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Abstract: In this paper, a new class of coupled hybrid systems of proportional sequential ψ-Hilfer
fractional differential equations, subjected to nonlocal boundary conditions were investigated. Based
on a generalization of the Krasnosel’skiĭ’s fixed point theorem due to Burton, sufficient conditions
were established for the existence of solutions. A numerical example was constructed illustrating
the main theoretical result. For special cases of the parameters involved in the system many new
results were covered. The obtained result is new and significantly contributes to existing results in
the literature on coupled systems of proportional sequential ψ-Hilfer fractional differential equations.
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1. Introduction

Fractional calculus (differentiation and integration of arbitrary order) has proved to be
an important tool in describing many mathematical models in science and engineering. In
fact, this branch of calculus has found its application in physics, mechanics, control theory,
economics, biology, signal and image precessing, etc. Fractional differential equations
describe many real world processes more accurately than classical differential equations
and have been addressed by many researchers. For theoretical and application details of
fractional differential equations, we refer the reader to the books [1–6], while an extensive
study of fractional boundary value problems can be found in the monograph [7]. Usually,
fractional derivative operators are defined via fractional integral operators and in the
literature one can find a variety of such operators, such as Riemann-Liouville, Caputo,
Hadamard, Erdélyi-Kober, Hilfer fractional derivatives, etc., to name some of them. In
[8], with the help of Euler’s k-gamma function, the k-Riemann-Liouville fractional integral
operator was introduced, generalizing the concept of Riemann-Liouville fractional integral
operator, which was used to define the k-Riemann-Liouville fractional derivative in [9].
The Hilfer fractional derivative [10] extends both Riemann-Liouville and Caputo fractional
derivatives. For applications of Hilfer fractional derivatives in mathematics, physics, etc.,
see [11–16]. For recent results on boundary value problems for fractional differential equa-
tions and inclusions with Hilfer fractional derivative, see the survey paper by Ntouyas [17].
The ψ-Riemann-Liouville fractional integral and derivative operators, which are fractional
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calculus with respect to a function ψ, are discussed in [1], while the ψ-Hilfer fractional
derivative is discussed in [18].

Recently, the notion of generalized proportional fractional derivative was introduced
by Jarad et al. [19–21]. For some recent results on fractional differential equations with
generalized proportional derivatives, see [22,23].

In [24], an initial value problem of the form
Dα

[Dωu(t)−
n

∑
i=1

Iδi hi(t, u(t))

f(t, u(t))

]
= Υ(t, u(t), Iγu(t)), t ∈ [0, T],

u(0) = 0, Dωu(0) = 0,

(1)

was studied, where Dv indicates the Caputo fractional derivative of order v ∈ {α, ω} with
0 < α, ω ≤ 1, 1 < α+ω ≤ 2, Iδi , Iγ are the fractional integrals of Riemann–Liouville type of
order δi > 0, γ > 0, hi ∈ C([0, T]×R,R), for i = 1, 2, . . . , n, f ∈ C([0, T]×R,R \ {0}) and
Υ ∈ C([0, T]×R,R). A three-point boundary value problem of the form (1) was studied
in [25], by replacing the initial conditions with u(0) = 0, Dωu(0) = 0, u(1) = δu(η),
δ ∈ R, 0 < η < 1, where 0 < α ≤ 1, 1 < ω ≤ 2, and using a generalized Krasnosel’skiĭ’s
fixed-point theorem.

Fractional coupled systems are also important, as such systems appear in the math-
ematical models associated with fractional dynamics [26], bio-engineering [27], financial
economics [28], etc. In [29], the authors studied the existence and Ulam-Hyers stability
results of a coupled system of ψ-Hilfer sequential fractional differential equations. In [30],
by using Krasnosel’skiĭ’s fixed point theorem, the existence of solutions are established for
the following nonlinear system involving generalized Hilfer fractional operators

H Dδ,ϑ,ψ
[H Dν,κ,ψu(t)−

m

∑
i=1

Iqi ,ψHi(t, u(t), s(t))

f(t, u(t), s(t))

]
= P(t, u(t), s(t)), t ∈ [0, b0],

H Dδ,ϑ,ψ
[H Dν,κ,ψs(t)−

m

∑
i=1

Iqi ,ψGi(t, u(t), s(t))

g(t, u(t), s(t))

]
= Q(t, u(t), s(t)), t ∈ [0, b0],

I1−γ,ψu(0) = 0, I1−γ,ψs(0) = 0, H Dν,κ,ψu(0) = 0, H Dν,κ,ψs(0) = 0,

(2)

where H DA,B,ψ is the ψ-Hilfer fractional derivative of order A ∈ {δ, ν} with δ, ν ∈ (0, 1)
and types B ∈ {ϑ, κ}, ϑ, κ ∈ [0, 1], I1−γ,ψ, Iqi ,ψ are the ψ-Riemann-Liouville fractional
integrals of order 1 − γ > 0, qi > 0, i = 1, 2, . . . , m and P, Q ∈ C([0, b0]×R2,R). In [31],
the existence and uniqueness results are derived for a coupled system of Hilfer–Hadamard
fractional differential equations with fractional integral boundary conditions. Recently,
in [32] a coupled system of nonlinear fractional differential equations involving the (k, ψ)-
Hilfer fractional derivative operators complemented with multi-point nonlocal boundary
conditions was discussed. Moreover, Samadi et al. [33] have considered a coupled system
of Hilfer-type generalized proportional fractional differential equations.

In this article, motivated by the above works, we study a hybrid system of proportional
Hilfer-type fractional differential equations of the form:
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H Dδ1,ϑ1,ρ,ψ

[H Dδ2,ϑ2,ρ,ψu(t)−
n

∑
i=1

p Iηi ,ρ,ψ Hi(t, u(t), s(t))

f(t, u(t), s(t))

]
= P(t, u(t), s(t)), t ∈ [a0, b0],

H Dδ3,ϑ3,ρ,ψ

[H Dδ4,ϑ4,ρ,ψs(t)−
m

∑
j=1

p Iη j ,ρ,ψGj(t, u(t), s(t))

g(t, u(t), s(t))

]
= Q(t, u(t), s(t)), t ∈ [a0, b0],

(3)

subject to coupled nonlocal boundary conditions{
u(a0) =

H Dδ2,ϑ2,ρ,ψu(a0) = 0, u(b0) = θ1s(ξ1),
s(a0) =

H Dδ4,ϑ4,ρ,ψs(a0) = 0, s(b0) = θ2u(ξ2),
(4)

where H Dδ,ϑ1,ρ,ψ denotes the ψ-Hilfer generalized proportional derivatives of order
δ ∈ {δ1, δ2, δ3, δ4}, with parameters ϑl , 0 ≤ ϑl ≤ 1, l ∈ {1, 2, 3, 4}, Iη,ρ,ψ is the gener-
alized proportional integral of order η > 0, η ∈ {ηi, η j}, θ1, θ2 ∈ R, ξ1, ξ2 ∈ [a0, b0],
f, g ∈ C([a0, b0]×R2,R \ {0}) and Hi, Gj, P, Q ∈ C([a0, b0]×R2,R), for i = 1, 2, . . . , n and
j = 1, 2, . . . , m.

To establish our main existence result, we first transform the problem (3) and (4) into a
fixed-point problem by using a linear variant of the problem (3) and (4), and then apply a
generalization of the Krasnosel’skiĭ’s fixed-point theorem due to Burton.

Our problem enriches the literature on hybrid sequential coupled systems of propor-
tional ψ-Hilfer differential equations of fractional order with nonlocal boundary conditions.
The nonlocal boundary conditions can be applied in physics, thermodynamics, wave propa-
gation, etc., and are more general than classical boundary conditions. For some applications
see [34,35] and the references cited therein. For applications of Hilfer fractional derivative
operators in applied sciences (such as physics, filtration processes, cobweb economics
model, stochastic equations etc.), we refer the reader to [36–41] and their references.

