SD

pt
i = 1

pt
i ≥ 0, i ∈ SD

.

(26)

The optimal mixed strategy of the defender can be obtained from Equation (26),
denoted by pt0 =

(
pt0

1 , pt0
2 , . . . , pt0

|SD |

)
. We then have WSFt∗ = WSF

(
∑i∈SD

pt0
i f̃D(i, t)

)
and

WAFt0 = WAF
(
∑i∈SD

pt0
i f̃D(i, t)

)
.

In the second stage, the following programming model is constructed:

max WAF

(
∑

i∈SD

pt
i f̃D(i, t)

)

s.t.


∑i∈SD

pt
i f̃A(i, j) ≤lex ∑i∈SD

pt
i f̃A(i, t), ∀j ∈ SA

WSFt∗ ≤ WSF
(
∑i∈SD

pt
i f̃D(i, t)

)
WAFt0 ≤ WAF

(
∑i∈SD

pt
i f̃D(i, t)

)
∑i∈SD

pt
i = 1

pt
i ≥ 0, i ∈ SD

.

(27)

By solving Equation (27), we can obtain WSFt∗ = WSF
(
∑i∈SD

pt∗
i f̃D(i, t)

)
, WAFt∗ =

WAF
(
∑i∈SD

pt∗
i f̃D(i, t)

)
and the optimal strategy pt∗ =

(
pt∗

1 , pt∗
2 , . . . , pt∗

|SD |

)
.

For each pure strategy t of the attacker, we can compute the optimal mixed strat-
egy pt∗ =

(
pt∗

1 , pt∗
2 , . . . , pt∗

|SD |

)
and the IVIFN utility ∑i∈SD

pt∗
i f̃D(i, t) for the defender.

Among these attacker strategies, we choose t̂ to maximize the defender’s IVIFN utility, where

∑i∈SD
pt̂∗

i f̃D(i, t̂) ≥lex ∑i∈SD
pt∗

i f̃D(i, t). The mixed strategy pt̂∗ =
(

pt̂∗
1 , pt̂∗

2 , . . . , pt̂∗
|SD |

)
of the

defender and strategy t̂ of the attacker constitute an optimal strategy profile.
We utilize the aforementioned lexicographic method to solve an example Stackelberg

game, where the payoffs are represented by IVIFNs. Let us assume that the risk attitude
parameter λ = 0.5 and the payoff matrices for the attacker and defender are provided
as follows:

Ãe = 1
2

1 2(
⟨[0.2, 0.3], [0.2, 0.3]⟩ ⟨[0.3, 0.4], [0.3, 0.4]⟩
⟨[0.5, 0.6], [0.1, 0.2]⟩ ⟨[0.3, 0.8], [0.1, 0.2]⟩

)
(28)

D̃e = 1
2

1 2(
⟨[0.5, 0.6], [0.2, 0.3]⟩ ⟨[0.5, 0.6], [0.3, 0.4]⟩
⟨[0.4, 0.5], [0.1, 0.2]⟩ ⟨[0.3, 0.4], [0.1, 0.2]⟩

)
.

(29)

The rows of the matrices represent the defender, while the columns represent the
attacker. When the attacker chooses strategy 1 and applies Equation (26), a feasible solution
p10 = (0, 1) can be obtained. We then have WSF1∗ = 0.6 and WAF10 = 1.2. After applying
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Equation (27), we find that p1∗ = (0, 1), WSF1∗ = 0.6, and WAF1∗ = 1.6. When the attacker
chooses strategy 2 and applies Equation (26), a feasible solution p20 = (0.523, 0.477) can be
obtained. We then have WSF2∗ = 0.463 and WAF20 = 1.393. After applying Equation (27),
we find that p2∗ = (0.523, 0.477), WSF2∗ = 0.463, and WAF2∗ = 1.393.

It is evident that the optimal strategy for the defender is (0,1) and that the attacker’s
best response is strategy 1.

