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Abstract: This study explores a new dimension of accelerated life testing by analyzing competing risk
data through Tampered Random Variable (TRV) modeling, a method that has not been extensively
studied. This method is applied to simple step-stress life testing (SSLT), and it considers multiple
causes of failure. The lifetime of test units under changeable stress levels is modeled using Power
Rayleigh distribution with distinct scale parameters and a constant shape parameter. The research
introduces unique tampering coefficients for different failure causes in step-stress data modeling
through TRV. Using SSLT data, we calculate maximum likelihood estimates for the parameters of our
model along with the tampering coefficients and establish three types of confidence intervals under
the Type-II censoring scheme. Additionally, we delve into Bayesian inference for these parameters,
supported by suitable prior distributions. Our method’s validity is demonstrated through extensive
simulations and real data application in the medical and electrical engineering fields. We also propose
an optimal stress change time criterion and conduct a thorough sensitivity analysis.

Keywords: tampered random variable; competing risk; step stress; censoring scheme; maximum
likelihood estimation; Bayes estimation; bootstrap method; simulation analysis

MSC: 62E10; 62F15; 62N05; 60E05; 62P30

1. Introduction

With ongoing improvements in the manufacturing sector, numerous industrial prod-
ucts, known for their high reliability and complex designs, are becoming increasingly usable
in everyday life. Accelerated life testing (ALT) addresses the challenge of evaluating such
products by exposing them to stress levels higher than their usual operating conditions, pro-
ducing rapid failures in turn. These growing stress factors—such as temperature, voltage,
and humidity—significantly influence the lifespan of electronic equipment, including elec-
tric bulbs, fans, computers, toasters, and more. By employing these high-stress factors in
ALT experiments, valuable insights concerning product reliability can be rapidly acquired
within a condensed experimental time frame. Analyzing reliability and making inferences
from it have gained significant interest in the literature, as illustrated by references [1–3].

ALT experiments can be conducted in two ways: with a starting constant high-stress
level or with a changeable stress factor that can be varied during different time intervals. In
the realm of ALT, there exists a specific class known as step-stress life testing (SSLT). This
method permits experimenters to incrementally increase the stress levels at predetermined
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time points during the experiment. A basic form of SSLT is exemplified in experiments
involving only two stress levels, denoted as s1 and s2, along with a single, pre-determined
point in time, τ, at which the stress level shifts.

To understand how lifetime distributions vary under different stress levels, some basic
modeling assumptions are typically discussed:
• Cumulative Exposure models (CE). In this method, specific restrictions are applied

to ensure that the lifetime distributions at each progressive stress level align at their
designated transition points, maintaining continuity. This approach is detailed in
works by Sedyakin [4] and Nelson [5].

• Tampered Failure Rate (TFR) modeling. This technique involves adjusting the failure
rates, increasing them at each subsequent stress level. Key references for TFR modeling
include Bhattacharyya and Soejoeti [6], and Madi [7].

• The Tampered Random Variable (TRV) model. Here, the focus is on reducing the
remaining lifetime for each new stress level. For more information on this approach,
you can refer to Goel [8] and DeGroot and Goel [9].

• Step-stress partially accelerated life testing with a large amount of censored data.
This approach addresses the gap in estimating non-homogeneous distribution and
acceleration factor parameters under multiple censored data conditions. For more
details, one can refer to Khan and Aslam [10].

Additionally, Sultana and Dewanji [11] explored the relationships between the TRV
model and the two other models, TFR and CE, within a multi-step stress environment.
They noted that TRV modeling aligns with CE and TFR when the fundamental lifetime
distribution is exponential and the distributions at each stress level adhere to a scale-based
parametric family. Thus, it is observed that the above three models converge when the
fundamental distribution is exponential. TRV modeling stands out for its ability to be
generalized to multiple-step-stress situations more effectively than the other two models. It
also offers advantages in terms of modeling discrete and multivariate lifetimes, which are
more complex tasks for the CE and TFR models.

Comparing factors that lead to risk model failures is essential for comprehending the
contributing factors, detecting common changes, assessing model performance, and influ-
encing decision making and risk management. It assists in identifying important issues
that must be resolved to increase the precision and dependability of the model. The de-
velopment of more reliable models can be made possible by recognizing similar patterns
among various occurrences or outcomes that can be identified by understanding these
components. Additionally, it offers useful information for model creators and validators,
enabling them to improve model development processes, assumptions, and validation
processes for more accurate and dependable models. The competing risks concept refers to
the possibility of individual failure in a specific field owing to distinct factors. The cause-of-
failure indication and the individual failure time are examples of observable data in this
approach. When examining data on competing risks, the failure variables are typically
unrelated to one another which means that the two risk factors are statistically independent.
In the industrial and mechanical domains, fatigue and aging deterioration can lead to an
assembly device failing due to electrical/optical signal (voltage, current, or light intensity)
falling to an intolerable level. Numerous studies in the existing literature utilize CEM and
TFR modeling within competing risk scenarios. However, to the best of our knowledge,
research incorporating TRV modeling into the context of competing risk data is notably
scarce. See for example Sultana et al. [12], Ramadan et al. [13] and Tolba et al. [14].

In this work, TRV is used with the SSLT model under two independent competing
risk factors where the failure times follow the Power Rayleigh distribution. The sample
is observed under the Type-II censored scheme. The censoring schemes have been in-
troduced to solve the lack of information in lifetime experiments, saving time and costs.
Type-I censoring has a predetermined time, while Type-II censoring has predetermined
failure units.

The main goals of this study are summarized below:
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• Performing an inferential analysis to obtain point and interval estimation of the
unknown parameters of the distribution and the acceleration factor using both the
maximum likelihood estimator and the Bayesian method.

• Applying numerical methods like Monte Carlo simulation to assess the performance
of estimators obtained from Maximum Likelihood Estimation (MLE) and Bayesian
methods, focusing on their bias, mean squared error, and the coverage probability
(CP) for the confidence intervals.

• Evaluating real-world data sets from the medical field concerning AIDS infection,
alongside another study from electrical engineering involving the causes of the failure
of electronic components, serves to empirically assess the effectiveness of the newly
proposed model.

The structure of the remainder of this document is as follows: Section 2 outlines the
SSLT model under the TRV framework with the Power Rayleigh distribution. Section 3
details the methodologies used for point estimation, specifically using maximum likelihood
and Bayesian methods. Section 4 is dedicated to interval estimation, exploring three distinct
methods. Section 5 focuses on simulation analysis and presents the results in tabular form.
The determination of the optimal time for stress change and an analysis of sensitivity are
discussed in Section 6. An application using real-world data is examined in Section 7.
The paper concludes with a summary of the findings in Section 8.

2. Model Description

In this study, we consider the SSLT model with random failure time variables denoted
by U1 and U2 along with the stress levels s1 and s2 that are assumed to follow a Power
Rayleigh distribution with a common shape parameter γ and distinct scale parameters
λ1 and λ2. The two risk factors are called cause I and cause II and both are performed
using Type-II censored samples. At a prefixed time τ, the stress level moves from s1 to
s2. During the first stress level, the s1 units will operate until a specific time τ, following
which any remaining survivals that have not failed by time τ are moved to be tested under
accelerated conditions with an acceleration factor β. Consequently, the system will operate
under the second stress level s2 until we obtain the required failure times. The effect of
stress transition from the first stress to the accelerated condition may be explained by
multiplying the remaining lifetime by the acceleration factor β . Hence the TRV for U1 and
U2 is expressed as

Ũ1 =

{
U1 , 0 < t ≤ τ
τ + β(U1 − τ) , t > τ

(1)

and

Ũ2 =

{
U2 , 0 < t ≤ τ
τ + β(U2 − τ) , t > τ,

(2)

where τ is the time at which the stress changes and the acceleration parameter is 0 < β < 1.
We consider Power Rayleigh distribution as a lifetime model. The Rayleigh distri-

bution, a continuous distribution of significant practical relevance, has been the subject
of extensive study by various authors who have explored its statistical properties, infer-
ence methods, and reliability analysis. Additionally, a variety of extended versions of
the Rayleigh distribution have been introduced. For example, Rosaiah and Kantam [15]
applied the inverse Rayleigh to failure times data. Merovci [16] introduced the transmuted
Rayleigh and modeled the amount of nicotine in blood. Cordeiro et al. [17] studied the beta-
generalized Rayleigh distribution and its application. More generalizations of Rayleigh
distribution can be found in the literature and one may refer to [18–24].

The Power Rayleigh (PR) distribution was first introduced by Neveen et al. [25]. It
is a versatile and flexible statistical model known for its ability to handle a wide range
of data types. This distribution is particularly useful due to its capability to model data
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that exhibit a skewed pattern, which is common in many practical situations. The Power
Rayleigh distribution is characterized by two parameters that allow it to adapt to various
data shapes and sizes, making it more flexible than the standard Rayleigh distribution.
Its applications are diverse, ranging from reliability engineering and survival analysis to
modeling wind speed and signal processing. The flexibility in shape and scale provided by
the Power Rayleigh distribution makes it a valuable tool for analyzing and interpreting
real-world data in various scientific and engineering fields. We assume that the Power
Rayleigh distribution has a shape parameter γ and scale parameter λ, where both have
positive support, and then the cumulative distribution function (CDF) becomes

F(t) = 1 − e−
t2γ

2λ2 ,

and the probability density function (PDF) is

f (t) =
γ

λ2 t2γ−1e−
t2γ

2λ2 .

Consider a set of n units subjected to a life test starting at stress level s1. Failures and
their corresponding risks are documented over time. At a designated moment τ the stress
level shifts from s1 to s2, and the test runs until r (with r < n) failures are noted. If r
equals n, a complete dataset is collected as in a simple SSLT without data truncation. We
assume that each unit’s failure is attributable to one of two competing risks, each described
by a Power Rayleigh distribution with a consistent shape parameter γ but distinct scale
parameters λj for j = 1, 2, aligned with the TRV model.

