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Abstract: We present an integration condition ensuring that a stochastic differential equation
dXt = µ(t, Xt)dt + σ(t, Xt)dBt, where µ and σ are sufficiently regular, has a solution of the form
Xt = Z(t, Bt). By generalizing the integration condition we obtain a class of stochastic differential
equations that again have a functional solution, now of the form Xt = Z(t, Yt), with Yt an Ito process.
These integration conditions, which seem to be new, provide an a priori test for the existence of
functional solutions. Then path-independence holds for the trajectories of the process. By Green’s
Theorem, it holds also when integrating along any piece-wise differentiable path in the plane. To
determine Z at any point (t, x), we may start at the initial condition and follow a path that is first
horizontal and then vertical. Then the value of Z can be determined by successively solving two
ordinary differential equations. Due to a Lipschitz condition, this value is unique. The differential
equations relate to an earlier path-dependent approach by H. Doss, which enables the expression of a
stochastic integral in terms of a differential process.

Keywords: stochastic differential equations; Ito’s Lemma; systems of partial differential equations;
path-independence

MSC: 35A05; 35F20; 60H10

1. Introduction

Consider a stochastic differential equation{
dXt = µ(t, Xt)dt + σ(t, Xt)dBt 0 ≤ t < T
X0 = x0

, (1)

where Bt is Brownian Motion, µ has continuous first-order partial derivatives, and σ ̸= 0
has continuous partial derivatives of the first order in time and the second order in space.
The random variables Xt : Ω → R should be defined on a sufficiently rich probability
space Ω, where the initial condition X0 = x0 could be itself a random variable, or simply
a constant. We give a condition, involving partial derivatives of µ and σ (Condition (2)
below) for the existence of a functional solution of the form Xt = Z(t, Bt), or more generally
of the form Xt = Z(t, Yt), where Yt is an Ito process. Then such a solution may be found by
solving ordinary differential equations. The main results are stated in Theorems 3 and 4
of Section 3.

In case Xt = Z(t, Bt), where Z has continuous partial derivatives up to the second
order, the necessity of the condition follows from the equality of mixed second-order
derivatives of Z. Indeed, Ito’s Lemma generates a system of two first-order partial differ-
ential equations for Z in terms of µ and σ, and then it follows from the equality of mixed
derivatives that they are related by

Γ ≡ Γ(t, X) ≡ σ
∂µ

∂X
−
(

∂σ

∂t
+ µ

∂σ

∂X
+

σ2

2
∂2σ

∂X2

)
= 0. (2)
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We show that (2) is also an integration condition, i.e., it is a sufficient condition for the
existence of a solution Z of (1), which is a function only of time t and of the value taken by
a trajectory of Brownian motion at time t.

If (2) does not hold, the stochastic differential Equation (1) still may have a func-
tional solution, now of the form Z(t, Yt), where Yt is an Ito process. It is given by a
stochastic integral

Yt = y0 +
∫ t

0
F(s)dt +

∫ t

0
G(s)dBs, (3)

with y0 ∈ R, where F and G are of class C1 in time and G is supposed to be non-zero. In fact,
this is the case if Γ(t, X)/σ(t, X) only depends on t. Then we may take the integrating factor
G to be equal to

G(t) = g0 exp
(
−
∫ t

0

Γ
σ
(s)ds

)
,

with g0 ̸= 0. The integrating factor does not depend on the drift F appearing in (3);
hence, (1) has a family of functional solutions. If we choose F = 0, the solution is a function
of a martingale. However, Section 5.2 contains an example for which it is convenient to
choose F ̸= 0.

Our approach is a sort of converse to Ito’s Lemma. Given an Ito process Yt, Ito’s
Lemma derives a stochastic differential equation for a process of the form Z(t, Yt), such
that its trend µ and conditional standard deviation σ are defined by two equalities in
terms of partial derivatives of the function Z. Here, we consider µ and σ as given, and
the two equalities are now seen as a system of partial differential equations. In case an
integration condition holds, we look for a functional solution Z of time and an appropriate
Ito process. In a sense, this means that within the class of stochastic differential equations,
the applicability of Ito’s Lemma is not completely generic, as the existence of such a function
Z is subject to the validity of an integration condition.