Comparing our problem with the problem studied in [30], we note that:

• We study a system involving ψ-Hilfer proportional fractional derivatives.
• Our equations are more general as the contained fractional derivatives have differ-

ent orders.
• Our system contains nonlocal coupled boundary conditions.
• Our system covers many special cases by fixing the parameters involved in the prob-

lem. For example, by taking f, g = 1 in the problem (3), we have the following new
nonlocal coupled system of sequential Hilfer-type proportional fractional differen-
tial equations

H Dδ1,ϑ1,ρ,ψ
[

H Dδ2,ϑ2,ρ,ψu(t)−
n

∑
i=1

p Iηi ,ρ,ψHi(t, u(t), s(t))
]
= P(t, u(t), s(t)), t ∈ [a0, b0],

H Dδ3,ϑ3,ρ,ψ
[

H Dδ4,ϑ4,ρ,ψu(t)−
m

∑
j=1

p Iη j ,ρ,ψGj(t, u(t), s(t))
]
= Q(t, u(t), s(t)), t ∈ [a0, b0],

u(a0) =
H Dδ2,ϑ2,ρ,ψu(a0) = 0, u(b0) = θ1s(ξ1),

s(a0) =
H Dδ4,ϑ4,ρ,ψs(a0) = 0, s(b0) = θ2u(ξ2).
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• Note that if n = m = 1, Hi(t, u(t), s(t)) = −λu(t), Gj(t, u(t), s(t)) = −µs(t), λ, µ con-
stants, then we have a nonlocal coupled system of sequential Hilfer-type proportional
fractional differential equations of Langevin-type

H Dδ1,ϑ1,ρ,ψ

[
(H Dδ2,ϑ2,ρ,ψ + λ)u(t)

f(t, u(t), s(t))

]
= P(t, u(t), s(t)), t ∈ [a0, b0],

H Dδ3,ϑ3,ρ,ψ

[
(H Dδ4,ϑ4,ρ,ψ + µ)s(t)

g(t, u(t), s(t))

]
= Q(t, u(t), s(t)), t ∈ [a0, b0],

u(a0) =
H Dδ2,ϑ2,ρ,ψu(a0) = 0, u(b0) = θ1s(ξ1),

s(a0) =
H Dδ4,ϑ4,ρ,ψs(a0) = 0, s(b0) = θ2u(ξ2),

which is a generalization of the well-known classical results in [42].

The structure of this article has been organized as follows: In Section 2, some necessary
concepts and basic results concerning our problem are presented. The main result for the
problem (3) and (4) is proved in Section 3, while Section 4 contains an example illustrating
the obtained result.

2. Preliminaries

In this section, we summarize some known definitions and lemmas needed in our results.

Definition 1 ([22,23]). Let ρ ∈ (0, 1] and δ > 0. The fractional proportional integral of order δ of
the function F is defined by

p Iδ,ρ,ψF(t) =
1

ρδΓ(δ)

∫ t

a0

e
ρ−1

ρ (ψ(t)−ψ(s))
(ψ(t)− ψ(s))δ−1F(s)ψ′(s)ds.

Definition 1 unifies several known definitions of fractional integrals for ρ = 1,
for example, for ψ(t) = t, it corresponds to Riemann-Liouville fractional integral, for
ψ(t) = log t, to Hadamard fractional integral, while for ψ(t) = tα

α , α > 0, to Katugampola
fractional integral.

Definition 2 ([22,23]). Let ρ ∈ (0, 1], δ > 0, and ψ(t) is a continuous function on [a0, b0],
ψ′(t) > 0. The generalized proportional fractional derivative of order δ of the continuous function
F is defined by

(pDδ,ρ,ψF)(t) =
(pDn,ρ,ψ)

ρn−δΓ(n − δ)

∫ t

a0

e
ρ−1

ρ (ψ(t)−ψ(s))
(ψ(t)− ψ(s))δ−1F(s)ψ′(s)ds,

where n = [δ] + 1 and [δ] denotes the integer part of the real number δ and Dn,ρ,ψ = Dρ,ψ · · · Dρ,ψ︸ ︷︷ ︸
n−times

.

Now the generalized Hilfer proportional fractional derivative of order δ of function F

with respect to another function ψ is introduced.

Definition 3 ([43]). Let ρ ∈ (0, 1], F, ψ ∈ Cm([a0, b0],R) in which ψ is positive and strictly
increasing with ψ′(t) ̸= 0 for all t ∈ [a0, b0]. The ψ-Hilfer generalized proportional fractional
derivative of order δ and type ϑ for F with respect to another function ψ is defined by(

H Dδ,ϑ,ρ,ψF

)
(t) = p Iϑ(n−δ),ρ,ψ[pDn,ρ,ψ(p I(1−ϑ)(n−δ),ρ,ψF)](t),

where n − 1 < δ < n and 0 ≤ ϑ ≤ 1.
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Remark 1 ([43]). It is assumed that the parameters δ, ϑ and γ (involved in the above definitions)
satisfy the relations:

γ = δ + ϑ(n − δ), n − 1 < δ, γ ≤ n, 0 ≤ ϑ ≤ 1,

and
γ ≥ δ, γ > ϑ, n − γ < n − ϑ(n − δ).

Lemma 1 ([43]). Let n − 1 < δ < n ∈ N, 0 < ρ ≤ 1, 0 ≤ ϑ ≤ 1 and n − 1 < γ < n such that
γ = δ + nϑ − δϑ. If F ∈ C([a0, b0],R) and p I(n−γ,ρ,ψ)F ∈ Cn([a0, b0],R), then

(
p Iδ,ρ,ψ H Dδ,ϑ,ρ,ψF

)
(t) = F(t)−

n

∑
j=1

e
ρ−1

ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))
γ−j

ργ−jΓ(γ − j + 1)

(
p I j−γ,ρ,ψF

)
(a0).

To prove the main result we need the following lemma, which concerns a linear variant
of the ψ-Hilfer proportional coupled system (3) and (4), and is used to convert the nonlinear
problem in system (3) and (4) into a fixed-point problem.

Lemma 2. Let 0 < δ1, δ3 ≤ 1, 1 < δ2, δ4 ≤ 2, 0 ≤ ϑi ≤ 1, γi = δi + ϑi(1 − δi),
γj = δj + ϑj(2 − δj), i = 1, 3, j = 2, 4, Θ = M1N2 − M2N1 ̸= 0 and U, S ∈ C([a0, b0],R),
f, g ∈ C([a0, b0] × R2,R \ {0}), Hi, Gj ∈ C([a0, b0] × R2,R), for i = 1, 2, . . . , n and
j = 1, 2, . . . , m and p I(n−γi ,ρ,ψ)U ∈ Cn([a0, b0],R),p I(n−γi ,ρ,ψ)S ∈ Cn([a0, b0],R), i = 1, 2, 3, 4.
Then the pair (u, s) is a solution of the system

H Dδ1,ϑ1,ρ,ψ
[H Dδ2,ϑ2,ρ,ψu(t)−

n

∑
i=1

p Iηi ,ρ,ψHi(t, u(t), s(t))

f(t, u(t), s(t))

]
= U(t), t ∈ [a0, b0],

H Dδ3,ϑ3,ρ,ψ
[H Dδ4,ϑ4,ρ,ψs(t)−

m

∑
j=1

p Iη j ,ρ,ψGj(t, u(t), s(t))

g(t, u(t), s(t))