4.2. The Lexicographic Algorithm

The specific calculation process to obtain the equilibria of the Stackelberg game with
fuzzy number payoffs is shown in Algorithm 1.

Algorithm 1 The process to obtain equilibrium strategies

Input: The payoff function (or payoff matrix) of the defender, f̃D;
The payoff function (or payoff matrix) of the attacker, f̃A;
The strategy set of the defender, SD;
The strategy set of the attacker, SA.

Output: The equilibrium payoff of the defender, ∑i∈SD
pt̂∗

i f̃D(i, t̂);
The equilibrium payoff of the attacker, ∑i∈SD

pt̂∗
i f̃A(i, t̂);

The defender’s probability distribution when choosing the optimal mixed
strategy, pt̂∗ =

(
pt̂∗

1 , pt̂∗
2 , . . . , pt̂∗

|SD |

)
;

The attacker’s optimal reaction strategy, t̂.
1: for t = 1 : |SA| do
2: Calculate WSFt∗ = max WSF

(
∑i∈SD

pt
i f̃D(i, t)

)
by Equation (26);

3: if WSFt∗ exists then
4: pt0 =

(
pt0

1 , pt0
2 , . . . , pt0

|SD |

)
;

5: WSFt∗ = WSF
(
∑i∈SD

pt0
i f̃D(i, t)

)
;

6: Calculate WAFt∗ = WAF
(
∑i∈SD

pt
i f̃D(i, t)

)
by Equation (27);

7: pt∗ =
(

pt∗
1 , pt∗

2 , . . . , pt∗
|SD |

)
;

8: WSFt∗ = WSF
(
∑i∈SD

pt∗
i f̃D(i, t)

)
, WAFt∗ = WAF

(
∑i∈SD

pt∗
i f̃D(i, t)

)
.

9: else if then
10: WSFt∗ = −∞, WAFt∗ = −∞;
11: end if
12: end for
13: Sort

{
WSFt∗}, WSFt̄∗ = max WSFt∗.

14: Sort
{

WAFt∗}, WAFt̂∗ = max WAFt̄∗.

15: return ∑i∈SD
pt̂∗

i f̃D(i, t̂), ∑i∈SD
pt̂∗

i f̃A(i, t̂), pt∗ =
(

pt∗
1 , pt∗

2 , . . . , pt∗
|SD |

)
, t̂.

4.3. Advantages and Limitations of the Lexicographic Method

The lexicographic method has the following advantages.

(1) In the lexicographic solution method, the uniqueness of the optimal fuzzy objective
values can be guaranteed. It provides a clear and unambiguous ranking of solutions,
which is crucial for decision-making processes.

(2) All available information during the solving process, such as the fuzziness of the ob-
jectives and the inequality relations within the constraints, is taken into consideration.

(3) The lexicographic method is flexible in the actual decision-making process due to the
availability of various similar ranking methods for IVIFNs.

Despite its advantages, the lexicographic method has some limitations.

(1) The proposed method in this paper heavily relies on the input data in the form of
IVIFNs. Insufficient or inaccurate payoffs will directly impact the results obtained by
the algorithm.
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(2) The method proposed in this paper is only applicable to a two-player Stackelberg
game and cannot address scenarios with multiple leaders or multiple followers.

5. Experiments
5.1. Experimental Settings

We model a scale-free network with a power-law degree distribution, denoted by
p(k) ∼ (η − 1)mη−1k−η [46], to represent infrastructure networks such as power grids,
which often exhibit this type of distribution [47]. We set N = 300, η = 3, m = 2 and the
cost-sensitive parameter qA = qD = 0.5.