Still, the method sketched above enables a general approach to solve a rather com-
prehensive class of stochastic differential equations, starting with a test in terms of partial
derivatives of its coefficients for the existence of such a functional solution. To deter-
mine the functional solution Z(t, Yt) at a value Yt = y, one may integrate along any path
{(s, λ(s))|0 ≤ s ≤ t}, going from (0, y0) to (t, y) such that λ : [0, t] → R is (piece-wise)
continuously differentiable; this property of path independence follows from Green’s Theo-
rem. In particular, we may integrate first along a horizontal path, and then a vertical path.
The theorems of Section 3 show that by this method, the value of Z can be determined by
successively solving two ordinary differential equations in a rather simple form.

Once one disposes of a functional expression Z(t, Yt) of a process, it may be easier to
determine important properties of the random variables of the process.

To start with, the process has the property of path-independence. This means that if
ω1 and ω2 ∈ Ω are such that at some time t it holds that Yt(ω1) = Yt(ω2) ≡ y, the value
taken by Z(t, y) solely depends on the value of y, and not on the history of the trajectories
at time t; i.e., it again holds that Zt(ω1) = Zt(ω2).

Secondly, this property of path-independence may simplify the determination of
important properties of the random variables of the process. Indeed, its probability law
will be a function of the Gaussian distribution. So integrals of Gaussian type may be used
to determine expectations [1], moments [2], or conditional variance and volatility [3].

Thirdly, dynamical properties of the trajectories of a process Xt = Z(t, Yt) could be
more easily studied, like local or asymptotic stability of the solutions. This may follow from
the study of partial derivatives [4], or even by studying the function Z(t, Yt) directly. The
Geometrical Brownian Motion S(t, Bt) = exp((µ − σ2)t + σBt), with σ > 0, is a striking
example. Note that, by the Law of the Iterated Logarithm [1], the growth of nearly every
trajectory of Brownian motion is at most of order

√
2t log log t. Hence, even in the case

that µ = 0, almost surely S(t, Bt) is of exponential decay, i.e., a martingale with mean 1 can
have a concentration of trajectories exponentially close to 0.
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Fourthly, a functional representation has numerical relevance. Indeed, a numerical
simulation of the Brownian motion involves a discretization in time and a numerical
representation of the Gaussian distribution, such as the Monte-Carlo method [5]. This
may be adapted in a straightforward way to a process that is a deterministic function of
Brownian motion, and possibly of time. So, mutatis mutandis, a numerical simulation could
again use the properties of the common Gaussian distribution.

Of course most integrals along a path, or the ordinary differential equations figuring
in the Main Theorems, do not have solutions in closed form, and have to be approximated
by numerical discretizations. Still, there exist many approaches, like Euler-methods, trapez-
ium rules or Runge–Kutta methods [6]. In these deterministic cases, such methods are
susceptible to be more effective than corresponding numerical approaches to stochastic
differential equations, in particular the Euler–Maruyama method, as errors originating from
the chosen discretization method may intervene with the effects of randomizing [7]. The
above observations on the numerical relevance of functional solutions generally hold true
for processes that are functions of time and an Ito process, though additional complications
may arise from numerical approximations of such a process.

The integration Condition (2) has been derived earlier in first approximation for stochastic
difference equations with infinitesimal steps, with the use of Taylor-expansions [8]. Under this
condition it was shown that a solution is nearly equivalent, in the sense of [9], to a stochastic
process that is a function of time and the discrete Wiener Walk. In the context of stochastic
differential equations, to our knowledge, the integration Condition (2) corresponding to
functional solutions in terms of Brownian Motion, and the integrating factor leading to
functional solutions in terms of Ito processes are new.

The search for functional solutions may be compared to two other methods of solution
of certain classes of stochastic differential equations.

In [10], H. Doss shows that, under some conditions of regularity for the coefficients, a
solution of an autonomous stochastic differential equation can be given in the form of a
function h(Dt, Mt) of a solution of a stochastic process Dt(ω), where ω ranges over some
probability space Ω, with trajectories that are differentiable in the ordinary sense, and a
continuous semi-martingale Mt; in particular he considers the case of Brownian Motion, i.e.,
solutions of the form h(Dt, Bt). The results are extended to non-autonomous equations. By
leveraging the differentiability, he improves some properties of approximation of processes
derived earlier in, among other works, [11]. The stochastic variables Dt(ω) satisfy ordinary
differential equations, and the function h satisfies a partial differential equation, which
is similar to the differential equations along the horizontal and vertical paths used to
determine the functional solutions mentioned above. Similar to in our approach, they
are derived from Ito’s Lemma. In fact, our approach may be recognized as a special case,
where the process Dt no longer depends on the random variable ω, i.e., has become a
deterministic function, with the property that Dt(ω) = t holds uniformly. Consequently,
the integration Condition (2) may be derived as well.