]
= S(t), t ∈ [a0, b0],

u(a0) =
H Dδ2,ϑ2,ρ,ψu(a0) = 0, u(b0) = θ1s(ξ1),

s(a0) =
H Dδ4,ϑ4,ρ,ψs(a0) = 0, s(b0) = θ2u(ξ2),

(5)

if and only if

u(t) =
n

∑
i=1

p Iηi+δ2,ρ,ψHi(t, u(t), s(t)) + p Iδ2,ρ,ψf(t, u(t), s(t))p Iδ1,ρ,ψU(t)

+
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ2−1

Θργ2−1Γ(γ2)

{
N2

[
θ1

m

∑
j=1

p Iη j+δ4,ρ,ψGj(ξ1, u(ξ1), s(ξ1))

+θ1
p Iδ4,ρ,ψg(ξ1, u(ξ1), s(ξ1))

p Iδ3,ρ,ψS(ξ1)

−
n

∑
i=1

p Iηi+δ2,ρ,ψHi(b0, u(b0), s(b0))− p Iδ2,ρ,ψf(b0, u(b0), s(b0))
p Iδ1,ρ,ψU(b0)

]
+M2

[
θ2

n

∑
i=1

p Iηi+δ2,ρ,ψ Hi(ξ2, u(ξ2), s(ξ2))

+θ2
p Iδ2,ρ,ψf(ξ2, u(ξ2), s(ξ2))

p Iδ1,ρ,ψU(ξ2)−
m

∑
j=1

p Iη j+δ4,ρ,ψGj(b0, u(b0), s(b0))

−p Iδ4,ρ,ψg(b0, u(b0), s(b0))
p Iδ3,ρ,ψS(b0)

]}
(6)
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and

s(t) =
m

∑
j=1

p Iη j+δ4,ρ,ψGj(t, u(t), s(t)) + p Iδ4,ρ,ψg(t, u(t), s(t))p Iδ3,ρ,ψS(t)

+
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ4−1

Θργ4−1Γ(γ4)

{
N1

[
θ1

m

∑
j=1

p Iη j+δ4,ρ,ψGj(ξ1, u(ξ1), s(ξ1))

+θ1
p Iδ4,ρ,ψg(ξ1, u(ξ1), s(ξ1))

p Iδ3,ρ,ψS(ξ1)

−
n

∑
i=1

p Iηi+δ2,ρ,ψHi(b0, u(b0), s(b0))− p Iδ2,ρ,ψf(b0, u(b0), s(b0))
p Iδ1,ρ,ψU(b0)

]
+M1

[
θ2

n

∑
i=1

p Iηi+δ2,ρ,ψHi(ξ2, u(ξ2), s(ξ2))

+θ2
p Iδ2,ρ,ψf(ξ2, u(ξ2), s(ξ2))

p Iδ1,ρ,ψU(ξ2)−
m

∑
j=1

p Iη j+δ4,ρ,ψGj(b0, u(b0), s(b0))

−p Iδ4,ρ,ψg(b0, u(b0), s(b0))
p Iδ3,ρ,ψS(b0)

]}
, (7)

where

M1 =
e

ρ−1
ρ (ψ(b0)−ψ(a0))(ψ(b0)− ψ(a0))

γ2−1

ργ2−1Γ(γ2)
,

M2 =
θ1e

ρ−1
ρ (ψ(ξ1)−ψ(a0))(ψ(ξ1)− ψ(a0))

γ4−1

ργ4−1Γ(γ4)
,

N1 = θ2
e

ρ−1
ρ (ψ(ξ2)−ψ(a0))(ψ(ξ2)− ψ(a0))

γ2−1

ργ2−1Γ(γ2)
,

N2 =
e

ρ−1
ρ (ψ(b0)−ψ(a0))(ψ(b0)− ψ(a0))

γ4−1

ργ4−1Γ(γ4)
. (8)

Proof. Due to Lemma 1 with n = 1, we obtain

H Dδ2,ϑ2,ρ,ψu(t)−
n

∑
i=1

p Iηi ,ρ,ψHi(t, u(t), s(t))

f(t, u(t), s(t))
= p Iδ1,ρ,ψU(t)

+c0
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ1−1

ργ1−1Γ(γ1)
,

H Dδ4,ϑ4,ρ,ψs(t)−
m

∑
j=1

p Iη j ,ρ,ψGj(t, u(t), s(t))

g(t, u(t), s(t))
= p Iδ3,ρ,ψS(t)

+d0
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ3−1

ργ3−1Γ(γ3)
, (9)

where c0, d0 ∈ R. Now applying the boundary conditions

H Dδ2,ϑ2,ρ,ψu(a0) =
H Dδ4,ϑ4,ρ,ψs(a0) = 0,
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we obtain c0 = d0 = 0. Hence

H Dδ2,ϑ2,ρ,ψu(t) =
n

∑
i=1

p Iηi ,ρ,ψ Hi(t, u(t), s(t)) + f(t, u(t), s(t))p Iδ1,ρ,ψU(t),

H Dδ4,ϑ4,ρ,ψs(t) =
m

∑
j=1

p Iη j ,ρ,ψGj(t, u(t), s(t)) + g(t, u(t), s(t))p Iδ3,ρ,ψS(t). (10)

Now, by taking the operators p Iδ2,ρ,ψ and p Iδ4,ρ,ψ into both sides of (10) and using
Lemma 1, we obtain

u(t) =
n

∑
i=1

p Iηi+δ2,ρ,ψHi(t, u(t), s(t)) + p Iδ2,ρ,ψf(t, u(t), s(t))p Iδ1,ρ,ψU(t)

+c1
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ2−1

ργ2−1Γ(γ2)

+c2
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ2−2

ργ2−2Γ(γ2 − 1)
,

s(t) =
m

∑
j=1

p Iη j+δ4,ρ,ψGj(t, u(t), s(t)) + p Iδ4,ρ,ψg(t, u(t), s(t))p Iδ3,ρ,ψS(t)

+d1
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ4−1

ργ4−1Γ(γ4)

+d2
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ4−2

ργ4−2Γ(γ4 − 1)
. (11)

Applying in (11) the conditions u(a0) = s(a0) = 0, we obtain c2 = d2 = 0 since γ2 ∈ [δ2, 2]
and γ4 ∈ [δ4, 2] (Remark 1). Thus we have

u(t) =
n

∑
i=1

p Iηi+δ2,ρ,ψHi(t, u(t), s(t)) + p Iδ2,ρ,ψf(t, u(t), s(t))p Iδ1,ρ,ψU(t)

+c1
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ2−1

ργ2−1Γ(γ2)
,

s(t) =
m

∑
j=1

p Iη j+δ4,ρ,ψGj(t, u(t), s(t)) + p Iδ4,ρ,ψg(t, u(t), s(t))p Iδ3,ρ,ψS(t)

+d1
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ4−1

ργ4−1Γ(γ4)
. (12)

In view of (12) and the conditions u(b0) = θ1s(ξ1) and s(b0) = θ2u(ξ2), we obtain

n

∑
i=1

p Iηi+δ2,ρ,ψHi(b0, u(b0), s(b0)) +
p Iδ2,ρ,ψf(b0, u(b0), s(b0))

p Iδ1,ρ,ψU(b0)

+c1
e

ρ−1
ρ (ψ(b0)−ψ(a0))(ψ(b0)− ψ(a0))

γ2−1

ργ2−1Γ(γ2)

= θ1

m

∑
j=1

p Iη j+δ4,ρ,ψGj(ξ1, u(ξ1), s(ξ1)) + θ1
p Iδ4,ρ,ψg(ξ1, u(ξ1), s(ξ1))

p Iδ3,ρ,ψS(ξ1)
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+d1
θ1e

ρ−1
ρ (ψ(ξ1)−ψ(a0))(ψ(ξ1)− ψ(a0))

γ4−1

ργ4−1Γ(γ4)
, (13)

and

m

∑
j=1

p Iη j+δ4,ρ,ψGj(b0, u(b0), s(b0)) +
p Iδ4,ρ,ψg(b0, u(b0), s(b0))

p Iδ3,ρ,ψS(b0)