The CDF for the lifetime Uj associated with risk j for j = 1, 2 is then expressed
as follows:

Fj(t) = Fj(t; γ, λj) =


1 − e

− t2γ

2λ2
j if 0 < t ≤ τ

1 − e
− (τ+β−1(t−τ))2γ

2λ2
j if t > τ

(3)

and the corresponding PDF of Uj is given by

f j(t) = f j(t; γ, λj) =


γ

λ2
j
t2γ−1e

− t2γ

2λ2
j if 0 < t ≤ τ

γ

λ2
j β
(τ + β−1(t − τ))2γ−1e

− (τ+β−1(t−τ))2γ

2λ2
j if t > τ

(4)

Let us denote the overall failure time of a unit under test as U, which is obtained by
U = min{U1, U2}. Then, the CDF and PDF are easily obtained as

F(t) = F(t; γ, λ) = 1 − (1 − F1(t))(1 − F2(t)) =

{
1 − e−Λt2γ

if 0 < t ≤ τ

1 − e−Λ(τ+β−1(t−τ))2γ
if t > τ

(5)

and

f (t) = f (t; γ, λ) =

{
γΛt2γ−1e−Λt2γ

if 0 < t ≤ τ
γ
β Λ(τ + β−1(t − τ))2γ−1e−Λ(τ+β−1(t−τ))2γ

if t > τ,
(6)

respectively, where λ = (λ1, λ2) and Λ = 1
2λ2

2
+ 1

2λ2
1
. Furthermore, let C denote the

indicator for the cause of failure. Then, under our assumptions, the joint PDF of (U, C) is
given by

fU,C(t; γ, λ) = f j(t)[1 − Fk(t)] =


γ

λ2
j
t2γ−1e−Λt2γ

if 0 < t ≤ τ

γ

λ2
j β
(τ + β−1(t − τ))2γ−1e−Λ(τ+β−1(t−τ))2γ

if , t > τ,
(7)
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for j, k = 1, 2, j ̸= k.
In competing risk models, the assumption of independence is often considered to be

impractical. Identifiable issues may emerge if dependencies exist within the model or due
to a lack of covariates in the data. To mitigate these issues, we postulate a latent failure time
model and treat the risks U1 and U2 as independent. Let Nj1 represent the number of units
failing from risk j before time τ and Nj2 after τ, with Nj = Nj1 + Nj2, ensuring N1 + N2 ≤ r.
The sequence of observed failure times is 0 < t1:n1 < t2:n2 < · · · < tr:n. Let n̂1 denote the
observed value for N1, n̂2 denote the observed value for N2, and let N = (N1, N2) be the
vector of these counts.

In the next section, classical and Bayesian estimation methods are constructed to
estimate the unknown parameters for the Power Rayleigh and the accelerated constant β
under the two competing risk factors with the Type-II censoring scheme.

3. Point Estimation

In this study, two approaches to estimation are examined: the frequentist maximum
likelihood estimation (MLE) and the Bayesian estimation method. Section 4 is dedicated to
conducting a simulation analysis and applying numerical techniques to evaluate the efficacy
of these estimation strategies.

3.1. Maximum Likelihood Estimation

In this section, the maximum likelihood estimation MLE method is employed to
determine the unknown parameters of the Power Rayleigh distribution within the TRV
framework. Numerical methods, including the renowned Newton–Raphson technique, are
utilized to compute the necessary estimators. Subsequently, assuming the TRV model, we
construct the likelihood function of ψ = (γ, λ1, λ2, β) based on Type-II censored data as

L(ψ|(t, c)) =
n!

(n − r)!

n̂1

∏
i=1

fU,C(ti:n, ci)
r

∏
i=n̂1+1

fU,C(ti:n, ci)[1 − F(tr:n)]
n−r.

Here r = n̂1 + n̂2 = n11 + n12 + n21 + n22. By substituting Equations (5) and (7) into
the above likelihood equation we obtain

L(ψ|(t, c)) =
n!

(n − r)!

(
γrβ−n̂2

λ2n̂1
1 λ2n̂2

2

)
n̂1

∏
i=1

t2γ−1
i e−Λt2γ

i

r

∏
i=n̂1+1

(τ + β−1(ti − τ))2γ−1e−Λ(τ+β−1(ti−τ))2γ
e−Λ(n−r)t2γ

r:n . (8)

The log-likelihood function can be written as

ℓ(ψ) =r log γ − n̂2 log β − 2n̂1 log λ1 − 2n̂2 log λ2 + (2γ − 1)

[
n̂1

∑
i=1

log(ti) +
r

∑
i=n1+1

log(τ + β−1(ti − τ))

]
−

Λ

[
n̂1

∑
i=1

t2γ
i +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ

]
+ (n − r)t2γ

r:n.

(9)

The maximum likelihood estimations of the parameters (γ, λ1, λ2, β) are obtained by
differentiating the log-likelihood function ℓ(ψ) with respect to the parameters (γ, λ1, λ2, β)
and setting the result to zero, so we have the following normal equations.

∂ℓ(ψ)

∂γ
=

r
γ
+ 2

[
n̂1

∑
i=1

log(ti) +
r

∑
i=n̂1+1

log(τ + β−1(ti − τ))

]
−

Λ

[
n̂1

∑
i=1

t2γ
i log(ti) +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ log(τ + β−1(ti − τ))

]
+ (n − r)t2γ

r:n log(tr:n),

(10)
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∂ℓ(ψ)

∂β
= − n̂2

β
− (2γ − 1)

r

∑
i=n̂1+1

β−2(ti − τ))

(τ + β−1(ti − τ))
+ Λ

r

∑
i=n̂1+1

γβ−2(ti − τ)(τ + β−1(ti − τ))2γ−1, (11)

∂ℓ(ψ)

∂λ1
=

−2n̂1

λ1
+ λ−3

1

[
n̂1

∑
i=1

t2γ
i +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

]
(12)

and

∂ℓ(ψ)

∂λ2
=

−2n̂2

λ2
+ λ−3

2

[
n̂1

∑
i=1

t2γ
i +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

]
. (13)

For known γ and β, the MLEs of λ1 and λ2 are given by

λ̂1 =
1

√
2(n̂1)

1
2

[
n̂1

∑
i=1

t2γ
i +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

] 1
2

and

λ̂2 =
1

√
2(n̂2)

1
2

[
n̂1

∑
i=1

t2γ
i +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

] 1
2

.

To address the system of nonlinear equations presented in Equations (10)–(13), numer-
ical approaches are essential. Various numerical methods have been applied in existing
research; in this instance, we employ the Newton–Raphson method. The outcomes of this
application are detailed in Section 5.

3.2. Bayesian Inference

In this section, we apply the Bayesian estimation technique to determine the unknown
parameters of the Power Rayleigh distribution. The fundamental principle of the Bayesian
approach posits that the model’s parameters are random variables with a predefined
distribution, referred to as the prior distribution. Given the availability of prior knowledge,
selecting an appropriate prior is crucial. We opt for the gamma conjugate prior distribution
for the parameters for many reasons, such as the flexibility in its nature with a non-
informative domain and the calculations’ simplicity making analytical or computational
updates to the posterior easier. Also, the positive of the domain makes it suitable for
modeling parameters. We perform the Bayesian inference method for estimating the
unknown parameters ψ = (γ, λ1, λ2, β). We assume independent gamma priors for γ, λ1 ,
and λ2 and a uniform prior for β. That is, γ, λ1 and λ2 have Gamma(ci, di), where ci, di
> 0, i = 1, 2, 3, are non-negative hyperparameters, and β follows uniform prior as follows:

π(β) = 1, 0 < β < 1.

The estimates have been developed under the square error loss function (SELF) and
the linear exponential loss function (LLF). Hence, the joint prior density of the independent
parameters is given by

π(ψ) = π(γ)π(λ1)π(λ2)π(β),

π(ψ) = γc1−1e−d1γλc2−1
1 e−d2λ1 λc3−1

2 e−d3λ2 , γ > 0, λ1 > 0, λ2 > 0, 0 < β < 1. (14)

The joint posterior density function for the parameters can be derived by incorporat-
ing the observed censored samples, and the prior distributions of these parameters are
as follows:
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π∗(ψ, t, c) =π(ψ) L(ψ|t, c)

=γc1−1e−d1γλc2−1
1 e−d2λ1 λc3−1

2 e−d3λ2
γrβ−n̂2

λ2n̂1
1

λ2n̂2
2

n̂1

∏
i=1

t2γ−1
i e−Λt2γ

i ×

r

∏
i=n̂1+1

(τ + β−1(ti − τ))2γ−1e−Λ(τ+β−1(ti−τ))2γ
e−Λ(n−r)t2γ

r:n .

(15)

Thus, the conditional posterior densities of the parameters γ, λ1, λ2 , and β can be
obtained by simplifying Equation (15) as follows

π∗
1 (λ1|λ2, γ, β, t, c) =λ−2n̂1+c2−1

1 e−d2λ1
n̂1

∏
i=1

e−Λt2γ
i

r

∏
i=n̂1+1

e−Λ(τ+β−1(ti−τ))2γ
e−Λ(n−r)t2γ

r:n , (16)

π∗
2 (λ2|λ1, γ, β, t, c) =λ2n̂2+c3−1

2 e−d3λ2
n̂1

∏
i=1

e−Λt2γ
i

r

∏
i=n̂1+1

e−(τ+β−1(ti−τ))2γΛe−Λ(n−r)t2γ
r:n , (17)

π∗
3 (γ|λ1, λ2, β, t, c) =γr+c1−1e−d1γ

n̂1

∏
i=1

t2γ−1
i e−Λt2γ

i

r

∏
i=n̂1+1

(τ + β−1(ti − τ))2γ−1e−Λ(τ+β−1(ti−τ))2γ
e−Λ(n−r)t2γ

r:n (18)

and

π∗
4 (β|λ1, λ2, γ, t, c) =β−n̂2

r

∏
i=n̂1+1

(τ + β−1(ti − τ))2γ−1e−Λ(τ+β−1(ti−τ))2γ
. (19)

Since the Equations (16)–(19) cannot be computed explicitly, numerical techniques
are employed. One of the most powerful numerical techniques in Bayesian estimation is
the Monte Carlo Markov Chain method (MCMC). In this scenario, we suggest employing
the Metropolis–Hastings (M-H) sampling method within the Gibbs algorithm, utilizing a
normal proposal distribution as recommended by Tierney [26]. The procedure for Gibbs
sampling incorporating the (M-H) approach is outlined as follows:

(1) Set initial values
(

λ
(0)
1 , λ

(0)
2 , γ(0), β(0)

)
.

(2) Set j = 1.

(3) Using the following M-H algorithm, from π∗
1 (λ

(j−1)
1 |λ(j−1)

2 , γ(j−1), β(j−1), t, c)

π∗
2 (λ

(j−1)
2 |λ(j)

1 , γ(j−1), β(j−1), t, c) , π∗
3 (γ

(j−1)|λ(j)
1 , λ

(j)
2 , β(j−1), t, c) , and

π∗
4 (β(j−1)|λ(j)

1 , λ
(j)
2 , γ(j), t, c) generate λ

(j)
1 , λ

(j)
2 , γ(j), and β(j) with the normal proposal

distributions

N
(

λ
(j−1)
1 , var(λ1)

)
, N
(

λ
(j−1)
2 , var(λ2)

)
, N
(

γ(j−1), var(γ)
)

, and N
(

β(j−1), var(β)
)

,

and from the main diagonal in the inverse Fisher information matrix we obtained var(λ1), var(λ2),
var(γ), and var(β).