Our method of searching for a functional solution is essentially relevant for some
classes of non-linear stochastic differential equations. There exists a general method for
the solution of linear stochastic differential equations; see, e.g., [2]. As with linear ordinary
differential equations, it is based on finding first a solution for the associated homogeneous
equation, which is then used to find a solution for the inhomogeneous equation. The
principal tool is Ito’s product Theorem. In Section 5.2, we will see that, generally speaking,
the solution is not functional.

Introductions to stochastic differential equations are found, for example, in [1,2,12];
in particular, ref. [2] discusses many special classes of stochastic differential equations
that are explicitly solvable. For introductions to systems of first-order partial differential
equations, we refer to [13,14]. Integration along paths in higher dimension is treated, for
instance, in [15].

Section 2 recalls Ito’s Lemma, some essential properties of systems of partial differential
equations and Green’s Theorem on path-independence. Section 3 presents the main results.
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Section 4 is devoted to the proofs of the main theorems. Section 5 contains some special
cases and examples. In Section 5.1, we consider the autonomous case, and in Section 5.2, a
class of linear stochastic differential equations. We treat the Geometric Brownian motion as
a special case of autonomous equations and the Ornstein–Uhlenbeck process as a special
case of linear equations. Section 5.3 presents two non-linear stochastic differential equations
that have a functional solution. Section 6 shows briefly how a stochastic process may be a
function of a particular path-dependent differentiable process. In Section 7, we resume the
principal results, and suggest some possible applications.

2. Background on Ito’s Lemma and Systems of Partial Differential Equations

To prove the main theorems, Ito’s Lemma is needed, as is a well-known condition [13,14]
on the existence of a common solution to a system of two partial differential equations. The
latter is stated in Proposition 1. We recall also Ito’s Lemma, where we single out the case of
processes depending on time and Brownian motion.

A system of partial differentiable equations is compatible if they have a common
solution. The following proposition states a condition for compatibility for a system of two
first-order partial differential equations; the condition is also called an integration condition.

Proposition 1. Let t0, x0, z0 ∈ R. Let f , g : R3 → R be of class C111 and be uniformly Lipschitz
in the third variable. Consider the system of two first-order partial differential equations

∂Z
∂t = f (t, x, Z)
∂Z
∂x = g(t, x, Z)
Z(t0, x0) = z0

. (4)

1. The system (4) has a unique solution Z : R2 → R of class C22 if and only if

∂ f
∂x

+ g
∂ f
∂Z

− ∂g
∂t

− f
∂g
∂Z

= 0 (5)

holds for all t, x ∈ R.
2. Assume (5) holds for all t, x ∈ R. Let t1, x1, b ∈ R with b ≥ 0, and φ : [0, b] → R2 be a piece-

wise continuously differentiable simple curve such that φ(0) = (t0, x0), φ(b) = (t1, x1).
Then

Z(t1, x1) = Z(t0, x0) +
∫

φ

(
∂Z
∂t

dt +
∂Z
∂x

dx
)

.

In particular, for (t0, x0) = (0, 0) and (t1, x1) ∈ R2 with t1 > 0 one has

Z(t1, x1) = Z(v)(x1),

which is obtained by solving successively the ordinary differential equations

dZ(h)

dt
= f

(
t, 0, Z(h)

)
Z(h)(0) = z0, (6)

along the horizontal path from (0, 0) to (t1, 0), and

dZ(v)

dx
= f

(
t1, x, Z(v)

)
Z(v)(0) = Z(h)(t1), (7)

along the vertical path from (t1, 0) to (t1, x1).

The necessity of the integration Condition (5) of Part 1 follows easily from the equality
of second-order mixed partial derivatives

∂2Z(t, x)
∂x∂t

=
∂2Z(t, x)

∂t∂x
. (8)
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Together with the regularity conditions imposed on f and g, the integration condition
is also sufficient for the existence and uniqueness of a solution for the system (4), noting that
the equations figuring in (4) may be seen as parameterized ordinary differential equations.