+d1
e

ρ−1
ρ (ψ(b0)−ψ(a0))(ψ(b0)− ψ(a0))

γ4−1

ργ2−1Γ(γ2)

= θ2

n

∑
i=1

p Iηi+δ2,ρ,ψHi(ξ2, u(ξ2), s(ξ2)) + θ2
p Iδ2,ρ,ψf(ξ2, u(ξ2), s(ξ2))

p Iδ1,ρ,ψU(ξ2)

+c1
θ2e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(ξ2)− ψ(a0))

γ2−1

ργ2−1Γ(γ2)
. (14)

Due to (8) and (13), (14), we have

c1M1 − d1M2 = M,

−c1N1 + d1N2 = N, (15)

where

M = θ1

m

∑
j=1

p Iη j+δ4,ρ,ψGj(ξ1, u(ξ1), s(ξ1)) + θ1
p Iδ4,ρ,ψg(ξ1, u(ξ1), s(ξ1))

p Iδ3,ρ,ψS(ξ1)

−
n

∑
i=1

p Iηi+δ2,ρ,ψ Hi(b0, u(b0), s(b0))− p Iδ2,ρ,ψf(b0, u(b0), s(b0))
p Iδ1,ρ,ψU(b0),

N = θ2

n

∑
i=1

p Iηi+δ2,ρ,ψHi(ξ2, u(ξ2), s(ξ2)) + θ2
p Iδ2,ρ,ψf(ξ2, u(ξ2), s(ξ2))

p Iδ1,ρ,ψU(ξ2)

−
m

∑
j=1

p Iη j+δ4,ρ,ψGj(b0, u(b0), s(b0))− p Iδ4,ρ,ψg(b0, u(b0), s(b0))
p Iδ3,ρ,ψS(b0).

By solving the above system, we conclude that

c1 =
1
Θ
[
N2M + M2N

]
, d1 =

1
Θ
[
M1N + N1M

]
.

Replacing the values c1 and d1 in the Equation (12) we obtain the solutions (6) and (7). The
converse follows by direct computation. The proof is completed.

The following version of Krasnosel’skiĭ’s fixed point theorem due to Burton is the
basic tool in proving our main existence result.

Lemma 3 ([44]). Let S be a nonempty, convex, closed, and bounded set such that S ⊂ X, and let
A : X → X and B : S → X be two operators which satisfy the following:

(i) A is a contraction;
(ii) B is completely continuous; and
(iii) x = Ax + By, ∀y ∈ S ⇒ x ∈ S.

Then there exists a solution of the operator equation x = Ax + Bx.

3. An Existence Result

Let Y = C([a0, b0],R) = {u : [a0, b0] −→ R is continuous}. The space Y is a Banach
space with the norm ∥u∥ = supt∈[a0,b0]

|u(t)|. Obviously, the space (Y×Y, ∥(u, s)∥) is also
a Banach space with the norm ∥(u, s)∥ = ∥u∥+ ∥s∥.
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Definition 4. A function (u, s) ∈ Y×Y is said to be a solution of nonlocal ψ-Hilfer sequential
proportional coupled system (3) and (4) if

u →
H Dδ2,ϑ2,ρ,ψu(t)−∑n

i=1
p Iηi ,ρ,ψ Hi(t,u(t),s(t))

f(t,u(t),s(t)) and s →
H Dδ4,ϑ4,ρ,ψs(t)−∑m

j=1
p Iη j ,ρ,ψGj(t,u(t),s(t))

g(t,u(t),s(t)) are
continuous for each (u, s) ∈ Y×Y and satisfies nonlocal ψ-Hilfer sequential proportional coupled
system (3) and the boundary conditions in (4).

By Lemma 2, we define an operator U : Y×Y → Y×Y by

U(u, s)(t) =
(

U1(u, s)(t)
U2(u, s)(t)

)
, (16)

where

U1(u, s)(t)

=
n

∑
i=1

p Iηi+δ2,ρ,ψHi(t, u(t), s(t))

+p Iδ2,ρ,ψf(t, u(t), s(t))p Iδ1,ρ,ψP(t, u(t), s(t))

+
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ2−1

Θργ2−1Γ(γ2)

{
N2

[
θ1

m

∑
j=1

p Iη j+δ4,ρ,ψGj(ξ1, u(ξ1), s(ξ1))

+θ1
p Iδ4,ρ,ψg(ξ1, u(ξ1), s(ξ1))

p Iδ3,ρ,ψQ(ξ1, u(ξ1), s(ξ1))

−
n

∑
i=1

p Iηi+δ2,ρ,ψHi(b0, u(b0), s(b0))

−p Iδ2,ρ,ψf(b0, u(b0), s(b0))
p Iδ1,ρ,ψP(b0, u(b0), s(b0))

]
+M2

[
θ2

n

∑
i=1

p Iηi+δ2,ρ,ψHi(ξ2, u(ξ2), s(ξ2))

+θ2
p Iδ2,ρ,ψf(ξ2, u(ξ2), s(ξ2))

p Iδ1,ρ,ψP(ξ2, u(ξ2), s(ξ2))

−
m

∑
j=1

p Iη j+δ4,ρ,ψGj(b0, u(b0), s(b0))

−p Iδ4,ρ,ψg(b0, u(b0), s(b0))
p Iδ3,ρ,ψQ(b0, u(b0), s(b0))

]}
, (17)

and

U2(u, s)(t)

=
m

∑
j=1

p Iη j+δ4,ρ,ψGj(t, u(t), s(t))

+p Iδ4,ρ,ψg(t, u(t), s(t))p Iδ3,ρ,ψQ(t, uw), s(t))

+
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ4−1

Θργ4−1Γ(γ4)

{
N1

[
θ1

m

∑
j=1

p Iη j+δ4,ρ,ψGj(ξ1, u(ξ1), s(ξ1))

+θ1
p Iδ4,ρ,ψg(ξ1, u(ξ1), s(ξ1))

p Iδ3,ρ,ψQ(ξ1, u(ξ1), s(ξ1))

−
n

∑
i=1

p Iηi+δ2,ρ,ψHi(b0, u(b0), s(b0))

−p Iδ2,ρ,ψf(b0, u(b0), s(b0))
p Iδ1,ρ,ψP(b0, u(b0), s(b0))

]
+M1

[
θ2

n

∑
i=1

p Iηi+δ2,ρ,ψHi(ξ2, u(ξ2), s(ξ2))
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+θ2
p Iδ2,ρ,ψf(ξ2, u(ξ2), s(ξ2))

p Iδ1,ρ,ψP(ξ2, u(ξ2), s(ξ2))

−
m

∑
j=1

p Iη j+δ4,ρ,ψGj(b0, u(b0), s(b0))

−p Iδ4,ρ,ψg(b0, u(b0), s(b0))
p Iδ3,ρ,ψQ(b0, u(b0), s(b0))

]}
. (18)

Our main existence result is given in the next theorem.