(4) Generate a proposal for λ∗
1 from N

(
λ
(j−1)
1 , var(λ1)

)
, λ∗

2 from N
(

λ
(j−1)
2 , var(λ2)

)
,

γ∗ from N
(

γ(j−1), var(γ)
)

, and β∗ from N
(

β(j−1), var(β)
)

.

(i) The acceptance probabilities are
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µλ1 = min
[

1, π∗
1 (λ

∗
1 |λ

(j−1)
2 ,γ(j−1),β(j−1),t,c)

π∗
1 (λ

(j−1)
1 |λ(j−1)

2 ,γ(j−1),β(j−1),t,c)

]
,

µλ2 = min
[

1, π∗
2 (λ

∗
2 |λ

(j)
1 ,γ(j−1),β(j−1),t,c)

π∗
2 (λ

(j−1)
2 |λ(j)

1 ,γ(j−1),β(j−1),t,c)

]
,

µγ = min
[

1, π∗
3 (γ

∗ |λ(j)
1 ,λ(j)

2 ,β(j−1),t,c)

π∗
3 (γ

(j−1) |λ(j)
1 ,λ(j)

2 ,β(j−1),t,c)

]
and

µβ = min
[

1, π∗
4 (β∗ |λ(j)

1 ,λ(j)
2 ,γ(j),t,c)

π∗
4 (β(j−1) |λ(j)

1 ,λ(j)
2 ,γ(j),t,c)

]
.


(ii) From a Uniform (0, 1) distribution u1, u2,u3, and u4 are generated.

(iii) If u1 < µλ1 , accept the proposal and set λ
(j)
1 = λ∗

1 , otherwise set λ
(j)
1 = λ

(j−1)
1 .

(iv) If u2 < µλ2 , accept the proposal and set λ
(j)
2 = λ∗

2 , otherwise set λ
(j)
2 = λ

(j−1)
2 .

(v) If u3 < µγ, accept the proposal and set γ(j) = γ∗, otherwise set γ(j) = γ(j−1).
(vi) If u4 < µβ, accept the proposal and set β(j) = β∗, otherwise set β(j) = β(j−1).

(5) Set j = j + 1.

(6) Steps (3)–(5), are repeated N times to obtain λ
(j)
1 , λ

(j)
2 , γ(j), and β(j) , j = 1, 2, . . . N.

To guarantee convergence and eliminate the impact of initial value selection, the first
M simulated variants are eliminated. For a sufficiently high N, the chosen samples are then
ψ
(j)
k , j = M + 1, . . . N. The SEL function-based approximate BEs of ψk are generated using

ψ̂
(j)
k =

1
N − M

N

∑
j=M+1

ψ(j), k = 1, 2, 3, 4. (20)

The approximate Bayes estimates for ψk, under the Entropy loss function are given as

ψ̂
(j)
k =

[
1

N − M

N

∑
j=M+1

(ψ(j))−q

]−1
q

, k = 1, 2, 3, 4. (21)

4. Interval Estimation

Confidence interval estimation is a fundamental statistical method used to indicate
the reliability of an estimate. It provides a range of values, derived from sample data, that
is likely to contain the true value of an unknown population parameter. The concept is
central to inferential statistics and has numerous applications across various fields such
as engineering, economics, medicine, and the social sciences. Among its key properties,
the asymptotic interval is notable for its reliance on large sample sizes, where the distri-
bution of the estimate approaches a normal distribution, making it increasingly accurate
as the sample size grows. This property is particularly useful for electrical engineering
projects where large data sets are analyzed for reliability and performance assessments.

Credible intervals, on the other hand, are used in Bayesian statistics and represent the
range within which a parameter lies with a certain probability, given the observed data
and a prior belief about the parameter’s distribution. This approach is valuable in research
and development projects within electrical engineering, where prior knowledge or expert
opinions can be quantitatively incorporated into the analysis, offering a more nuanced
understanding of uncertainty.

Bootstrap intervals utilize resampling techniques to generate an empirical distribu-
tion of the estimator by drawing samples with replacements from the original dataset.



Mathematics 2024, 12, 1248 9 of 25

This method does not assume a specific distribution, making it versatile and robust, es-
pecially in complex engineering studies where theoretical distributions are hard to justify.
The bootstrap approach is particularly important for evaluating the uncertainty of estimates
derived from small or non-standard datasets, providing a powerful tool for uncertainty
quantification in both academic research and practical applications.

The application and importance of these intervals lie in their ability to quantify the
uncertainty in estimates, guiding decision making and hypothesis testing. In electrical
engineering, for example, they can be used to assess the reliability of system parameters,
evaluate the performance of new designs, or validate models against empirical data. By un-
derstanding and applying these concepts, researchers, and practitioners can enhance the
rigor and credibility of their findings, contributing to more reliable and effective solutions
in their respective fields. The following subsections work out the previously mentioned
interval estimations.

4.1. Asymptotic Confidence Interval

This subsection presents the observed Fisher information matrix, commonly employed
for the construction of asymptotic confidence intervals (ACIs).

The MLEs (λ̂1, λ̂2, γ̂, β̂) are approximately normal with a mean of (λ̂1, λ̂2, γ̂, β̂) and
a variance matrix I−1(λ̂1, λ̂2, γ̂, β̂). Here, Î(λ1, λ2, γ, β) is the observed Fisher information
matrix, and it is defined as

Î(λ1, λ2, γ, β) =


− ∂2ℓ

∂λ2
1

− ∂2ℓ
∂λ1∂λ2

− ∂2ℓ
∂λ1∂γ − ∂2ℓ

∂λ1∂β

− ∂2ℓ
∂λ2∂λ1

− ∂2ℓ
∂λ2

2
− ∂2ℓ

∂λ2∂γ − ∂2ℓ
∂λ2∂β

− ∂2ℓ
∂γ∂λ1

− ∂2ℓ
∂γ∂λ2

− ∂2ℓ
∂γ2 − ∂2ℓ

∂γ∂β

− ∂2ℓ
∂β∂λ1

− ∂2ℓ
∂β∂λ2

− ∂2ℓ
∂β∂γ − ∂2ℓ

∂β2


(λ1,λ2,γ,β)=(λ̂1,λ̂2,γ̂,β̂)

, (22)

where the second partial derivatives are as follows:

∂2ℓ

∂γ2 =
−r
γ2 − 2Λ

[
n̂1

∑
i=1

t2γ
i (log(ti))

2 +
r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ(log(τ + β−1(ti − τ)))2

]
+ (n − r)t2γ

r:n(log(tr:n))
2,

∂2ℓ

∂β2 =(2γ − 1)
r

∑
i=n̂1+1

β−4(ti − τ)2 − 2β−3(ti − τ)(τ + β−1(ti − τ))

(τ + β−1(ti − τ))2 −

Λ
r

∑
i=n̂1+1

γβ−3(ti − τ)(τ + β−1(ti − τ))2γ−1
[
2 + (2γ − 1)(ti − τ)β−1(τ + β−1(ti − τ))−1

]
,

∂2ℓ

∂λ2
1
=

2n̂1

λ2
1
− 3λ−4

1

[
n1

∑
i=1

t2γ
i +

r

∑
i=n1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

]
,

∂2ℓ

∂λ2
2
=

2n̂2

λ2
2
− 3λ−4

2

[
n1

∑
i=1

t2γ
i +

r

∑
i=n1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

]
,
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∂2ℓ

∂γ∂β
=− 2

r

∑
i=n1+1

β−2(ti − τ)

(τ + β−1(ti − τ))2 +

Λ

[
r

∑
i=n1+1

β−2(ti − τ)
[
2γ(τ + β−1(ti − τ))2γ−1 log(τ + β−1(ti − τ))− (τ + β−1(ti − τ))2γ−2

]]
,

∂2ℓ

∂γ∂λ1
=

−2
λ3

1

[
n1

∑
i=1

t2γ
i log(ti) +

r

∑
i=n1+1

(τ + β−1(ti − τ))2γ log(τ + β−1(ti − τ))

]
+ (n − r)t2γ

r:n log(tr:n)

∂2ℓ

∂γ∂λ2
=

−2
λ3

2

[
n1

∑
i=1

t2γ
i log(ti) +

r

∑
i=n1+1

(τ + β−1(ti − τ))2γ log(τ + β−1(ti − τ))

]
+ (n − r)t2γ

r:n log(tr:n)

∂2ℓ

∂β∂λ1
= −2γλ−3

1

r

∑
i=n1+1

β−2(ti − τ)(τ + β−1(ti − τ))2γ−1,

∂2ℓ

∂β∂λ2
= −2γλ−3

2

r

∑
i=n1+1

β−2(ti − τ)(τ + β−1(ti − τ))2γ−1

∂2ℓ

∂λ1∂λ2
= 0.

Consequently, the estimated asymptotic variance–covariance matrix V̂ for the MLEs
can be obtained by taking the inverse of the observed information matrix Î(λ1, λ2, γ, β)
which is given by

[
V̂
]
= Î−1 =


V̂ar

(
λ̂1
)

cov(λ̂1, λ̂2) cov(λ̂1, γ̂) cov(λ̂1, β̂)

cov(λ̂1, λ̂2) V̂ar
(
λ̂2
)

cov(λ̂2, γ̂) cov(λ̂2, β̂)

cov(λ̂1, γ̂) cov(λ̂2, γ̂) V̂ar(γ̂) cov(γ̂, β̂)

cov(λ̂1, β̂) cov(λ̂2, β̂) cov(γ̂, β̂) V̂ar
(

β̂
)

. (23)

The 100(1 − ζ)% two-sided confidence interval can be written as

λ̂1 ± Z ζ
2

√
V̂ar

(
λ̂1
)
, λ̂2 ± Z ζ

2

√
V̂ar

(
λ̂2
)
, γ̂ ± Z ζ

2

√
V̂ar(γ̂), and β̂ ± Z ζ

2

√
V̂ar

(
β̂
)
, (24)

where Z ζ
2

is the percentile of the standard normal distribution with right-tail probability ζ
2 .