Part 2 states that the value of the solution at a particular point (t1, x1) may be calculated
along any sufficiently regular curve leading from the initial condition (t0, x0) to this point;
this is a consequence of (8) and Green’s Theorem [15]. Indeed, with the usual notations for
an integral along a piece-wise continuously differentiable simple closed path φ, and the
double integral over a domain ∆ ⊂ R2 delimited by the path, we have

∮
φ

(
∂Z
∂t

dt +
∂Z
∂x

dx
)
=
∫∫

∆

(
∂2Z(t, x)

∂x∂t
− ∂2Z(t, x)

∂t∂x

)
dtdx =

∫∫
∆

0dtdx = 0.

In the special case given by (6) and (7), the integrals correspond to ordinary differential
equations. In fact, the equations figuring in (4) may be seen as parameterized ordinary
differential equations, first along a horizontal path, and then along a vertical path.

We now recall Ito’s Lemma, first for processes depending on Brownian motion.

Theorem 1 (Ito’s Lemma, processes of the form Z(t, Bt)). Let Z : [0, T]×R → R be of class
C12. The stochastic process Z(t, Bt) satisfies the stochastic differential equation{

dZt =
(

∂Z
∂t + 1

2
∂2Z
∂x2

)
dt + ∂Z

∂x dBt 0 ≤ t ≤ T
Z0 = Z(0, x0)

. (9)

Theorem 2 (Ito’s Lemma, processes of the form Z(t, Yt)). Let Yt be an Ito process of the
form (3), with initial condition y0 ∈ R. Let Z : [0, T]×R → R be of class C12. The stochastic
process Z(t, Yt) satisfies the stochastic differential equation{

dZt =
(

∂Z
∂t + F ∂Z

∂x + 1
2 G2 ∂2Z

∂x2

)
dt + G ∂Z

∂x dBt 0 ≤ t ≤ T
Z0 = Z(0, y0)

.

3. Main Theorems: Solutions by Functionals of Brownian Motion and of Ito Processes

Let T > 0. We will always work within an appropriate probability space (Ω,F , P),
where Ω is a sufficiently rich set, P is a probability and F =(Ft)t∈[0,T] is the natural filtration
associated to a Standard Brownian Motion Bt on [0, T]. For ω ∈ Ω and x0 ∈ R, we use the
notation of stochastic differential Equation (1) for the stochastic integral

X(T, ω) = x0 +
∫ T

0
µ(t, Xt(ω))dt +

∫ T

0
σ(t, Xt(ω))dBt(ω).

We recall that a stochastic process Xt is an Ito process with respect to Bt if it is of
the form

X(T, ω) = x0(ω) +
∫ T

0
F(t, ω)dt +

∫ T

0
G(t, ω)dBt(ω), (10)

where x0 is F0-measurable, F and G are at any time t adapted to Ft, and
∫ T

0 |F(t, ω)|dt and∫ T
0 |G(t, ω)|2dt exist almost surely.

For i, j ∈ N, a function φ : R2 → R is said to be of class Cij if all partial derivatives
exist and are continuous up to order i in the first variable, and j in the second variable. For
i, j, k ∈ N, functions φ : R3 → R of class Cijk are defined by analogy, also some indices may
take value at infinity.

Theorem 3 (Functional solution in terms of Brownian Motion). Let T > 0 and x0 ∈ R.
Let µ : [0, T]×R → R be of class C11, and σ : [0, T]×R → R be of class C12, both uniformly
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Lipschitz in the second variable, and with σ ̸= 0, ∂σ
∂X bounded. Consider the stochastic differential

Equation (1).

1. If the integration condition (2) holds, there exists a unique function Z : [0, T] × R → R
of class C23 such that Z(t, Bt) satisfies (1). Moreover, for all (t, x) ∈ [0, T]×R the value
Z(t, x) may be determined by solving successively the ordinary differential equations dZ(h)

dt = µ
(

t, Z(h)
)
− 1

2 σ
(

t, Z(h)
)

∂σ(t,Z(h))
∂Z

Z(h)(0) = x0

(11)

and {
dZ(v)

dx = σ
(

tZ(v)(x)
)

Z(v)(0) = Z(h)(t)
, (12)

with Z(t, x) = Z̃(v)(x).
2. If (1) has a solution of the form Xt = Z(t, Bt), where Z : [0, T]×R → R is of class C23, the

integration condition (2) holds for all (t, X) such that 0 < t < T, X ∈ Im(Z(t, .)).