Theorem 1. Assume that:

(H1)The functions f, g : [a0, b0] × R × R → R \ {0}, P, Q : [a0, b0] × R × R → R and
Hi, Gj : [a0, b0]×R×R → R for i = 1, 2, . . . , n, j = 1, 2, . . . , m, are continuous and there
exist positive functions ϕ, χ, π, ϖ, hi, zj, i = 1, 2, . . . , n j = 1, 2, . . . , m, with bounds ∥ϕ∥,
∥χ∥, ∥π∥, ∥ϖ∥, and ∥hi∥, i = 1, 2, . . . , m, ∥zj∥, j = 1, 2, . . . , m, respectively, such that

|f(t, x1, x2)− f(t, x1, x2)| ≤ ϕ(t)
(
|x1 − x1|+ |x2 − x2|

)
,

|g(t, x1, x2)− g(t, x1, x2)| ≤ χ(t)
(
|x1 − x1|+ |x2 − x2|

)
,

|P(t, x1, x2)− P(t, x1, x2| ≤ π(t)(|x1 − x1|+ |x2 − x2|),
|Q(t, x1, x2)− Q(t, x1, x2| ≤ ϖ(t)(|x1 − x1|+ |x2 − x2|),
|Hi(t, x1, x2)− Hi(t, x1, x2)| ≤ hi(t)

(
|x1 − x1|+ |x2 − x2|

)
,

|Gj(t, x1, x2)− Gj(t, x1, x2)| ≤ zj(t)
(
|x1 − x1|+ |x2 − x2|

)
,

for all t ∈ [a0, b0] and xi, xi ∈ R, i = 1, 2.
(H2)There exist continuous functions σ, τ, ℓ, m, λi, µj, i = 1, 2, . . . , n, j = 1, 2, . . . , m such that

|f(t, x1, x2)| ≤ σ(t), |g(t, x1, x2)| ≤ τ(t),

|Hi(t, x1, x2)| ≤ λi(t), |Gj(t, x1, x2)| ≤ µj(t),

|P(t, x1, x2)| ≤ ℓ(t), |Q(t, x1, x2)| ≤ m(t),

for all t ∈ [a0, b0] and x1, x2 ∈ R.

(H3) Assume that

K : =
{

Ψ(b0, δ2)
[
1 + (N2 + M2|θ2|)

1
|Θ|Ψ(b0, γ2)

]
+(N1 + M1|θ2|)Ψ(b0, δ2)

1
|Θ|Ψ(b0, γ4)

}[
∥σ∥∥π∥+ ∥ℓ∥Ψ(b0, δ1)∥ϕ∥

]
+
{
(N2|θ1|+ M2)Ψ(b0, δ4)

1
|Θ|Ψ(b0, γ2)

+Ψ(b0, δ4)
[
1 + (N1|θ1|+ M1)

1
|Θ|Ψ(b0, γ4)

]}[
∥τ∥∥ϖ∥+ ∥m∥Ψ(b0, δ3)∥χ∥

]
< 1,

where for convenience we have put

Ψ(x, y) =
(ψ(x)− ψ(a0))

y

ρyΓ(y + 1)
(19)

and ∥ϵ∥ = supt∈[a0,b0]
|ϵ(t)|, ϵ ∈ {σ, τ, π, ϖ, ℓ, m}.

Then the ψ-Hilfer proportional coupled system (3) and (4) has at least one solution on [a0, b0].

Proof. Firstly, we consider a subset S of Y×Y defined by S = {(u, s) ∈ Y×Y : ∥(u, s)∥ ≤ r},
where r is given by

r = R1 + R2, (20)
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where

R1 =
[
1 +

1
|Θ|Ψ(b0, γ2)(N2 + M2|θ2|)

]
×
[ n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2) + ∥σ∥∥ℓ∥Ψ(b0, δ1)Ψ(b0, δ2)
]

+(N2|θ1|+ M2)
1
|Θ|Ψ(b0, γ2)

[ m

∑
j=1

∥µj∥Ψ(b0, η j + δ4)

+Ψ(b0, δ4)∥τ∥∥L2∥Ψ(b0, δ3)
]
,

and

R2 =
[
1 +

1
|Θ|Ψ(b0, γ4)(N1|θ1|+ M1)

]
×
[ m

∑
j=1

∥µj∥Ψ(b0, η j + δ4) + ∥τ∥∥m∥Ψ(b0, δ4)Ψ(b0, δ3)
]

+(N1|+ M1θ2|)
1
|Θ|Ψ(b0, γ4)

[ n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2)

+Ψ(b0, δ2)∥σ∥∥L1∥Ψ(b0, δ1)
]
,

where supt∈[a0,b0]
|λi(t)| = ∥λi∥, i = 1, 2, . . . , n, supt∈[a0,b0]

|µj(t)| = ∥µj∥, j = 1, 2, . . . , m.
Let us define the operators

Hi(u, s)(t) =
n

∑
i=1

p Iηi+δ2,ρ,ψHi(t, u(t), s(t)), t ∈ [a0, b0],

Gj(u, s)(t) =
m

∑
j=1

p Iη j+δ4,ρ,ψGj(t, u(t), s(t)), t ∈ [a0, b0],

Y1(u, s)(t) = p Iδ1,ρ,ψP(t, u(t), s(t)), t ∈ [a0, b0],

Y2(u, s)(t) = p Iδ3,ρ,ψQ(t, u(t), s(t)), t ∈ [a0, b0],

and
F1(u, s)(t) = f(t, u(t), s(t)), t ∈ [a0, b0],

F2(u, s)(t) = g(t, u(t), s(t)), t ∈ [a0, b0].

Then we have

|Hi(u1, s1))(t)−Hi(u, s)(t)| ≤
n

∑
i=1

p Iηi+δ2,ρ,ψ|Hi(t, u1(t), s1(t))− Hi(t, u(t), s(t))|

≤
n

∑
i=1

∥hi∥Ψ(b0, ηi + δ2)(∥u1 − u∥+ ∥s1 − s∥),

and

|Hi(u, s)(t)| ≤
n

∑
i=1

p Iηi+δ2,ρ,ψ|Hi(t, u(t), s(t))|

≤
n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2).
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Also, we obtain

|Gj(u1, s1))(t)− Gj(u, s)(t)| ≤
m

∑
j=1

p Iη j+δ4,ρ,ψ|Gj(t, u1(t), s1(t))− Gj(t, u(t), s(t))|

≤
m

∑
j=1

∥zj∥Ψ(b0, η j + δ4)(∥u1 − u∥+ ∥s1 − s∥),

and

|Gj(u, s)(t)| ≤
m

∑
j=1

p Iη j+δ4,ρ,ψ|Gj(t, u(t), s(t))|

≤
m

∑
j=1

∥µj∥Ψ(b0, η j + δ4).

Moreover, we have

|Y1(u1, s1))(t)−Y1(u, s)(t)| ≤ p Iδ1,ρ,ψ|P(t, u1(t), s1(t))− P(t, u(t), s(t))|
≤ ∥π∥Ψ(b0, δ1)(∥u1 − u∥+ ∥s1 − s∥),

|Y1(u, s)(t)| ≤ p Iδ1,ρ,ψ|P(t, u(t), s(t))|
≤ ∥ℓ∥Ψ(b0, δ1),

and

|Y2(u1, s1))(t)−Y2(u, s)(t)| ≤ p Iδ3,ρ,ψ|Q(t, u1(t), s1(t))− Q(t, u(t), s(t))|
≤ ∥ϖ∥Ψ(b0, δ3)(∥u1 − u∥+ ∥s1 − s∥),

|Y2(u, s)(t)| ≤ p Iδ1,ρ,ψ|Q(t, u(t), s(t))|
≤ ∥m∥Ψ(b0, δ1).

Finally, we obtain

|F1(u1, s1))(t)−F1(u, s)(t)| ≤ |f(t, u1(t), s1(t))− f(t, u(t), s(t))|
≤ ∥ϕ∥(∥u1 − u∥+ ∥s1 − s∥),

|F1(u, s)(t)| ≤ |f(t, u(t), s(t))|
≤ ∥σ∥,

and

|F2(u1, s1))(t)−F2(u, s)(t)| ≤ |g(t, u1(t), s1(t))− g(t, u(t), s(t))|
≤ ∥χ∥(∥u1 − u∥+ ∥s1 − s∥),

|F2(u, s)(t)| ≤ |g(t, u(t), s(t))|
≤ ∥τ∥.