4.2. Credible Interval

Using the Metropolis–Hastings algorithm within the Gibbs sampling framework, we
determined the credible confidence interval (CCI). For clarity, we refer to subsection 3.2,
and the algorithm steps mentioned there. Proceeding after step (6), the 100(1 − ζ)% CCIs
of ψk where (ψ1, ψ2, ψ3, ψ4) = (λ1, λ2, γ, β) with ψ

(1)
k < ψ

(2)
k . . . < ψ

(N)
k , is given by(

ψk(N (ζ/2)), ψk(N (1−ζ/2))

)
.
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4.3. Bootstrap Interval

Bootstrap confidence intervals offer a versatile approach to estimating the uncertainty
of an estimator when the underlying distribution is unknown or complex. There are two
main types: the bootstrap-t and the bootstrap percentile (bootstrap-p) methods.

4.3.1. Parametric Boot-p

The bootstrap percentile (p) method involves generating a large number of bootstrap
samples from the original data. For each sample, the statistic of interest is calculated,
creating a distribution of these statistics. The confidence interval is then directly obtained
by taking percentiles from this empirical distribution. The following steps describe the
algorithm of this method:

(1) Based on x = x1:n, x2:n, . . . , xm:n, obtain λ̂1, λ̂2, γ̂, and β̂ by maximizing Equations (10)–(13).
(2) Generate x∗ = x∗1:n, x∗2:n, . . . , x∗m:n from the PR distribution with parameters λ̂1, λ̂2, γ̂,

and β̂ based on Type-II censoring under TRV, by considering the algorithm presented
in [27].

(3) Obtain the bootstrap parameter estimation ψ̂∗
i =

(
λ̂1

∗
i , λ̂2

∗
i , γ̂∗

i , β̂∗i ,
)

, with i = 1, 2, 3, . . . , N
boots using the MLEs under the bootstrap sampling.

(4) Repeat steps (2) and (3) N boot times, and obtain ψ̂∗
1 , ψ̂∗

2 , . . . , ψ̂∗
N boot

(5) Obtain ψ̂∗
(1), ψ̂∗

(2), . . . , ψ̂∗
(N boot) by arrange ψ̂∗

i , i = 1, 2, 3, . . . , N boot in ascending orders.

Define ψ̂boot−p = G−1
1 (z) for a given z, where G1(z) = P(ψ̂∗ ≤ z) denotes the cumu-

lative distribution function of ψ̂∗. The 100(1 − ζ)% approximate bootstrap-p CI of ψ̂ is
given by [

ψ̂boot−p

(
ζ

2

)
, ψ̂boot−p

(
1 − ζ

2

)]
. (25)

4.3.2. Parametric Boot-t

The bootstrap-t method is an adaptation of the traditional t-interval, designed to
handle situations where the sample size is small or the data do not meet the assumptions
of normality. It involves resampling the original data with replacements to generate a
large number of bootstrap samples. These are used to calculate a t-statistic, analogous
to the one used in traditional t-tests but derived from the bootstrap distribution. This
collection of t-statistics forms a distribution from which confidence intervals can be derived,
the bootstrap-t algorithm is itemized as follows:

(1) Repeat the initial three steps of the parametric Boot-p procedure.
(2) Calculate the variance–covariance matrix I−1∗ utilizing the delta method.
(3) Define the statistic T∗ψ as

T∗ψ =

(
ψ̂∗ − ψ̂

)√
̂var
(
ψ̂∗)

(4) Generate T∗ψ
1 , T∗ψ

2 , . . . , T∗ψ
N boot from repeating steps 2 − 5 N Boot times

(5) Sort the sequence T∗ψ

(1), T∗ψ

(2), . . . , T∗ψ

(N boot) by arranging ψ̂∗
i , i = 1, 2, 3, . . . , N boot in

T∗ψ
1 , T∗ψ

2 , . . . , T∗ψ
N boot in ascending order.

Define ψ̂boot−t = ψ̂ + G−1
2 (z)

√
̂var
(
ψ̂∗), where G2(z) = P(T∗ ≤ z) is the cumulative

distribution function of T∗ for a given z.
Then, the approximate bootstrap-t 100(1 − ζ)% CI of ψ̂ is obtained by[

ψ̂boot−t

(
ζ

2

)
, ψ̂boot−t

(
1 − ζ

2

)]
. (26)
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5. Simulation Analysis

In this section, we present various simulation methods to demonstrate the theoretical
results. Initially, we create accelerated PR datasets using the inverse transformation tech-
nique. To achieve this, we employ a quantile function derived from the equation where
V represents a random sample from the uniform distribution. Consequently, we generate
random samples of sizes 40, and 100 using Equation (27).

F−1
j (v, λ1, λ2, γ, β)=


[
−2λ2

j ln(1 − v)
]2γ

τ +

(
β
[
−2λ2

j ln(1 − v)
]2γ

− τ

) (27)

where j = 1, 2. Moreover, within the Type-II censoring framework, we employed two
distinct predetermined numbers of failures for each sample size. Thus, we selected m = 25
and m = 35 for n = 40, and r = 75 and r = 90 for n = 100, respectively. We examined two
different sets of actual parameter values in this context. In the initial approach, we set
(λ1, λ2, γ, β) = (1.5, 1.8, 1.2, 0.8), (1.5, 1.8, 1.2, 0.3), (0.6, 0.7, 2, 0.3), and (0.6, 0.7, 2, 0.8) with
two distinct stress transition points: τ = 0.60 and τ = 0.90. In all scenarios, we determined
the stress transition points based on the ranges of the generated samples, which varied
depending on the chosen actual parameter values.

We employed the software developed by R Team et al. [28] for computational tasks.
For MLE computations, we utilized the “L-BFGS-B” method within the “optim” function to
optimize the profile log-likelihood function described in Equation (9) within the restricted
area of 0 < β < 1. We set the significance level to 0.05 for approximate confidence intervals.
Subsequently, we conducted simulations repeatedly for 5000 iterations. Observing that
the means of the gamma priors yield the real parameter values with the given hyper-
parameters. The determination of hyper-parameters relies on informative priors, which
are derived from the Maximum Likelihood Estimates (MLEs) of (λ1, λ2, γ) by aligning the

mean and variance of (λ̂1
j
, λ̂2

j
, γ̂j) with those of specified priors (Gamma priors). Here,

j = 1, 2, 3, . . . , k, where k denotes the number of available samples from the PR distribution.

By equating the moments of (λ̂1
j
, λ̂2

j
, γ̂j) with those of the gamma priors, we derive the

following set of equations:

1
k

k

∑
j=1

γ̂j =
c1

d1
,

1
k − 1

k

∑
j=1

(
γ̂j − 1

k

k

∑
j=1

γ̂j
)2

=
c1

d2
1

,

1
k

k

∑
j=1

λ̂1
j
=

c2

d2
,

1
k − 1

k

∑
j=1

(
λ̂1

j − 1
k

k

∑
j=1

λ̂1
j
)2

=
c2

d2
2

,

1
k

k

∑
j=1

λ̂2
j
=

c3

d3
and

1
k − 1

k

∑
j=1

(
λ̂2

j − 1
k

k

∑
j=1

λ̂2
j
)2

=
c3

d2
3

.

By solving the aforementioned system of equations, the estimated hyper-parameters
can be expressed as follows:

c2 =

( 1
k ∑k

j=1 λ̂1
j)2

1
k−1 ∑k

j=1

(
λ̂1

j − 1
k ∑k

j=1 λ̂1
j
)2 , d2 =

1
k ∑k

j=1 λ̂1
j

1
k−1 ∑k

j=1

(
λ̂1

j − 1
k ∑k

j=1 λ̂1
j
)2

c3 =

( 1
k ∑k

j=1 λ̂2
j)2

1
k−1 ∑k

j=1

(
λ̂2

j − 1
k ∑k

j=1 λ̂2
j
)2 , d3 =

1
k ∑k

j=1 λ̂2
j

1
k−1 ∑k

j=1

(
λ̂2

j − 1
k ∑k

j=1 λ̂2
j
)2

(28)
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c1 =

( 1
k ∑k

j=1 γ̂j)2

1
k−1 ∑k

j=1

(
γ̂j − 1

k ∑k
j=1 γ̂j

)2 , d1 =
1
k ∑k

j=1 γ̂j

1
k−1 ∑k

j=1

(
γ̂j − 1

k ∑k
j=1 γ̂j

)2 .

We executed the MCMC algorithm 12,000 times for each of the 5000 replications. We
then discarded the initial 2000 values during the burn-in period. Given that Markov chains
inherently produce samples with autocorrelation, we opted for a thinning strategy, selecting
every third variate to achieve uncorrelated samples from the post-burn-in sample pool.
As a result, we generated 1000 uncorrelated samples from Markov chains by repeating this
thinning process 5000 times.

In the simulation scenario, we present bias values and mean squared errors (MSEs)
for the point estimates, along with average lengths (ALs) and corresponding coverage
probabilities (CPs) of the approximate confidence intervals. Tables 1–4 display all results
from these simulation schemes. The performance of the point and interval estimations can
be itemized as follows:

• Our observations consistently show reduced biases, MSEs, and ALs as sample
sizes increase.

• The CPs mostly align closely with their anticipated 95% level.
• In general, the informative Bayes estimation method outperforms MLE, with the

disparity between the two estimators decreasing as the sample size grows. This
highlights the Bayesian methods’ advantage for smaller samples.

• In particular, confidence intervals based on the Highest Posterior Density (HPD)
method tend to be smaller than those based on the Approximate Confidence Interval
(ACI) method, while still providing similar CPs.

• Altering the pre-determined number of failures or stress change time yields com-
parable performances across all cases, demonstrating the consistent efficiency and
productivity of the theoretical findings.

• Increasing the sample size generally leads to improvements in bias, MSE, and the preci-
sion of confidence intervals across all methods. This is expected because larger samples
provide more information about the population. The number of bootstrap samples
m also influences the Bootstrap method’s accuracy and precision, with a higher m
usually leading to better estimates.

• changing the stress transition time point τ affects the estimation, especially for
Bayesian estimation under ELF that adjusts based on the distribution’s tail prop-
erties. Different τ values can lead to variations in bias and MSE, suggesting the
importance of choosing an appropriate τ value for accurate estimation.
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Table 1. Some simulation measures from MLE, bootstrap, Bayesian based on SELF, and ELF for parameters of PR distribution based on TRV: λ1 = 1.5, γ = 1.2,
λ2 = 1.8, β = 0.8.