The integration Condition (2) may be written in the form

Γ = σ
∂µ

∂X
− Dσ = 0, (13)

with

D =

(
∂

∂t
+ µ

∂

∂X
+

σ2

2
∂2

∂X2

)
the operator of Dynkin. As we will see, it is a consequence of the equality

∂2Z(t, x)
∂t∂x

=
∂2Z(x, t)

∂x∂t
,

where ∂Z
∂t and ∂Z

∂x are derived from Ito’s formula; in fact they are given by (11) and (12),
when written in the form of partial differential equations.

If Γ/σ depends only on t and is always non-zero, the stochastic differential equation
still has a functional solution, now of the form Z(t, Yt), where Yt is an Ito process given
by (10). In fact, G has the role of an “integrating factor”, and can be given in closed form,
as stated in Theorem 4.

Theorem 4 (Functional solution in terms of Ito processes). Let T > 0 and x0 ∈ R. Let
µ : [0, T] × R → R be of class C11, and σ : [0, T] × R → R be of class C12, both uniformly
Lipschitz in the second variable, and with σ ̸= 0, ∂σ

∂X bounded. Let Γ(t, X) be given by (2).

1. Assume Γ/σ depends only on t on [0, T]. Let Yt be an Ito process given by (3), with

G(t) = g0 exp
(
−
∫ t

0

Γ
σ
(s)ds

)
g0 ̸= 0, (14)

where y0 ∈ R and F : [0, T] → R is any function of class C1. Then there exists a unique
function Z : [0, T]×R → R of class C23 such that Z(t, Yt) satisfies (1). Moreover, for all
(t, x) ∈ [0, T]×R, the value Z(t, x) may be determined by solving successively the ordinary
differential equations dZ(h)

dt = µ
(

t, Z(h)
)
− σ

(
t, Z(h)

)(
1
2

∂σ(t,Z(h))
∂Z(h) + F(t)

G(t)

)
Z(h)(0) = x0

(15)
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and  dZ(v)

dx =
σ(tZ(v)(x))

G(t)
Z(v)(0) = Z(h)(t)

, (16)

with Z(t, x) = Z(v)(x).
2. Conversely, if (1) has a solution of the form Xt = Z(t, Yt), where Z : [0, T]×R → R is of

class C23 and Yt is an Ito process of the form (3) such that F, G : [0, T] → R are of class C1, it
holds that Γ/σ depends only on t for all (t, X) such that 0 < t < T, X ∈ Im(Z(t, .)), where
G is of the form (14).

The choice of F is free, and, of course, one may choose F ≡ 0. However, it may be
convenient to choose F ̸= 0, as will be seen in Section 5.2.

4. Proofs of the Main Theorems

Ito’s Lemma shows that a solution Z of the stochastic differential Equation (1) should
satisfy a system of partial differential equations. In particular, if a functional solution is
of the form Z(t, Bt), noting that µ, σ, F, and G all are supposed to be at least continuously
differentiable, by Theorem 1, the function Z should satisfy

∂Z
∂t + 1

2
∂2Z
∂x2 = µ(t, Z(t, x))

∂Z
∂x = σ(t, Z(t, x))
Z(0, 0) = x0

, (17)

and in the general case of solutions of the form Z(t, Yt), with Yt given by (3), according to
Theorem 2, the function Z should satisfy the system of partial differential equations

∂Z
∂t + F ∂Z

∂x + 1
2 G2 ∂2Z

∂x2 = µ(t, Z(t, x))
G ∂Z

∂x = σ(t, Z(t, x))
Z(0, 0) = x0

. (18)

With respect to system (17), the system (18) presents some additional complications.
This motivates a separate proof of Theorem 3.

Proof of Theorem 3. Let f : [0, T]×R×R → R and g : [0, T]×R×R → R be defined by{
f (t, x, Z) = µ(t, Z)− 1

2 σ(t, Z) ∂σ(t,Z)
∂Z

g(t, x, Z) = σ(t, Z)
. (19)

Then f is of class C1∞1 and g is of class C1∞2 and both are uniformly Lipschitz in the third
variable.