Now we split the operator U as

U1(u, s)(t) = U1,1(u, s)(t) +U1,2(u, s)(t),
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U2(u, s)(t) = U2,1(u, s)(t) +U2,2(u, s)(t),

with

U1,1(u, s)(t)

= Hi(u, s)(t)

+
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ2−1

Θργ2−1Γ(γ2)

{
N2

[
θ1Gi(u, s)(ξ1)−Hi(u, s)(b0)

]
+M2

[
θ2Hi(u, s)(ξ2))− Gj(u, s)(b0))

]}
,

U1,2(u, s)(t)

= p Iδ2,ρ,ψF1(u, s)(t)Y1(u, s)(t) +
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ2−1

Θργ2−1Γ(γ2)

×
{

N2

[
θ1

p Iδ4,ρ,ψF2(u, s)(ξ1)Y2(u, s)(ξ1)− p Iδ2,ρ,ψF1(u, s)(b0)Y1(u, s)(b0)

]
+M2

[
θ2

p Iδ2,ρ,ψF1(u, s)(ξ2)Y1(u, s)(ξ2)− p Iδ4,ρ,ψF2(u, s)(b0)Y2(u, s)(b0)

]}
,

U2,1(u, s)(t)

= Gj(u, s)(t)

+
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ4−1

Θργ4−1Γ(γ4)

{
N1

[
θ1Gj(u, s)(ξ1)−Hi(u, s)(b0)

]
+M1

[
θ2Hi(u, s)(ξ2)− Gj(u, s)(b0)

]}
,

and

U2,2(u, s)(t)

= p Iδ4,ρ,ψF2(u, s)(t)Y2(u, s)(t) +
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ4−1

Θργ4−1Γ(γ4)

×
{

N1

[
θ1

p Iδ4,ρ,ψF2(u, s)(ξ1)Y2(u, s)(ξ1)− p Iδ2,ρ,ψF1(u, s)(b0)Y1(u, s)(b0)

]
+M1

[
θ2

p Iδ2,ρ,ψF1(u, s)(ξ2)Y1(u, s)(ξ2)− p Iδ4,ρ,ψF2(u, s)(b0)Y2(u, s)(b0)

]}
.

In the following steps, we will prove that the operators U1,U2 fulfill the assumptions
of Lemma 3.

Step 1. In the first step we will prove that the operators U1,2 and U2,2 are contraction
mappings. For all (u, s), (u1, s1) ∈ Y×Y we have

|U1,2(u1, s1)(t)−U1,2(u, s)(t)|
≤ Ψ(b0, δ2)|F1(u1, s1)(t)Y1(u1, s1)(t)−F1(u, s)(t)Y1(u, s)(t)|

+
1
|Θ|Ψ(b0, γ2)

{
N2|θ1|Ψ(b0, δ4)|F2(u1, s1)(t)Y2(u1, s1)(t)−F2(u, s)(t)Y2(u, s)(t)|

+(N2 + M2|θ2|)Ψ(b0, δ2)|F1(u1, s1)(ξ2)Y1(u1, s1)(ξ2)−F1(u, s)(t)Y1(u, s)(t)|

+M2Ψ(b0, δ4)|F2(u1, s1)(t)Y2(u1, s1)(t)−F2(u, s)(t)Y2(u, s)(t)|
}
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≤ Ψ(b0, δ2)
[
1 + (N2 + M2|θ2|)

1
|Θ|Ψ(b0, γ2)

]
×|F1(u1, s1)(t)Y1(u1, s1)(t)−F1(u, s)(t)Y1(u, s)(t)|

+(N2|θ1|+ M2)Ψ(b0, δ4)
1
|Θ|Ψ(b0, γ2)

×|F2(u1, s1)(t)Y2(u1, s1)(t)−F2(u, s)(t)Y2(u, s)(t)|

≤ Ψ(b0, δ2)
[
1 + (N2 + M2|θ2|)

1
|Θ|Ψ(b0, γ2)

][
|F1(u1, s1)(t)||Y1(u1, s1)(t)−Y1(u, s)(t)|

+|Y1(u, s)(t)||F1(u1, s1)(t)−F1(u, s)(t)
]

+(N2|θ1|+ M2)Ψ(b0, δ4)
1
|Θ|Ψ(b0, γ2)

[
|F2(u1, s1)(t)||Y2(u1, s1)(t)−Y2(u, s)(t)|

+|Y2(u, s)(t)||F2(u1, s1)(t)−F2(u, s)(t)|
]

≤ Ψ(b0, δ2)
[
1 + (N2 + M2|θ2|)

1
|Θ|Ψ(b0, γ2)

][
∥σ∥∥π∥+ ∥ℓ∥Ψ(b0, δ1)∥ϕ∥

]
×
[
∥u1 − u∥+ ∥s1 − s∥

]
+(N2|θ1|+ M2)Ψ(b0, δ4)

1
|Θ|Ψ(b0, γ2)

[
∥τ∥∥ϖ∥+ ∥m∥Ψ(b0, δ3)∥χ∥

]
×
[
∥u1 − u∥+ ∥s1 − s∥

]
=

{
Ψ(b0, δ2)

[
1 + (N2 + M2|θ2|)

1
|Θ|Ψ(b0, γ2)

][
∥σ∥∥π∥+ ∥ℓ∥Ψ(b0, δ1)∥ϕ∥

]
+(N2|θ1|+ M2)Ψ(b0, δ4)

1
|Θ|Ψ(b0, γ2)

[
∥τ∥∥ϖ∥+ ∥m∥Ψ(b0, δ3)∥χ∥

]}
×
[
∥u1 − u∥+ ∥s1 − s∥

]
.

Similarly we can find

|U2,2(u1, s1)(t)−U2,2(u, s)(t)|

≤
{

Ψ(b0, δ4)
[
1 + (N1|θ1|+ M1)

1
|Θ|Ψ(b0, γ4)

][
∥τ∥∥ϖ∥+ ∥m∥Ψ(b0, δ3)∥χ∥

]
+(N1 + M1|θ2|)Ψ(b0, δ2)

1
|Θ|Ψ(b0, γ4)

[
∥σ∥∥π∥+ ∥ℓ∥Ψ(b0, δ2)∥ϕ∥

]}
×
[
∥u1 − u∥+ ∥s1 − s∥

]
.

Consequently, we obtain

∥(U1,2,U2,2)(u1, s1)− (U1,2,U2,2)(u, s)∥ ≤ K(∥u1 − u∥+ ∥s1 − s∥),

which means that (U1,2,U2,2) is a contraction.

Step 2. In the second step we will prove that the operator (U1,1,U2,1) is completely
continuous on S. For continuity of U1,1, take any sequence of points (un, sn) in S converging
to a point (u, s) ∈ S. Then, by Lebesgue dominated convergence theorem, we have

lim
n→∞

U1,1(un, sn)(t) = lim
n→∞

Hi(un, sn)(t) +
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ2−1

ργ2−1Γ(γ2)

×
{

N2

[
θ1 lim

n→∞
Gi(un, sn)(ξ1)− lim

n→∞
Hi(un, sn)(b0)

]
+M2

[
θ2 lim

n→∞
Hi(un, sn)(ξ2))− lim

n→∞
Gj(un, sn)(b0))

]}
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= Hi(u, s)(t) +
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ2−1

ργ2−1Γ(γ2)

×
{

N2

[
θ1Gi(u, s)(ξ1)−Hi(u, s)(b0)

]
+M2

[
θ2Hi(u, s)(ξ2))− Gj(tp, q)(b0))

]}
= U1,1(u, s)(t),

for all t ∈ [a0, b0]. Similarly, we prove limn→∞ U2,1(un, sn)(t) = U2,1(u, s)(t) for all
t ∈ [a0, b0]. Thus (U1,1(un, sn),U2,1(un, sn)) converges to (U1,1(u, s),U2,1(u, s)) on [a0, b0],
which shows that (U1,2,U2,2) is continuous.