To investigate the effect of hesitancy parameter ε, we set θA = 0.3 and θD = 0.7.
According to Definition 1, we present the hesitancy degree for the attacker and defender
under different strategy profiles as ε increases in Table 1. As shown in Table 1, the hesitancy
degree under different strategy profiles also increases with the increase in ε. However,
considering real-world scenarios, decision makers typically have a certain hesitancy degree,
but it is not excessively high. Therefore, choosing ε = 0.1 is a more realistic option. Thus,
we set ε = 0.1 in this paper.

Table 1. The hesitancy degree for the attacker and defender under different strategy profiles versus ε.

ε 0.1 0.3 0.5 0.7 0.9

Attacker’s
hesitancy

(HS, HS) [0.10, 0.10] [0.26, 0.26] [0.39, 0.39] [0.50, 0.50] [0.59, 0.59]

(HS, LS) [0.17, 0.34] [0.23, 0.38] [0.27, 0.42] [0.30, 0.44] [0.33, 0.47]

(LS, HS) [0.11, 0.45] [0.18, 0.50] [0.23, 0.53] [0.28, 0.56] [0.31, 0.59]

(LS, LS) [0.10, 0.10] [0.26, 0.26] [0.39, 0.39] [0.50, 0.50] [0.59, 0.59]

Defender’s
hesitancy

(HS, HS) [0.10, 0.10] [0.26, 0.26] [0.39, 0.39] [0.50, 0.50] [0.59, 0.59]

(HS, LS) [0.18, 0.34] [0.23, 0.38] [0.27, 0.42] [0.31, 0.45] [0.34, 0.47]

(LS, HS) [0.12, 0.45] [0.18, 0.50] [0.24, 0.53] [0.28, 0.56] [0.32, 0.59]

(LS, LS) [0.10, 0.10] [0.26, 0.26] [0.39, 0.39] [0.50, 0.50] [0.59, 0.59]

5.2. Payoff Analysis

In Section 3.4, we utilized IVIFNs to represent the payoffs of the attacker and the
defender under different strategy profiles in a Stackelberg game in infrastructure networks.
This approach was adopted due to the diversity of complex network metrics and the
subjective preferences of the players. We analyze the payoffs of the attacker and defender
under different strategy profiles when, for example, θA = 0.7 and θD = 0.3 (Figure 4a,b and
Figure 4c,d, respectively), where µA

ij =
[
µAL

ij , µAU
ij

]
, νA

ij =
[
νAL

ij , νAU
ij

]
, µD

ij =
[
µDL

ij , µDU
ij

]
,

and νD
ij =

[
νDL

ij , νDU
ij

]
(i, j ∈ {1, 2}).

From Figure 4, it is evident that when θA or θD varies, for ∀i ∈ {1, 2}, j ∈ {1, 2},
the monotonicity of µAL

ij

(
µDL

ij

)
is consistent with that of µAU

ij

(
µDU

ij

)
, while it demonstrates

an inverse trend compared to the monotonicity of νAL
ij

(
νDL

ij

)
and νAU

ij

(
νDU

ij

)
. Because θD

increases and θA = 0.7, the defender’s membership in different strategy profiles increases
while its nonmembership decreases. On the other hand, the attacker’s membership in
different strategy profiles decreases while its nonmembership increases. When θA increases
and θD = 0.3, the defender’s membership in different strategy profiles decreases while
its nonmembership increases. Conversely, the attacker’s membership in different strategy
profiles increases while its nonmembership decreases. It is obvious that when the cost
constraint parameter for the attacker or the defender increases, this generally results in an
upward trend in the payoffs for different strategy profiles. This can be inferred from the
degree of membership and nonmembership.
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(a) θA = 0.7 (b) θA = 0.7

(c) θD = 0.3 (d) θD = 0.3

Figure 4. The defender’s payoffs versus θD (a) or θA (c) and the attacker’s payoffs versus θD (b) or
θA (d) in each strategy profile, where θA = 0.7 in (a,b), θD = 0.3 in (c,d). The payoffs of different
strategy profiles are represented as IVIFNs, where the intervals of membership degrees are visually
depicted using a darker color and are shown by two solid lines representing the upper and lower
bounds. On the other hand, the intervals of nonmembership degrees are depicted with a lighter color
and are represented by two dashed lines indicating the upper and lower bounds.