1. Assume (2) holds. Then

∂ f
∂x + g ∂ f

∂Z − ∂g
∂t − f ∂g

∂Z = σ
∂(µ− 1

2 σ ∂σ
∂Z )

∂Z − ∂σ
∂t −

(
µ − 1

2 σ ∂σ
∂Z

)
∂σ
∂Z

= σ
∂µ
∂Z − ∂σ

∂t − µ ∂σ
∂Z − σ2

2
∂2σ
∂Z2

= Γ = 0.

(20)

Hence, according to Proposition 1(1), the system of two partial differential equations
∂Z
∂t = f (t, x, Z)
∂Z
∂x = g(t, x, Z)
Z(0, 0) = x0

. (21)
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has a solution Z : [0, T]×R → R, which is at least of class C22. Note that

∂2Z
∂x2 =

∂σ(t, Z(t, x))
∂x

=
∂σ(t, Z(t, x))

∂Z
∂Z
∂x

= σ(t, Z(t, x))
∂σ(t, Z(t, x))

∂Z
. (22)

It follows that the function Z is at least of class C23. By substituting (21) and (22)
into (19), we see that Z satisfies the system (17). Then Ito’s Lemma in the form of
Theorem 1 implies that the process Z(t, Bt) solves the stochastic differential Equation (1).
By Proposition 1(2), at any point (t, x) with 0 ≤ t ≤ T, x ∈ R, the value Z(t, x) may
be determined by solving successively (11) and (12).
For uniqueness, let ζ : [0, T]×R → R be of class C23 such that ζ(t, Bt) is a stochastic
process satisfying (1). Then ζ satisfies the system (17). This system is equivalent to
the system 

∂Z
∂t = µ(t, Z(t, x))− 1

2
∂2Z
∂x2

∂Z
∂x = σ(t, Z(t, x))
Z(0, 0) = x0

,

and we derive from (22) that it is also equivalent to the system (21). The latter has a
unique solution by Proposition 1(1). Hence, ζ = Z.

2. Assume (1) has a solution of the form Xt = Z(t, Bt), such that Z : [0, T] × R → R
is of class C23. Then (8) holds for all (t, x) with 0 < t < T, x ∈ R. Similarly to the
uniqueness part of the proof of Theorem 3(1), we derive that (21) holds, with f and g
defined by (19). Differentiating as in (20), we derive that (2) holds for all (t, X) such
that 0 < t < T, X ∈ ImZ.

Proof of Theorem 4. Let the functions f : [0, T]×R×R → R and g : [0, T]×R×R → R
be defined by  f (t, x, Z) = µ(t, Z)− 1

2 σ(t, Z) ∂σ(t,Z)
∂Z − F(t)

G(t)σ(t, Z)

g(t, x, Z) = σ(t,Z)
G(t)

. (23)

Due to the conditions on F and G, the function f is of class C1∞1, the function g is of class
C1∞2 and both functions are uniformly Lipschitz in the third variable.

1. It follows from (14) that

G′ = −ΓG
σ

. (24)

Then the conditions for the integration of the system
∂Z
∂t = f (t, x, Z)
∂Z
∂x = g(t, x, Z)
Z(0, 0) = x0

(25)

are satisfied, as we derive from (2) and (24) that

∂ f
∂x + g ∂ f

∂Z − ∂g
∂t − f ∂g

∂Z = σ
G

∂(µ− 1
2 σ ∂σ

∂Z − F
G σ)

∂Z − ∂(σ/G)
∂t −

(
µ − 1

2 σ ∂σ
∂Z − F

G σ
)

∂(σ/G)
∂Z

= σ
G

∂µ
∂Z − 1

G
∂σ
∂t −

µ
G

∂σ
∂Z − σ2

2G
∂2σ
∂Z2 +

G′

G2 σ

= Γ−Γ
G = 0.