Next, we show that the operator (U1,1,U2,1) is uniformly bounded on S. For any
(u, s) ∈ S we have

|U1,1(u, s)(t)| ≤ |Hi(u, s)(t)|+ e
ρ−1

ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))
γ2−1

|Θ|ργ2−1Γ(γ2)

×
{

N2

[
|θ1||Gi(u, s)(ξ1)|+ |Hi(u, s)(b0)|

]
+M2

[
|θ2||Hi(u, s)(ξ2))|+ |Gj(u, s)(b0))|

]}
≤

n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2) +
1
|Θ|Ψ(b0, γ2)

×
{

N2|θ1|
m

∑
j=1

∥µj∥Ψ(b0, ηi + δ4) + N2

n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2)

+M2|θ2|
n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2) + M2

m

∑
j=1

∥µj∥Ψ(b0, η j + δ4)

}
:= Λ1.

Similarly we can prove that

|U2,1(u, s)(t)| ≤
m

∑
j=1

∥µj∥Ψ(b0, ηi + δ4) +
1
|Θ|Ψ(b0, γ2)

{
N1|θ1|

m

∑
j=1

∥µj∥Ψ(b0, ηi + δ4)

+N1

n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2) + M1|θ2|
n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2)

+M1

m

∑
j=1

∥µj∥Ψ(b0, ηi + δ4)

}
:= Λ2.

Therefore ∥U1,1∥ + ∥U2,1∥ ≤ Λ1 + Λ2, (u, s) ∈ S, which shows that the operator
(U1,1,U2,1) is uniformly bounded on S. Finally we show that the operator (U1,1,U2,1) is
equicontinuous. Let τ1 < τ2 and (u, s) ∈ S. Then, we have

|U1,1(u, s)(τ2)−U1,1(u, s)(τ1)|

≤
∣∣∣∣∣ n

∑
i=1

1
ρηi+δ2 Γ(ηi + δ2)

∫ τ1

a0

ψ′(s)
[
(ψ(τ2)− ψ(s))ηi+δ2−1 − (ψ(τ1)− ψ(s))ηi+δ2−1

]
×|Hi(s, u(s), s(s))|ds

+
n

∑
i=1

1
ρηi+δ2 Γ(ηi + δ2)

∫ τ2

τ1

ψ′(s)(ψ(τ2)− ψ(s))ηi+δ2−1|Hi(s, u(s), s(s))|ds

∣∣∣∣∣
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+

∣∣∣(ψ(τ2)− ψ(a0))
γ2−1 − (ψ(τ1)− ψ(a0))

γ2−1
∣∣∣

|Θ|ργ2−1Γ(γ2)
W

≤
n

∑
i=1

1
ρηi+δ2 Γ(ηi + δ2 + 1)

∥λi∥
[∣∣∣(ψ(τ2)− ψ(a0))

ηi+δ2 − (ψ(τ1)− ψ(a0))
ηi+δ2

∣∣∣
+2(ψ(τ2)− ψ(τ1))

ηi+δ2
]
+

∣∣∣(ψ(τ2)− ψ(a0))
γ2−1 − (ψ(τ1)− ψ(a0))

γ2−1
∣∣∣

|Θ|ργ2−1Γ(γ2)
W,

where

W = N2|θ1|
m

∑
j=1

∥µjΨ(b0, η j + δ4) + N2

n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2)

+M2|θ2|
n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2) + M2

m

∑
j=1

∥µj∥Ψ(b0, η j + δ4).

As τ2 − τ1 → 0, the right-hand side of the above inequality tends to zero, indepen-
dently of (u, s). Similarly we have |U2,1(u, s)(τ2) − U2,1(u, s)(τ1)| → 0 as τ2 − τ1 → 0.
Thus (U1,1,U2,1) is equicontinuous. Therefore, it follows by Aezelá-Ascoli theorem that
(U1,1,U2,1) is a completely continuous operator on S.

Step 3. In the third step we will prove that condition (iii) of Lemma 3 is fulfilled. Let
(u, s) ∈ Y×Y be such that, for all (u1, u2) ∈ S

(u, s) = (U1,1(u, s),U2,1(u, s)) + (U1,2(u1, s1),U2,2(u1, s1)).

Then, we have

|u(t)| ≤ |U1,1(u, s)(t)|+ |U1,2(u1, s1)(t)|

≤ |Hi(u, s)|(t) + e
ρ−1

ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))
γ2−1

|Θ|ργ2−1Γ(γ2)

×
{

N2

[
|θ1||Gi(u, s)|(ξ1) + |Hi(u, s)|(b0)

]
+M2

[
|θ2||Hi(u, s)|(ξ2)) + |Gj(u, s)|(b0))

]}

+p Iδ2,ρ,ψ|F1(u1, s1)|(t)|Y1(u1, s1)|(t) +
e

ρ−1
ρ (ψ(t)−ψ(a0))(ψ(t)− ψ(a0))

γ2−1

|Θ|ργ2−1Γ(γ2)

×
{

N2

[
|θ1|p Iδ4,ρ,ψ|F2(u1, s1)|(ξ1)|Y2(u1, s1)|(ξ1)

+p Iδ2,ρ,ψ|F1(u1, s1)|(b0)|Y1(u1, s1)|(b0)

]
+M2

[
|θ2|p Iδ2,ρ,ψ|F1(u1, s1)|(ξ2)|Y1(u1, s1)|(ξ2)

+p Iδ4,ρ,ψ|F2(u1, s1)|(b0)|Y2(u1, s1)|(b0)

]}
≤

n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2) +
1
|Θ|Ψ(b0, γ2)

{
N2|θ1|

m

∑
j=1

∥µjΨ(b0, ηj + δ4)

+N2

n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2) + M2|θ2|
n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2)
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+M2

m

∑
j=1

∥µj∥Ψ(b0, ηj + δ4)
}
+ Ψ(b0, δ2)∥σ∥∥ℓ∥Ψ(b0, δ1)

+
1
|Θ|Ψ(b0, γ2)

{
N2|θ1|Ψ(b0, δ4)∥τ∥∥L2∥Ψ(b0, δ3) + N2Ψ(b0, δ2)∥σ∥∥ℓ∥Ψ(b0, δ1)

+M2|θ2|Ψ(b0, δ2)∥σ∥∥ℓ∥Ψ(b0, δ1) + M2Ψ(b0, δ4)∥τ∥∥L2∥Ψ(b0, δ3)
}

=
[
1+

1
|Θ|Ψ(b0, γ2)(N2 + M2|θ2|)

][ n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2)

+∥σ∥∥ℓ∥Ψ(b0, δ1)Ψ(b0, δ2)
]
+ (N2|θ1|+ M2)

1
|Θ|Ψ(b0, γ2)

[ m

∑
j=1

∥µj∥Ψ(b0, ηj + δ4)

+Ψ(b0, δ4)∥τ∥∥L2∥Ψ(b0, δ3)
]
= R1.

By a similar way we found

|s(t)| ≤ |U2,1(u, s)(t)|+ |U2,2(u1, s1)(t)|

≤
[
1+

1
|Θ|Ψ(b0, γ4)(N1|θ1|+ M1)

][ m

∑
j=1

∥µj∥Ψ(b0, ηj + δ4)

+∥τ∥∥m∥Ψ(b0, δ4)Ψ(b0, δ3)
]
+ (N1|+ M1θ2|)

1
|Θ|Ψ(b0, γ4)

[ n

∑
i=1

∥λi∥Ψ(b0, ηi + δ2)

+Ψ(b0, δ2)∥σ∥∥L1∥Ψ(b0, δ1)
]
= R2.

Adding the previous inequalities, we obtain

∥u∥+ ∥s∥ ≤ R1 + R2 = r.