MLE Bootstrap SELF ELF c = −1.25 ELF c = 1.25

n τ m Bias MSE LACI CP LBP LBT Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI

40

0.6

25

λ1 −0.2909 0.2916 1.7842 96.1% 0.0561 0.0569 −0.0752 0.0274 0.6008 −0.0508 0.0272 0.5998 −0.0631 0.0298 0.6240
γ 0.5299 0.6215 2.2892 95.2% 0.0704 0.0691 0.0470 0.0206 0.5408 0.0382 0.0207 0.5390 0.0264 0.0200 0.5441
λ2 0.2413 0.7516 3.2657 94.8% 0.0957 0.0962 0.0232 0.0256 0.6184 0.0241 0.0256 0.6195 0.0146 0.0250 0.6224
β 0.3789 0.5924 2.6275 95.0% 0.0799 0.0795 −0.0552 0.0169 0.4607 −0.0507 0.0167 0.4602 −0.0656 0.0190 0.4694

35

λ1 0.2035 0.2412 1.3889 96.3% 0.0726 0.0730 0.0741 0.0210 0.4968 0.0468 0.0211 0.4973 0.0607 0.0198 0.4895
γ 0.4141 0.4885 2.2082 95.4% 0.0698 0.0699 −0.0460 0.0151 0.3970 −0.0359 0.0150 0.3951 −0.0168 0.0166 0.4061
λ2 −0.0342 0.4384 2.5934 95.6% 0.0805 0.0800 0.0157 0.0169 0.5044 0.0063 0.0169 0.5042 −0.0065 0.0170 0.5058
β 0.2641 0.4174 2.4269 96.6% 0.1088 0.1088 0.0491 0.0147 0.4050 0.0410 0.0152 0.4059 0.0590 0.0179 0.3967

0.9

25

λ1 −0.1263 0.1698 1.5383 95.3% 0.0493 0.0494 −0.0609 0.0244 0.5561 −0.0498 0.0242 0.5546 −0.0597 0.0261 0.5569
γ 0.4162 0.6104 2.1593 95.4% 0.0684 0.0583 0.0461 0.0192 0.5148 0.0355 0.0200 0.5048 0.0235 0.0192 0.5524
λ2 0.2353 0.6907 2.5138 95.1% 0.0777 0.0780 0.0176 0.0238 0.5957 0.0185 0.0239 0.5949 0.0094 0.0234 0.5919
β 0.1743 0.3717 2.2913 94.7% 0.0734 0.0725 −0.0528 0.0152 0.4527 −0.0509 0.0152 0.4523 −0.0609 0.0182 0.5492

35

λ1 0.1045 0.1523 1.1130 95.9% 0.0671 0.0673 0.0607 0.0150 0.4670 0.0373 0.0200 0.4675 0.0565 0.0185 0.4511
γ 0.4030 0.4685 2.0774 95.8% 0.0587 0.0609 −0.0457 0.0146 0.3842 −0.0327 0.0136 0.3419 −0.0163 0.0160 0.4292
λ2 0.1219 0.1666 1.4238 95.3% 0.0428 0.0429 0.0113 0.0147 0.4899 0.0051 0.0157 0.4901 0.0057 0.0169 0.4883
β 0.1530 0.3199 2.1296 95.8% 0.0982 0.1079 0.0489 0.0132 0.3944 0.0393 0.0122 0.3544 0.0561 0.0159 0.4309

100

0.6

75

λ1 −0.0995 0.1601 1.5198 95.2% 0.0486 0.0484 0.0158 0.0182 0.5072 0.0167 0.0182 0.5077 0.0081 0.0179 0.5052
γ 0.4028 0.3386 1.6471 94.3% 0.0541 0.0550 0.0348 0.0154 0.4495 0.0346 0.0155 0.4499 0.0236 0.0145 0.4477
λ2 −0.0497 0.2607 1.9928 94.8% 0.0630 0.0643 0.0291 0.0212 0.5632 0.0172 0.0213 0.5625 0.0081 0.0206 0.5556
β 0.4319 0.5261 2.2852 94.5% 0.0714 0.0715 0.0508 0.0152 0.4397 0.0452 0.0145 0.4405 0.0407 0.0139 0.4305

90

λ1 0.0882 0.1522 1.1671 95.9% 0.0529 0.0533 0.0148 0.0124 0.4386 0.0087 0.0172 0.4391 0.0071 0.0162 0.4289
γ 0.3253 0.2541 1.5100 94.5% 0.0508 0.0497 −0.0325 0.0118 0.3807 −0.0315 0.0117 0.3081 −0.0152 0.0124 0.3726
λ2 −0.0392 0.2081 1.7523 95.0% 0.0532 0.0533 0.0039 0.0136 0.4509 0.0045 0.0136 0.4514 −0.0041 0.0137 0.4506
β 0.4057 0.4709 1.9445 95.0% 0.0770 0.0787 0.0480 0.0132 0.3861 0.0349 0.0113 0.3287 0.0388 0.0121 0.3783

0.9

75

λ1 0.0911 0.0899 1.0850 94.4% 0.0314 0.0318 0.0128 0.0174 0.4962 0.0153 0.0175 0.4961 0.0079 0.0167 0.4928
γ 0.2835 0.1965 1.3365 95.2% 0.0422 0.0419 0.0158 0.0129 0.4219 0.0167 0.0130 0.4221 0.0075 0.0125 0.4221
λ2 0.0419 0.0923 0.9197 95.2% 0.0295 0.0298 0.0274 0.0171 0.4803 0.0162 0.0172 0.4819 0.0079 0.0163 0.4717
β 0.2108 0.1767 1.4266 95.2% 0.0444 0.0447 0.0328 0.0149 0.3453 0.0341 0.0141 0.4054 0.0207 0.0134 0.4050

90

λ1 0.0810 0.0733 0.9337 94.7% 0.0416 0.0413 0.0126 0.0120 0.4317 0.0081 0.0163 0.4332 0.0071 0.0154 0.4184
γ 0.2098 0.1822 0.9443 95.6% 0.0471 0.0468 −0.0237 0.0114 0.3597 −0.0274 0.0103 0.2994 −0.0108 0.0120 0.3628
λ2 0.0317 0.0827 0.9078 95.4% 0.0279 0.0280 0.0029 0.0120 0.4102 0.0039 0.0112 0.4095 0.0039 0.0118 0.4081
β 0.1410 0.1238 1.0821 95.9% 0.0606 0.0604 0.0413 0.0127 0.3042 0.0263 0.0102 0.3042 0.0116 0.0115 0.3401
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Table 2. Some simulation measures from MLE, bootstrap, Bayesian based on SELF, and ELF for parameters of PR distribution based on TRV: λ1 = 1.5, γ = 1.2,
λ2 = 1.8, β = 0.3.

MLE Bootstrap SELF ELF c = −1.25 ELF c = 1.25

n τ m Bias MSE LACI CP LBP LBT Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI

40

0.6

25

λ1 −0.3308 0.2386 1.4870 94.7% 0.0451 0.0459 −0.0420 0.0254 0.6011 −0.0409 0.0252 0.5991 −0.0523 0.0274 0.6088
γ 0.4901 0.4934 1.9734 95.2% 0.0623 0.0621 0.0215 0.0228 0.5649 0.0228 0.0229 0.5642 0.0101 0.0225 0.5605
λ2 0.1578 0.3716 2.3093 93.5% 0.0742 0.0741 0.0267 0.0260 0.6403 0.0276 0.0261 0.6444 0.0184 0.0256 0.6265
β 0.1282 0.0660 0.8731 94.3% 0.0284 0.0285 −0.0988 0.0034 0.2074 −0.0220 0.0034 0.2078 −0.0320 0.0039 0.2060

35

λ1 0.0776 0.2268 1.0065 95.8% 0.0629 0.0632 0.0337 0.0190 0.5233 0.0344 0.0190 0.5232 0.0271 0.0184 0.5246
γ 0.4732 0.4537 1.8195 95.5% 0.0711 0.0705 −0.0076 0.0151 0.4924 −0.0067 0.0151 0.4915 −0.0101 0.0155 0.4939
λ2 −0.1569 0.3127 2.1050 95.6% 0.0707 0.0707 −0.0073 0.0177 0.5031 −0.0066 0.0177 0.5032 −0.0133 0.0181 0.5082
β 0.1128 0.0520 0.6350 95.4% 0.0411 0.0411 0.0852 0.0021 0.2006 0.0209 0.0031 0.2006 0.0298 0.0036 0.1925

0.9

25

λ1 0.3061 0.2147 1.3998 95.4% 0.0409 0.0410 −0.0416 0.0220 0.5343 −0.0384 0.0219 0.5342 −0.0496 0.0234 0.5436
γ 0.4320 0.4638 1.8635 95.7% 0.0608 0.0606 0.0202 0.0203 0.5583 0.0213 0.0213 0.5183 0.0101 0.0226 0.5476
λ2 0.1485 0.3400 1.2760 95.6% 0.0680 0.0678 0.0225 0.0261 0.6143 0.0234 0.0262 0.5061 0.0140 0.0256 0.6064
β 0.1196 0.0611 0.8163 94.6% 0.0263 0.0262 −0.0208 0.0032 0.2053 −0.0206 0.0031 0.2001 −0.0313 0.0031 0.2048

35

λ1 −0.0674 0.1845 1.0016 95.9% 0.0613 0.0628 0.0314 0.0171 0.4842 0.0304 0.0172 0.4832 0.0231 0.0164 0.4777
γ 0.3999 0.4152 1.7359 95.8% 0.0704 0.0684 −0.0070 0.0146 0.4748 −0.0056 0.0146 0.4742 −0.0091 0.0151 0.4795
λ2 0.1474 0.3048 1.1014 96.5% 0.0397 0.0397 −0.0061 0.0152 0.4716 −0.0055 0.0152 0.4713 −0.0125 0.0156 0.4710
β 0.0734 0.0486 0.5815 96.1% 0.0370 0.0372 0.0201 0.0021 0.2005 0.0201 0.0014 0.1925 0.0283 0.0029 0.1920

100

0.6

75

λ1 −0.0969 0.1007 1.1855 93.9% 0.0378 0.0378 −0.0105 0.0181 0.5247 −0.0096 0.0181 0.5244 −0.0187 0.0186 0.5230
γ 0.3355 0.2237 1.3073 95.2% 0.0399 0.0401 0.0195 0.0203 0.5065 0.0206 0.0205 0.5063 0.0094 0.0187 0.4921
λ2 −0.0389 0.1561 1.2542 93.5% 0.0481 0.0485 0.0139 0.0224 0.5605 0.0148 0.0225 0.4956 0.0064 0.0222 0.5523
β 0.1133 0.0494 0.6976 94.5% 0.0217 0.0216 0.0200 0.0017 0.1926 0.0200 0.0029 0.1933 0.0268 0.0031 0.1871