(26)
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Hence, (25) has a solution Z of class C22. It follows from (13) that

∂Z
∂x

=
σ(t, Z(t, x))

G(t)
. (27)

Hence,
∂2Z
∂x2 =

σ(t, Z(t, x))
G2(t)

∂σ(t, Z(t, x))
∂Z

, (28)

which implies that Z is in fact of class C23. According to Proposition 1(2), for (t, x)
with 0 ≤ t ≤ T, x ∈ R, we may determine Z(t, x) by solving successively (15) and
(16). It follows from (23) and (28) that Z satisfies (18), and then Theorem 2 ensures
that the process Zt ≡ Z(t, Yt) satisfies the stochastic differential Equation (1).
To prove the uniqueness part, let ζ : [0, T]×R → R be of class C23 such that ζ(t, Yt)
is a stochastic process satisfying (1). Then ζ satisfies the system (18). This system is
equivalent to the system

∂Z
∂t = µ(t, Z(t, x))− F ∂Z

∂x − 1
2 G2 ∂2Z

∂x2
∂Z
∂x = σ(t, Z(t, x))
Z(0, 0) = x0

, (29)

By (27) and (28), the system (29) reduces to the system (25), which has a unique
solution by Proposition 1(1). From this, we derive that ζ = Z.

2. Assume (1) has a solution of the form Xt = Z(t, Yt), such that Z : [0, T]×R → R is of
class C23, and Yt is given by (3), with F and G of class C1 in time. Then (8) holds for all
(t, x) with 0 < t < T, x ∈ R. As in the proof of the uniqueness part of Theorem 4 (1),
we see that also (25) holds, with f and g defined by (23). Then we differentiate as in
(26). We derive that for all (t, X) with 0 < t < T, X ∈ ImZ, it holds that

Γ + G′
G σ

G
= 0;

hence, also
Γ
σ
= −G′

G
.

We conclude that Γ/σ depends only on t and G is of the form (14).

5. Special Cases and Examples

The Sections 5.1 and 5.3 concern stochastic differentiable equations with functional
solutions in terms of Brownian Motion. Section 5.1 considers the autonomous case and
Section 5.3 two specific non-linear equations. Section 5.2 considers a class of linear equations.
They may have solutions that are a function of a stochastic integral with respect to Brownian
motion, where it is convenient to take the trend non-zero. A specific example of this class is
the Ornstein–Uhlenbeck process.

5.1. Autonomous Case

We will only study solutions of the form Z(t, Bt). Then the integration condition is
given by (2), and we will see that it may be solved explicitly for µ. A special case is given
by Geometric Brownian Motion, which satisfies a linear autonomous equation.

Consider the stochastic differential equation{
dXt = µ(Xt)dt + σ(Xt)dBt 0 ≤ t < T
X0 = x0

, (30)
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with x0 ∈ R, µ of class C1 and σ ̸= 0 of class C2. The functions µ and σ have only ordinary
derivatives with respect to X, which we indicate by primes.

The integration condition (2) takes the form

Γ = σµ′ − µσ′ − 1
2

σ2σ′′ = 0. (31)

Observe that only linear equations can have a solution that is a martingale, as µ = 0
amounts to σ′′ = 0.

One may reduce (31) to an ordinary linear differential equation for µ, i.e.,

µ′ =
σ′

σ
µ +

1
2

σσ′′. (32)

Solving (32) for µ, we see that in order for a functional solution Z(t, Bt) of class C12 to
exist, the trend µ should satisfy

µ(Xt) =

(
µ(x0)

σ(x0)
+

1
2
(
σ′(Xt)− σ′(x0)

))
σ(Xt). (33)

For 0 ≤ t ≤ T and Bt ≡ x, the ordinary differential equations used to determine Z(t, x)
also become autonomous. Equation (11) takes the form dZ(h)

dt = µ
(

Z(h)
)
− 1

2 σ
(

Z(h)
) dσ(Z(h))

dZ

Z(h)(0) = x0

(34)

and is of separable variables. Equation (12) becomes{
dZ(v)

dx = σ
(

Z(v)(x)
)

Z(v)(0) = Z(h)(t)
, (35)

and then Z(t, x) = Z(v)(x).

Example 1. As a simple example, we consider the linear stochastic differential equation with
constant coefficients {

dSt = µSt + σStdBt
S0 = s0

, (36)

with µ, σ, s0 ∈ R, σ ̸= 0. It is well-known that the solution is a Geometric Brownian Motion. In
fact, it can be expressed as

S(t, Bt) = exp

[(
µ − σ2

2

)
t + σBt

]
. (37)

Indeed, if we substitute S(t, Bt) into (9), it follows directly from Ito’s Lemma that S(t, Bt)
satisfies (36).