5.3. The SSE with Different Values of θA and θD

We use the score function in Definition 4 to show the SSE payoffs of the attacker and
the defender (i.e., WSF

(
∑i∈SD

pt̂∗
i f̃A(i, t̂)

)
and WSF

(
∑i∈SD

pt̂∗
i f̃D(i, t̂)

)
) in Figure 5.



Mathematics 2023, 11, 4992 14 of 18

(a) Attacker’s SSE payoff (b) Defender’s SSE payoff

Figure 5. SSE payoffs of the attacker (a) and the defender (b) under different λ when θA, θD ∈ [0.1, 0.9].

In Figure 5a, we can see that the SSE payoffs for the attacker have the highest value
when it has significantly more resources than the defender and lowest when the attacker
has far fewer resources. Simultaneously, the SSE payoffs of the attacker decrease as θA
decreases while θD increases. Conversely, in Figure 5b, we can see that when the defender’s
resources are much lower than those of the attacker, the defender’s SSE payoffs are at their
lowest. However, if the defender’s resources surpass those of the attacker, the defender’s
SSE payoffs will be high. Simultaneously, overall, the SSE payoffs for the defender increase
as θA decreases while θD increases. However, when θD is greater than θA, regardless of the
changes in θD or θA, the SSE payoffs for the defender remain at their maximum value. This
is because when the defender has more resources, the majority of nodes remain unattacked,
resulting in higher and relatively unchanged benefits for the defender. Universally, the SSE
payoffs of the attacker and the defender will rise with an increase in λ.

The SSE strategies of the attacker and the defender with different cases of risk attitude
parameters are shown in Figure 6. Upon analyzing the SSE strategies of the attacker and the
defender, the following two main characteristics can be observed: (1) regarding the defender,
regardless of changes in λ, when θD is small (θD ∈ [0.1, 0.4]) and θA is large (θA ∈ [0.6, 0.9]),
the probability of adopting the HS is approximately 0.8; (2) regarding the attacker, re-
gardless of changes in λ, when θD is small (θD ∈ [0.1, 0.4]) and θA is large (θA ∈ [0.6, 0.9]),
the attacker will adopt the HS, and the tendency for the attacker to choose HS increases as
λ decreases. For these two characteristics, we provide the following explanation.

For the first characteristic, when in a weak position, the defender is more likely to
allocate its limited resources to protecting critical nodes. This aligns with [6], which states
that the failure of critical nodes leads to a significant decline in network performance.

For the second characteristic, Figure 7 shows the defender’s optimal utility expressed
by the score function in Definition 4 when the best responses of the attacker are the HS and
the LS (WSF

(
∑i∈SD

p1∗
i f̃D(i, 1)

)
and WSF

(
∑i∈SD

p2∗
i f̃D(i, 2)

)
, respectively). According to

the theory of breaking ties in SSE, the attacker will choose the best response strategy that
maximizes the defender’s utility. From Figure 7, when the defender is in a weak position,
we always have WSF

(
∑i∈SD

p1∗
i f̃D(i, 1)

)
> WSF

(
∑i∈SD

p2∗
i f̃D(i, 2)

)
, but as λ decreases,

situations where WSF
(
∑i∈SD

p1∗
i f̃D(i, 1)

)
< WSF

(
∑i∈SD

p2∗
i f̃D(i, 2)

)
become increasingly

prevalent. The reason for this is that, by becoming more risk-seeking, the attacker expresses
a preference for the HS, which offers an opportunity for greater utility.
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(a) Defender (b) Attacker

Figure 6. SSEs of the attacker and the defender when θA, θD ∈ [0.1, 0.9]. The various cases of λ

are considered. In (a), the probabilities of the HS in the defender’s mixed SSEs are represented by
the colors in the blocks. In (b), the HS and the LS are represented by the yellow and blue blocks,
respectively.