90

λ1 0.0614 0.0912 0.9262 95.2% 0.0388 0.0388 0.0308 0.0162 0.4449 0.0277 0.0168 0.4452 0.0092 0.0159 0.4358
γ 0.3313 0.2126 1.2581 95.9% 0.0407 0.0405 0.0069 0.0130 0.4336 0.0043 0.0131 0.4327 0.0089 0.0123 0.4290
λ2 −0.0314 0.1277 1.0928 95.0% 0.0385 0.0384 −0.0060 0.0150 0.4520 −0.0053 0.0153 0.4511 −0.0114 0.0146 0.4598
β 0.0692 0.0382 0.4354 94.7% 0.0240 0.0240 0.0201 0.0015 0.1872 0.0191 0.0011 0.1877 0.0195 0.0011 0.1126

0.9

75

λ1 0.0911 0.0791 1.0200 94.9% 0.0334 0.0334 0.0092 0.0163 0.4957 0.0092 0.0163 0.4963 0.0084 0.0158 0.4896
γ 0.2783 0.1912 1.1032 94.8% 0.0384 0.0384 0.0184 0.0187 0.4951 0.0192 0.0188 0.4951 0.0083 0.0178 0.4507
λ2 0.0199 0.0909 0.9317 95.0% 0.0297 0.0288 0.0124 0.0185 0.5052 0.0137 0.0186 0.4504 0.0053 0.0178 0.5045
β 0.0787 0.0246 0.5317 95.3% 0.0171 0.0170 0.0201 0.0010 0.1823 0.0193 0.0020 0.1823 0.0189 0.0031 0.1802

90

λ1 0.0510 0.0691 0.6013 95.8% 0.0351 0.0344 0.0090 0.0152 0.4206 0.0082 0.0152 0.4223 0.0021 0.0149 0.4148
γ 0.2090 0.1696 1.0311 95.2% 0.0401 0.0394 0.0024 0.0111 0.4026 0.0032 0.0111 0.4033 −0.0043 0.0109 0.4046
λ2 0.0115 0.0632 0.7802 96.5% 0.0264 0.0259 −0.0058 0.0129 0.4485 −0.0051 0.0129 0.4483 −0.0051 0.0091 0.4473
β 0.0615 0.0230 0.4061 95.7% 0.0187 0.0185 0.0200 0.0010 0.1722 0.0181 0.0010 0.1722 0.0110 0.0010 0.1522
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Table 3. Some simulation measures from MLE, bootstrap, Bayesian based on SELF, and ELF for parameters of PR distribution based on TRV: λ1 = 0.6, γ = 2,
λ2 = 0.7, β = 0.3.

MLE Bootstrap SELF ELF c = −1.25 ELF c = 1.25

n τ m Bias MSE LACI CP LBP LBT Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI

40

0.6

25

λ1 −0.1998 0.1449 0.7621 96.0% 0.0327 0.0329 −0.0477 0.0182 0.3608 −0.0746 0.0152 0.3615 −0.0619 0.0134 0.3561
γ 0.2789 0.4008 1.8532 93.8% 0.0814 0.0818 0.0447 0.0279 0.6292 0.0531 0.0279 0.6298 0.0297 0.0276 0.6339
λ2 0.1927 0.1262 1.1712 95.4% 0.0514 0.0519 0.0688 0.0197 0.4464 0.0705 0.0201 0.4454 0.0532 0.0166 0.4370
β −0.1116 0.0305 0.3889 94.0% 0.0166 0.0164 −0.0692 0.0084 0.2207 −0.0682 0.0084 0.2224 −0.0584 0.0069 0.2084

35

λ1 0.1260 0.1380 0.7400 96.4% 0.0442 0.0443 0.0465 0.0128 0.3536 0.0663 0.0130 0.3536 0.0550 0.0111 0.3459
γ 0.2355 0.3055 1.7076 95.4% 0.0904 0.0910 0.0342 0.0202 0.5307 0.0348 0.0202 0.5309 0.0287 0.0199 0.5275
λ2 0.0517 0.0590 0.8553 95.6% 0.0391 0.0388 0.0256 0.0092 0.3572 0.0267 0.0093 0.3585 0.0160 0.0086 0.3555
β 0.0581 0.0195 0.3499 96.4% 0.0220 0.0225 0.0662 0.0075 0.2163 0.0672 0.0077 0.2162 0.0573 0.0061 0.2019

0.9

25

λ1 −0.0919 0.0314 0.5944 96.6% 0.0262 0.0264 −0.0348 0.0048 0.2355 −0.0340 0.0048 0.2361 −0.0422 0.0052 0.2291
γ 0.1929 0.2398 1.7663 95.2% 0.0754 0.0758 0.0094 0.0205 0.5689 0.0052 0.0205 0.5686 −0.0092 0.0205 0.5646
λ2 0.1410 0.0346 0.4753 95.8% 0.0215 0.0213 0.0385 0.0095 0.3348 0.0398 0.0097 0.3357 0.0268 0.0081 0.3274
β −0.1529 0.0290 0.2949 94.2% 0.0131 0.0132 −0.0216 0.0022 0.2143 −0.0593 0.0032 0.2042 −0.0301 0.0032 0.1944

35

λ1 0.0812 0.0291 0.5708 96.9% 0.0371 0.0366 0.0326 0.0041 0.2031 0.0326 0.0031 0.2131 0.0409 0.0041 0.2193
γ −0.1912 0.1355 1.2343 96.6% 0.0557 0.0559 0.0081 0.0147 0.4481 0.0049 0.0147 0.4485 0.0239 0.0147 0.4489
λ2 0.0491 0.0325 0.2734 96.5% 0.0126 0.0126 0.0246 0.0085 0.2672 0.0206 0.0087 0.2680 0.0145 0.0072 0.2571
β −0.0499 0.0149 0.2827 94.6% 0.0127 0.0127 0.0204 0.0021 0.2032 0.0256 0.0031 0.2033 0.0075 0.0026 0.1831

100

0.6

75

λ1 −0.0888 0.0181 0.5272 96.6% 0.0238 0.0238 0.0219 0.0046 0.2130 0.0229 0.0047 0.2304 0.0130 0.0051 0.2197
γ 0.1727 0.1880 1.3465 94.2% 0.0584 0.0584 0.0085 0.0192 0.5551 0.0051 0.0203 0.5559 0.0082 0.0202 0.5564
λ2 0.0570 0.0276 0.4613 96.0% 0.0207 0.0207 0.0369 0.0091 0.2033 0.0370 0.0091 0.3304 0.0258 0.0071 0.3163
β 0.0301 0.0059 0.2908 94.8% 0.0127 0.0127 −0.0028 0.0014 0.1484 −0.0518 0.0021 0.1482 −0.0293 0.0014 0.1462

90

λ1 0.0712 0.0126 0.5264 95.4% 0.0294 0.0292 0.0203 0.0040 0.2013 0.0231 0.0030 0.2031 0.0124 0.0041 0.2030
γ 0.1683 0.1234 1.2051 94.4% 0.0547 0.0507 0.0075 0.0138 0.4283 0.0045 0.0138 0.4383 0.0072 0.0137 0.4380
λ2 0.0370 0.0242 0.2592 94.2% 0.0121 0.0122 0.0203 0.0056 0.2047 0.0202 0.0057 0.2570 0.0125 0.0050 0.2470
β 0.0300 0.0051 0.2338 94.8% 0.0126 0.0116 0.0019 0.0012 0.1317 0.0236 0.0020 0.1349 0.0054 0.0012 0.1410

0.9

75

λ1 0.0756 0.0152 0.3813 96.0% 0.0171 0.0170 0.0193 0.0043 0.2013 0.0203 0.0044 0.2015 0.0129 0.0038 0.1981
γ −0.0977 0.0595 0.8773 96.0% 0.0383 0.0387 0.0081 0.0164 0.4916 0.0050 0.0164 0.4919 0.0079 0.0164 0.4920
λ2 0.0416 0.0274 0.2007 95.2% 0.0092 0.0092 0.0275 0.0080 0.1807 0.0356 0.0081 0.1815 0.0247 0.0067 0.1732
β −0.0080 0.0042 0.1561 95.2% 0.0070 0.0067 −0.0018 0.0014 0.1381 −0.0509 0.0018 0.1381 −0.0290 0.0010 0.1372

90

λ1 0.0632 0.0120 0.3506 96.2% 0.0249 0.0250 0.0173 0.0040 0.1928 0.0203 0.0028 0.1985 0.0092 0.0032 0.1827
γ −0.0817 0.0493 0.7108 96.4% 0.0313 0.0314 0.0072 0.0129 0.4136 0.0042 0.0129 0.4371 0.0061 0.0127 0.4319
λ2 0.0230 0.0206 0.1993 96.0% 0.0089 0.0088 0.0188 0.0049 0.1587 0.0189 0.0053 0.1587 0.0118 0.0046 0.1564
β −0.0074 0.0031 0.1471 96.2% 0.0076 0.0074 0.0010 0.0012 0.1248 0.0113 0.0013 0.1285 0.0052 0.0009 0.1284
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Table 4. Some simulation measures from MLE, bootstrap, Bayesian based on SELF, and ELF for parameters of PR distribution based on TRV: λ1 = 0.6, γ = 2,
λ2 = 0.7, β = 0.8.