As ∥(u, s)∥ = ∥u∥+ ∥s∥, we have that ∥(u, s)∥ ≤ r and so condition (iii) of Lemma 3 holds.
By Lemma 3, the ψ-Hilfer proportional coupled system (3) and (4) has at least one

solution on [a0, b0]. The proof is finished.

4. An Example

This section demonstrates the application to a given nonlocal coupled system of
sequential ψ-Hilfer-type proportional fractional differential equations of the form:

H D
3
7 , 8

9 , 3
4 ,t+

√
t

[H D
11
7 , 7

9 , 3
4 ,t+

√
tu(t)−

3

∑
i=1

p I
2i+1

4 , 3
4 ,t+

√
tHi(t, u(t), s(t))

f(t, u(t), s(t))

]
= P(t, u(t), s(t)), t ∈

[
1
8 , 13

8

]
,

H D
5
7 , 5

9 , 3
4 ,t+

√
t

[H D
9
7 , 4

9 , 3
4 ,t+

√
ts(t)−

2

∑
j=1

p I
2(j+1)

5 , 3
4 ,t+

√
tGj(t, u(t), s(t))

g(t, u(t), s(t))

]
= Q(t, u(t), s(t)), t ∈

[
1
8 , 13

8

]
,

u
(

1
8

)
= H D

11
7 , 7

9 , 3
4 ,t+

√
tu

(
1
8

)
= 0, u

(
13
8

)
=

3
11

s

(
5
8

)
,

s
(

1
8

)
= H D

9
7 , 4

9 , 3
4 ,t+

√
ts

(
1
8

)
= 0, s

(
13
8

)
=

4
11

u

(
9
8

)
,

(21)

where

f(t, u, s) =
1

(8t+ 3)2

(
|u|

2 + |u|

)
+

1
(8t+ 5)2

(
|s|

1 + |s|

)
+

1
16

,
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g(t, u, s) =
1

16(t+ 1)

(
|u|

3 + |u|

)
+

1
16t+ 15

(
|s|

2 + |s|

)
+

1
17

,

Hi(t, u, s) =
i

8t+ i
tan−1 |u|+ i

8t+ 2i
sin |s|+ i

2
,

Gj(t, u, s) =
1

8t+ 3j
|u|

(j + |u|) +
1

8t+ 4j
|s|

(j + |s|) +
j
3

,

P(t, u, s) =
1

8(4t+ 3)

(
|u|

1 + |u|

)
+

1
4(8t+ 2π)

tan−1 |s|+ 1
18

,

Q(t, u, s) =
1

2(8t+ 15)
sin |u|+ 1

(8t+ 14)

(
|s|

2 + |s|

)
+

1
25

.

In the given system (21), δ1 = 3/7, δ2 = 11/7, δ3 = 5/7, δ4 = 9/7, ϑ1 = 8/9, ϑ2 = 7/9,
ϑ3 = 5/9, ϑ4 = 4/9, ρ = 3/4, ψ(t) = t +

√
t, a0 = 1/8, b0 = 13/8, θ1 = 3/11, θ2 = 4/11,

ξ1 = 5/8, ξ2 = 9/8, ηi = (2i + 1)/4, η j = 2(j + 1)/5, i = 1, 2, 3, j + 1, 2. These settings
lead to compute constants as γ1 = 59/63, γ2 = 120/63, γ3 = 55/63, γ4 = 101/63, M1 ≈
1.337156409, M2 ≈ 0.2553420381, N1 ≈ 0.4496860114, N2 ≈ 1.012080564, Θ ≈ 1.238486270.
In addition, some terms in assumption (H3) can be computed as Ψ(b0, δ1) ≈ 1.864913369,
Ψ(b0, δ2) ≈ 4.506335230, Ψ(b0, δ3) ≈ 2.534134245, Ψ(b0, δ4) ≈ 3.900538887, Ψ(b0, γ2) ≈
5.079441906, Ψ(b0, γ4) ≈ 4.567817507. For the functions f and g we have

|f(t, u, s)− f(t, û, ŝ)| ≤ 1
2(8t+ 3)2 (∥u− û∥+ ∥s− ŝ∥),

and

|g(t, u, s)− g(t, û, ŝ)| ≤ 1
2(16t+ 15)

(∥u− û∥+ ∥s− ŝ∥),

and thus ϕ(t) = 1/(2(8t+ 3)2) and χ(t) = 1/(2(16t+ 15)). Then we receive ∥ϕ∥ = 1/32
and ∥χ∥ = 1/34. The bound of these two functions can be shown that

|f(t, u, s)| ≤ 1
(8t+ 3)2 +

1
16

and |f(t, u, s)| ≤ 1
(16t+ 15)

+
1

17
. (22)

Then we obtain ∥σ∥ = 1/8 and ∥τ∥ = 2/17 by choosing σ(t) = 1/(8t+ 3)2 + (1/16) and
τ(t) = 1/(16t+ 15) + (1/17).

For the two nonlinear functions Hi and Gj we obtain

|Hi(t, u, s)| ≤ 1
8t+ i

(π

2
+ 1

)
+

i
2

:= λi(t) and |Gj(t, u, s)| ≤ 2
8t+ 3j

+
j
3

:= µj(t).

Both of them satisfy the Lipschitz condition as

|Hi(t, u, s)− Hi(t, û, ŝ)| ≤ 2i
8t+ i

(∥u− û∥+ ∥s− ŝ∥),

and

|Gj(t, u, s)− Gj(t, û, ŝ)| ≤ 2
j(8t+ 3j)

(∥u− û∥+ ∥s− ŝ∥),

by setting hi(t) = 2i/(8t+ i) and zj(t) = 2/(j(8t+ 3j)). Finally for the functions appeared
in right hand-sides of nonlinear functions in (21), we see that

|P(t, u, s)− P(t, û, ŝ)| ≤ 1
8(4t+ 3)

(∥u− û∥+ ∥s− ŝ∥),
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and

|Q(t, u, s)− Q(t, û, ŝ)| ≤ 1
2(8t+ 14)

(∥u− û∥+ ∥s− ŝ∥),

with bounds
|P(t, u, s)| ≤ 1

8(4t+ 3)
+

π

8(8t+ 2π)
+

1
18

:= ℓ(t)

and
|Q(t, u, s)| ≤ 1

2(8t+ 15)
+

1
8t+ 14

+
1
25

:= m(t).

Therefore, we set π(t) = 1/(8(4t+ 3)), ω(t) = 1/(2(8t+ 14)) and then we have ∥π∥ = 1/28,
∥ω∥ = 1/30, ∥ℓ∥ = (1/28) + (π)/(8(1 + 2π)) + (1/18) and ∥m∥ = (1/32) + (1/15) +
(1/25). These information leads to compute the constant K in assumption (H3) by

K ≈ 0.9976072624 < 1.

Hence the nonlocal sequential Hilfer-type coupled system of nonlinear proportional
fractional differential quations (21) satisfies all conditions in Theorem 1, and thus it has at
least one solution (u, s) on [1/8, 13/8].

5. Conclusions

In this research, we have presented the existence result for a new class of coupled
systems of sequential ψ-Hilfer proportional fractional differential equations with nonlocal
boundary conditions. The main existence result was proved via a Burton’s generalization
of Krasnosel’skiĭ’s fixed point theorem. The main result was illustrated by a numerical
constructed example. Our results are new and enrich the existing literature on coupled
systems of ψ-Hilfer proportional fractional differential equations. For special values of the
parameters involved in the system at hand, we cover many new problems. Thus, by taking
ψ(t) = t, our problem reduces to a coupled system of Hilfer generalized proportional frac-
tional differential equations with boundary conditions, while if ρ = 1, reduces to a coupled
system of ψ-Hilfer fractional differential equations. In future work, we can implement
these techniques on different boundary value problems equipped with complicated integral
multi-point boundary conditions.
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