(a) λ = 0.2 (b) λ = 0.5 (c) λ = 0.8

Figure 7. The defender’s optimal utility expressed by WSF when the best response of the attacker is
HS and LS.

5.4. Comparative Analysis

In order to demonstrate the advantage of taking fuzziness into consideration, we
conduct an analysis of the target network using crisp payoffs and the solution method
described in [18]. We derive the defender’s “crisp strategy” pc =

(
pc

1, pc
2, . . . , pc

|SD |

)
, where

the payoffs are expressed as crisp values obtained solely through the size of the largest
connected component, and the solving method employed is the Multi-LP method [42].
By substituting pc into the proposed model in this paper, we can obtain the attacker’s
optimal response strategy t by comparing WSF

(
∑i=SD

pc
i f̃A(i, j)

)
, 1 ≤ j ≤ |SA|, which

in turn allows us to determine the defender’s payoff, represented by the score function
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under pc. As an example, we consider the case of λ = 0.5. We compare the SSE payoffs in
Figure 6b with the defender’s payoffs under pc, as shown in Figure 8.

Figure 8. Comparison of the SSE payoffs obtained from different models and methods.

From Figure 8, it can be observed that taking the fuzziness into consideration can
lead to higher SSE payoffs for the defender. Compared to employing the Multi-LP method
under the crisp condition, the defender’s SSE payoff can be increased by up to 0.274.

6. Conclusions

Critical infrastructure plays a vital role in the stability and development of modern
society, and the protection of such infrastructure has recently drawn extensive attention.
In this paper, we analyzed the Stackelberg game for an infrastructure network based on
IVIF theory, leading to three main contributions.

First, a Stackelberg game model of infrastructure networks with IVIFN payoffs was
introduced considering various complex network metrics and the decision makers’ sub-
jective judgment. The payoffs of the games in infrastructure networks were evaluated
as IVIFNs. To show the effect of an attack on or a defense of the target network in the
IVIF environment, the network efficiency and size of the largest connected component
were used to represent the membership or nonmembership degree, and we modified the
satisfaction of the decision makers according to the number of failed nodes. Second, to solve
a Stackelberg game with IVIFN payoffs, we proposed a programming model based on
the lexicographic method. In the proposed model, we converted the IVIF constraints into
their equivalent sets of crisp constraints and utilized the optimization of a deterministic
bi-objective function to be solved in a lexicographic manner. The score function and accu-
racy function with the risk attitude of the attacker and the defender were used, where the
priority of the score function was higher than that of the accuracy function. Combined with
the proposed model, we designed an algorithm that would utilize the concept of SSE to
determine the optimal strategies for the attacker and the defender. Finally, we investigated
the IVIFN payoffs and SSEs of the game in a target scale-free network with different cost
constraint parameters for the attacker and the defender. We demonstrated the variation in
the trends of the payoffs represented by IVIFNs and discovered that the payoffs of both
the attacker and the defender were generally monotonic and had opposite trends when
changed. We found that under SSE, the defender’s probability of choosing the HS was
higher when in a weak position and that the attacker would choose the HS more frequently
in various combinations when λ became lower. We also observed that taking the fuzziness
into consideration can lead to higher SSE payoffs for the defender.

This paper studied a Stackelberg game in infrastructure networks with IVIFN payoffs,
and an algorithm based on a lexicographic method was proposed to obtain the optimal
strategy. In future work, we will investigate a more appropriate method to denote the
IVIFN payoffs. This will allow us to better capture the uncertainty of the decision makers’
satisfaction and enhance the accuracy of our analysis. Moreover, for the method of ranking
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IVIFNs, we will consider using a more appropriate scoring function or accuracy function to
improve the quality of the solution.
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