MLE Bootstrap SELF ELF c = −1.25 ELF c = 1.25

n τ m Bias MSE LACI CP LBP LBT Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI

40

0.6

25

λ1 −0.0942 0.0975 1.8407 94.4% 0.0379 0.0382 −0.0613 0.0136 0.3633 −0.0599 0.0134 0.3638 −0.0732 0.0149 0.3561
γ 0.3890 0.5133 2.3610 96.2% 0.1002 0.1019 0.0160 0.0285 0.6367 0.0168 0.0285 0.6383 0.0085 0.0284 0.6491
λ2 0.2001 0.1825 1.4812 95.0% 0.0679 0.0678 0.0559 0.0153 0.4141 0.0576 0.0156 0.4147 0.0404 0.0127 0.3986
β −0.1482 0.2855 1.1319 96.4% 0.0486 0.0491 −0.0486 0.0159 0.4415 −0.0471 0.0157 0.4391 −0.0625 0.0177 0.4456

35

λ1 0.0820 0.0967 1.1768 95.0% 0.0523 0.0526 0.0593 0.0128 0.3374 0.0426 0.0128 0.3276 0.0682 0.0135 0.3458
γ 0.3482 0.5068 2.2636 97.2% 0.1198 0.1191 0.0148 0.0188 0.5247 0.0162 0.0188 0.5251 0.0081 0.0185 0.5277
λ2 0.0160 0.0805 1.1115 95.6% 0.0485 0.0488 0.0539 0.0106 0.3311 0.0550 0.0108 0.3326 0.0394 0.0092 0.3227
β 0.1352 0.2146 1.1057 96.8% 0.0723 0.0729 0.0410 0.0150 0.3672 0.0375 0.0152 0.3695 0.0615 0.0132 0.3601

0.9

25

λ1 −0.0822 0.0417 0.7350 88.2% 0.0358 0.0359 −0.0486 0.0056 0.2287 −0.0478 0.0056 0.2278 −0.0557 0.0063 0.2278
γ 0.1871 0.2469 1.8064 95.4% 0.0837 0.0843 0.0053 0.0219 0.5513 0.0061 0.0219 0.5507 −0.0072 0.0220 0.5530
λ2 0.1577 0.0430 0.5280 94.8% 0.0249 0.0249 0.0311 0.0088 0.3443 0.0325 0.0089 0.3446 0.0182 0.0077 0.3279
β −0.0414 0.0722 0.8377 95.7% 0.0383 0.0383 −0.0459 0.0133 0.4165 −0.0456 0.0132 0.4165 −0.0609 0.0164 0.3715

35

λ1 0.0793 0.0371 0.6949 95.8% 0.0428 0.0423 0.0381 0.0052 0.2133 0.0391 0.0052 0.2033 0.0481 0.0051 0.2070
γ −0.1791 0.1439 1.2860 95.6% 0.0567 0.0565 0.0041 0.0169 0.5039 0.0046 0.0169 0.5032 −0.0018 0.0170 0.5084
λ2 0.0104 0.0405 0.2861 95.4% 0.0128 0.0126 0.0305 0.0087 0.2515 0.0305 0.0088 0.2516 0.0141 0.0073 0.2444
β −0.0392 0.0681 0.7567 95.8% 0.0336 0.0339 0.0092 0.0106 0.3479 0.0106 0.0130 0.3048 −0.0533 0.0122 0.3482

100

0.6

75

λ1 −0.0155 0.0225 0.5852 95.4% 0.0263 0.0265 0.0223 0.0051 0.2183 0.0382 0.0054 0.2185 0.0144 0.0056 0.2177
γ 0.1731 0.2335 1.7403 95.4% 0.0771 0.0773 0.0047 0.0214 0.5357 0.0059 0.0204 0.5371 0.0062 0.0203 0.5419
λ2 0.0443 0.0370 0.4735 94.6% 0.0232 0.0239 0.0297 0.0081 0.2934 0.0317 0.0081 0.2942 0.0176 0.0071 0.2850
β 0.0413 0.0556 0.6791 95.8% 0.0340 0.0377 −0.0133 0.0086 0.3675 −0.0412 0.0086 0.3666 −0.0523 0.0090 0.3623

90

λ1 0.0147 0.0213 0.5674 95.9% 0.0323 0.0320 0.0213 0.0042 0.2086 0.0315 0.0052 0.2019 0.0141 0.0050 0.1928
γ 0.1328 0.1320 1.1807 96.4% 0.0379 0.0478 0.0039 0.0147 0.4574 0.0043 0.0148 0.4569 0.0017 0.0144 0.4606
λ2 0.0102 0.0345 0.2722 96.0% 0.0099 0.0113 0.0283 0.0079 0.2453 0.0300 0.0081 0.2503 0.0136 0.0071 0.2408
β 0.0318 0.0510 0.6704 96.4% 0.0305 0.0305 0.0090 0.0079 0.3334 0.0102 0.0082 0.3004 0.0483 0.0081 0.3347

0.9

75

λ1 0.0149 0.0184 0.4049 94.0% 0.0188 0.0188 0.0217 0.0042 0.2022 0.0280 0.0043 0.2022 0.0123 0.0038 0.2130
γ −0.1066 0.0595 0.8613 95.8% 0.0386 0.0386 0.0046 0.0177 0.4874 0.0054 0.0178 0.4883 0.0053 0.0171 0.4817
λ2 0.0416 0.0274 0.1928 95.6% 0.0093 0.0092 0.0260 0.0060 0.1798 0.0306 0.0061 0.1802 0.0153 0.0050 0.1755
β −0.0396 0.0414 0.4319 95.2% 0.0189 0.0190 −0.0116 0.0083 0.3528 −0.0401 0.0083 0.3525 −0.0514 0.0074 0.3550

90

λ1 0.0132 0.0172 0.3954 95.8% 0.0237 0.0232 0.0202 0.0043 0.1926 0.0250 0.0042 0.1826 0.0114 0.0032 0.1821
γ −0.0912 0.0495 0.7302 96.5% 0.0332 0.0323 0.0031 0.0124 0.4160 0.0040 0.0124 0.4165 0.0017 0.0123 0.4177
λ2 0.0092 0.0256 0.1896 96.5% 0.0090 0.0089 0.0228 0.0048 0.1562 0.0249 0.0058 0.1565 0.0128 0.0048 0.1494
β −0.0265 0.0408 0.4249 95.6% 0.0208 0.0207 0.0066 0.0070 0.3079 0.0041 0.0071 0.3179 −0.0305 0.0069 0.3287
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6. The Optimal Stress Change Time and Sensitivity Analysis

In this section, we describe an optimal method based on asymptotic variances in
maximum likelihood estimators. The inverse Fisher information matrix’s diagonals can be
used to compute the parameters’ asymptotic variances. In this section, we used the sum of
coefficients of variations (SVCs) as the optimal function instead of the sum of parameter
variances, as recommended and implemented by Samanta et al. ([29,30]). Samanta et al. [29]
proposed a method to calculate an optimal solution by minimizing the predicted value of
the SVC. Since the sum of variances can be calculated using the variance of any specific
parameter if the parameter values are on a different scale. That is why we employed the
expected value of the SVC by maximizing E(ϕ(τ)), where

ϕ(τ) =

√
F−1

11

λ̂1
+

√
F−1

22

λ̂2
+

√
F−1

33

γ̂
+

√
F−1

44

β̂
, (29)

where F−1
ii is the element in the main diagonal of the inverse Fisher information matrix that

was described by Equation (22). However, the closed forms of the parameters’ posterior
variances may be imprecisely estimated. Samanta et al. [30] recommend adopting the Gibbs
sampling technique for computation.

Step 1: Obtain the samples U1, U2 and U = min{U1, U2} using given τ , n, r and
parameter values.
Step 2: The objective function ϕ(τ) is calculated.
Step 3: For N times, repeat Step 1 to Step 2, and obtain ϕ1(τ), ϕ2(τ), . . . , ϕN(τ).
Step 4: The median of the objective functions is obtained and applied to ϕm(τ).
Step 5: For all possible values of τ repeat Step 1 to Step 4 .
Step 6: The optimal τ for which ϕm(τ) is the minimum is obtained.

Optimal stress change time τ values, indicated by τ∗ are determined for given n, r,
and ψi for i = 1, . . . , 4 and are reported in Table 5.

Table 5. Optimal stress change time τ for different sample sizes and parameter values by SVC ϕ(τ).

n τ m Table 1 Table 2 Table 3 Table 4

40

0.6
25 0.4225 0.3565 0.5263 0.5119

35 0.3850 0.3477 0.3439 0.3934

0.9
25 0.4215 0.3301 0.2896 0.2695

35 0.3384 0.3605 0.2680 0.2661

100

0.6
75 0.3600 0.2797 0.1999 0.2476

90 0.3199 0.2737 0.1683 0.2312

0.9
75 0.2850 0.2638 0.1686 0.2050

90 0.2349 0.2352 0.1567 0.2008

From Table 5, it is evident that the optimal stress change times, denoted as τ, fall within
the range of 0.6 to 0.9 for the first parameter set. As the range of the generated dataset is
not extensive, there is not a significant deviation in the range of τ in this initial case. It is
noticeable that the stress change times utilized in the simulations closely align with the
optimal stress change times. Hence, the consistency and effectiveness of the simulation
outcomes are contingent upon accurately determining the stress change time.
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7. Real Data Examples

In this section, two real data sets are examined for the suitability of the PR model with
tampered random variables under the Type-II censoring framework.

7.1. HIV Infection to AIDS

This example discusses the application of a real-life dataset focusing on male individ-
uals and their progression from HIV infections to AIDS over nearly 15 years. According
to the United States Center for Disease Control and Prevention, 54% of total diagnosed
adult AIDS cases in the U.S. up to 1996 were due to intimate contact with a person who
was HIV positive, also, an additional 40% of incident cases occurred in that same year.
A subset of the 54% who also engaged in injection drug use accounted for an additional 7%
of cumulative and 5% of incident cases in 1996. These data were collected during the era of
antiretroviral combined therapy in 1996. For further background information, readers are
directed to studies by Dukers et al. [31] and Xiridou et al. [32], while Putter et al. [33] and
Geskus et al. [34] cite this dataset as an example for competing risk analysis. The dataset
encompasses instances where some patients either remained uninfected or their outcomes
were censored in the study.

We focused on a pre-determined number of failures, setting r as 150 from a complete
dataset of n = 222. We also examined stress change times: τ = 4.6. For clarity, we present
the competing risk data as follows in Table 6, where the black color is ti < τ and the gold
color is ti > τ.

Table 6. Data from HIV Infection to AIDS dataset.

ti c ti c ti c ti c ti c ti c ti c ti c ti c ti c

0.112 1 2.048 1 2.798 1 3.373 0 3.8 0 4.389 1 5.018 0 5.566 0 5.982 1 6.461 0

0.137 1 2.053 1 2.814 1 3.439 1 3.817 1 4.394 1 5.021 1 5.574 0 6.018 1 6.511 1

0.474 1 2.155 0 2.866 1 3.477 0 3.819 0 4.4 1 5.082 1 5.582 0 6.042 0 6.516 1

0.824 1 2.177 0 2.875 0 3.477 1 3.88 1 4.52 1 5.106 1 5.618 0 6.042 1 6.579 0

0.884 1 2.234 0 2.891 0 3.486 0 3.94 1 4.523 1 5.12 1 5.667 0 6.045 0 6.733 0

0.969 1 2.283 0 2.982 1 3.513 0 3.953 0 4.583 0 5.224 1 5.678 0 6.054 0 6.801 0

1.013 1 2.322 1 3.039 1 3.535 0 3.975 0 4.608 0 5.251 0 5.7 1 6.177 0 6.82 1

1.101 1 2.513 1 3.064 0 3.584 1 4.033 1 4.69 0 5.314 1 5.703 1 6.195 0 6.85 1

1.205 1 2.533 0 3.064 1 3.592 0 4.079 1 4.734 1 5.336 1 5.723 0 6.199 0 6.866 0

1.44 0 2.565 1 3.195 0 3.639 0 4.099 0 4.811 0 5.374 1 5.73 1 6.218 1 6.943 1

1.462 1 2.571 1 3.214 0 3.647 0 4.219 0 4.854 1 5.454 1 5.736 1 6.224 0 6.955 0

1.503 1 2.631 1 3.22 1 3.663 0 4.219 0 4.909 1 5.478 1 5.886 1 6.267 0 6.979 1

1.593 1 2.672 0 3.242 0 3.707 0 4.23 1 4.966 1 5.525 1 5.889 1 6.311 1 7.006 0

1.837 0 2.683 0 3.258 1 3.724 0 4.334 1 4.981 0 5.555 0 5.908 1 6.412 0 7.17 1

1.889 1 2.705 0 3.315 0 3.797 1 4.375 1 5.013 0 5.563 1 5.938 0 6.439 1 7.302 0

Table 7 showcases the MLE alongside various fit metrics for the HIV Infection to AIDS
dataset, utilizing both the baseline model and SSLT as complete datasets. The analysis
derived from Table 7 indicates an adequate fit of the model to the data, evidenced by a
Kolmogorov–Smirnov P-value (KSPV) exceeding 0.05. Furthermore, the table provides a
range of fit indices, including the Consistent Akaike Information Criterion (CAIC), Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), and Hannan–Quinn
Information Criterion (HQIC), all of which serve as measures of goodness-of-fit.
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Table 7. MLE and different measures of HIV Infection to AIDS data.

ti < τ size KSD PVKS AIC BIC CAIC HQIC

ti < max(t) 220 λ 5.6859 0.9111 0.0890 0.1853 602.8644 608.8856 602.9460 605.3106
γ 1.3300 0.0913

ti < τ 121
λ 3.9018 0.7312

0.1217 0.1813 260.7185 265.5074 260.8724 262.6399
γ 1.4365 0.1381

τ < ti < max(t) 101
λ 44.2060 20.9781

0.0612 0.9585 145.3549 152.0572 145.7241 148.0139γ 1.1368 0.1974

β 0.0432 0.0353

Table 8 presents the maximum likelihood and Bayesian point estimation in addition to
the interval estimates for the PR parameters derived from step-stress life testing using the
Tampered Random Variable model. Table 8 presents a reliability analysis that evaluates the
reliability function of various models through maximum likelihood and Bayesian methods
for estimating parameters. The models analyzed include those with a risk factor from
cause I, from cause II, and both under standard conditions, followed by an examination
under an accelerated framework. Additionally, the reliability of the TRV model is analyzed
in the context of two competing risk factors. The findings suggest that the TRV model
exhibits the greatest reliability among the models assessed, underscoring the robustness of
our proposed model. Figure 1 depicts the likelihood profile for the PR parameters based
on SSLT under the TRV model which indicates the existence of the maximum value for
the log-likelihood function. Figure 2 illustrates the trace plots and marginal posterior
probability density functions of the parameters for the PR distribution, employing SSLT
under the TRV model, as obtained via Bayesian estimation.

Table 8. MLE and Bayesian estimation for the parameters of PR based on SSLT under TRV.

MLE Bayesian

Estimates StEr Lower Upper Estimates StEr Lower Upper

λ1 6.0925 1.0225 4.0884 8.0966 6.1924 0.7669 4.6570 7.6641

γ 1.1113 0.1052 0.9050 1.3175 1.1176 0.0774 0.9679 1.2601

λ2 6.6004 1.1181 4.4089 8.7919 6.7538 0.8359 5.3139 8.4690

β 0.5539 0.0991 0.3596 0.7482 0.5801 0.1257 0.3312 0.8086

1 − F1(t̄; γ, λ1) 0.70965 0.71305

1 − F2(t̄; γ, λ2) 0.74660 0.75253

1 − F1(t̄; γ, λ1, β) 0.74056 0.74077

1 − F2(t̄; γ, λ2, β) 0.77422 0.77705

1 − (1 − F1(tr))(1 − F2(tr)) 0.97519 0.97895
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Figure 1. Likelihood profile (blue line) for parameters of PR based on SSLT under TRV model with
the maximum likelihood estimation (red dot): HIV infection to AIDS data.
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Figure 2. MCMC plots for parameters of PR based on SSLT under TRV model for HIV Infection to
AIDS data.(The blue color indicates the convergence line).

7.2. Electrical Appliances Data

The real-world dataset analyzed in reference [35] (p. 441) examines 36 small electronic
components subjected to an automated life test, where failures are categorized into 18 types.
However, out of the 33 identified failures, only seven modes were observed, with modes
6–9 recurring more than twice. Mode 9 failure is particularly significant. Consequently,
the dataset is categorized into two failure causes, c = 0 (mode 9 failure) and c = 1 (all other
modes). The provided data presents the failure times in sequence along with the respective
cause of each failure, the stress change time is selected to be τ = 2500 as detailed in Table 9.
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Table 9. Electrical appliances data.

ti c ti c ti c ti c ti c

11 1 381 1 1594 1 2400 0 2694 0

35 1 708 1 1925 0 2451 1 2702 1

49 1 958 1 1990 0 2471 0 2761 1

170 1 1062 1 2223 0 2551 0 2831 1

329 1 1167 0 2327 1 2568 0 3034 0

Table 10 discusses MLE and different measures used for the electrical appliances data
in baseline model and SSLT model as complete data. From the results in Table 10, we
note that the data are fitting of this model where the KSPV is greater than 0.05. Also,
some different measures have been obtained as CAIC, AIC, BIC goodness-of-ft measures,
and HQIC.

Table 10. MLE and different measures for electrical appliances data.

xi < τ Size Estimate StEr KSD PVKS AIC BIC CAIC HQIC

xi < max(xi) 25 λ 53.3420 43.2098 0.2403 0.0938 423.9574 426.3951 424.5028 424.6335
γ 0.5803 0.1044

xi < τ 18
λ 22.3780 16.9145

0.1772 0.5644 296.2920 298.0727 297.0920 296.5375
γ 0.4859 0.1002

τ < xi < max(xi) 7
λ 2814.8644 5262.1741

0.2066 0.8722 94.8192 94.6569 102.8192 92.8135γ 0.7401 0.1678

β 0.0036 0.0012

Table 11 presents the maximum likelihood and Bayesian point estimation in addition
to the interval estimates for the PR parameters derived from step-stress life testing using
the Tampered Random Variable model for the electrical appliances data. Similar to the
discussion of reliability analysis in the first data set in Table 8, the reliability analysis
presented in Table 11 indicates that the TRV model outperformed the other models. Figure 3
depicts the likelihood profile of PR parameters based on SSLT under the TRV model for
electrical appliances data. From Figure 3, we can conclude that the parameters of PR
distribution based on SSLT under TRV have maximum value for the log-likelihood function
for electrical appliances data. Figure 4 shows the trace plots and marginal posterior
probability density functions of the parameters for the PR distribution based on SSLT under
the TRV model, derived through Bayesian estimation for the electrical appliances data.

Table 11. MLE and Bayesian estimation for the parameters of PR based on SSLT under TRV: electrical
appliances data.

MLE Bayesian
Estimates StEr Lower Upper Estimates StEr Lower Upper

λ1 30.436 11.750 7.407 73.065 30.475 2.933 24.635 36.016
γ 0.456 0.091 0.277 0.635 0.453 0.022 0.412 0.495
λ2 37.277 16.856 4.240 89.915 37.313 3.475 31.022 44.277
β 0.086 0.043 0.0015 0.179 0.096 0.042 0.020 0.171

1 − F1(tr; γ, λ1) 0.44465 0.46349
1 − F2(tr; γ, λ2) 0.58258 0.59872

1 − F1(tr; γ, λ1, β) 0.12041 0.15590
1 − F2(tr; γ, λ2, β) 0.24386 0.28945

1 − (1 − F1(tr))(1 − F2(tr)) 0.97064 0.97549
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Figure 3. Likelihood profile (blue line) for parameters of PR based on SSLT under TRV model with
the maximum likelihood estimation (red dot): electrical appliances data.

0 2000 6000 10000

2
5

3
0

3
5

4
0

Iteration

λ
1

λ1

F
re

q
u
e
n
c
y

25 30 35 40

0
.0

0
0
.0

5
0
.1

0
0
.1

5

0 2000 6000 10000
0
.4

0
0
.4

5
0
.5

0

Iteration

γ

γ

F
re

q
u
e
n
c
y

0.40 0.45 0.50

0
5

1
0

1
5

0 2000 6000 10000

3
0

3
5

4
0

4
5

5
0

Iteration

λ
2

λ2

F
re

q
u
e
n
c
y

30 35 40 45 50

0
.0

0
0
.0

4
0
.0

8
0
.1

2

0 2000 6000 10000

0
.0

5
0
.1

0
0
.1

5
0
.2

0

Iteration

β

β

F
re

q
u
e
n
c
y

0.00 0.10 0.20

0
2

4
6

8

Figure 4. MCMC plots for parameters of PR based on SSLT under TRV model: electrical appliances
(The blue color indicates the convergence line).

8. Conclusions

In conclusion, this work has significantly contributed to the field of reliability engi-
neering through the application of the Tampered Random Variable (TRV) model within
the step-stress life testing (SSLT) framework, particularly focusing on the Power Rayleigh
distribution in the context of competing risks. By integrating TRV with SSLT under such
complex scenarios, the study has addressed critical gaps in current research, particularly
the various applications of TRV modeling in competing risk analyses.

The methodological advancements presented in this paper, including the use of maxi-
mum likelihood estimation and the Bayesian methods for inferential analysis, as well as
Monte Carlo simulations for estimator performance evaluation, represent a robust approach
to understanding and improving product reliability under varied stress conditions. These
techniques have been validated through empirical analysis of real-world datasets from
the medical sector, regarding AIDS infection, and the electrical engineering domain, focus-
ing on electronic component failures. The reliability evaluations underscore the model’s
empirical suitability and the potential for broader application.

Furthermore, the study’s exploration of Type-II censoring schemes as a solution to
information shortage in lifetime experiments highlights the practical value of the research,
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offering other options for more cost-effective and efficient testing methodologies. The com-
parison of TRV modeling with other established models (CEM and TFR) within a competing
risks framework not only clarifies the conditions under which these models converge but
also showcases the unique advantages of TRV in handling complex, multi-step-stress
situations and discrete or multivariate lifetime data.

The comprehensive analysis and the resulting insights into model precision, reliability,
and risk management presented in this study provide a solid foundation for future research
in this area. It opens up new ways for the development of more accurate and dependable
models, enhancing the decision making process and risk management strategies in the
medical, industrial, and mechanical domains.
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