We give here a more a priori derivation of (37). We show first that µ(S) ≡ µS and σ(S) ≡ σS
satisfy the integration condition (33) and then determine the solution by solving the differential
Equations (34) and (35).

The integration condition (33) amounts to the identity

µS =
µ

σ
σS.
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With abuse of language, the first-order differential Equation (34) becomes{
dS
dt =

(
µ − σ2

2

)
S

S(0) = s0
,

and (35) becomes { dS
dx = σS
S(0) = s0 exp

[(
µ − σ2

2

)
t
] . (38)

Then (37) is obtained by solving (38), where we put x = Bt.

A nonlinear autonomous equation with a functional solution is presented in Example 4
of Section 5.3.

5.2. Linear Stochastic Differential Equations

We consider linear stochastic differential equations with variable coefficients of the form{
dXt = (α(t) + β(t)Xt)dt + (γ(t) + δ(t)Xt)dBt 0 ≤ t ≤ T
X0 = x0

, (39)

where α, β, γ, δ : [0, T] → R are of class C1, and x0 ∈ R. Like ordinary linear stochastic dif-
ferential equations they can be solved in general. We present conditions on the coefficients
ensuring that the solution is a function of time and an Ito process, in particular this is the
case for homogeneous equations. However, in most cases the solution is not a function of
an Ito process. We will illustrate this with the help of linear stochastic differential equations
with constant coefficients.

Theorem 5 gives the solution formula for (39), which is a special case of [2] Theorem 8.4.2.

Theorem 5. Consider the linear stochastic differential Equation (39).

1. The solution of the associated homogeneous equation{
dYt = β(t)Ytdt + δ(t)YtdBt 0 ≤ t ≤ T
Y0 = 1

(40)

is given by

Yt = exp
(∫ t

0

(
β(s)− δ2(s)

2

)
ds +

∫ t

0
δ(s)dBs

)
. (41)

2. The solution of (39) is given by

Xt = Yt

(
x0 +

∫ t

0
Y−1

s (α(s)− γ(s)δ(s))ds +
∫ t

0
Y−1

s γ(s)dBs

)
. (42)

The solution of the homogeneous Equation (40) of Theorem 5(1) is an Ito process.
Observe that if β, δ are constant, Equation (40) reduces to (36). The proof of (41) is similar
to the proof of (37). The proof of Theorem 5(1) uses Ito’s product formula [1].

We study now whether (42) represents a functional solution. For simplicity, we
consider the case where α, β, γ, δ are constants.

Proposition 2. Consider the linear stochastic differential equation with constant coefficients{
dXt = (α + βXt)dt + (γ + δXt)dBt 0 ≤ t ≤ T
X0 = x0

, (43)

where α, β, γ, δ ∈ R, and γ, δ are not both zero.
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1. If αδ − βγ = 0, the solution of (43) is a function of time and Brownian Motion. We have the
following subcases:

(a) δ = β = 0. Then Xt = x0 + α + γBt.

(b) γ = α = 0. Then Xt = exp
[(

β − δ2

2

)
t + δBt

]
, i.e., Xt is a Geometrical Brownian

Motion.
(c) α, β, γ, δ ̸= 0. Again the solution is a Geometrical Brownian Motion.

2. If β, γ ̸= 0, δ = 0, the solution may be written as a function Z(t, Yt) of time and the Ito
process

Yt =
∫ t

0
exp β(t − s)dBs. (44)

In fact,

Xt = x0eβt +
α

β

(
1 − e−βt

)
+ γ

∫ t

0
eβ(t−s)dBs. (45)

In particular, if α ̸= 0, the solution is an Ornstein-Uhlenbeck process.
3. If δ ̸= 0 and αδ − βγ ̸= 0, the Equation (43) does not have a functional solution in terms of

time and an Ito process.

Proof. The value of Γ as defined by (2) is given by

Γ = (γ + δX)β − (α + βX)δ = βγ − αδ. (46)

1. Assume that αδ − βγ = 0. Then it follows from (46) that Γ = 0. According to Theo-
rem 3, the Equation (43) has a solution that is a function of time and Brownian Motion.
If αδ = βγ = 0, only the cases (1a) and (1b) are relevant, else (43) is not a stochastic
differential equation. In both cases the solution formulas follow in a straightforward
way from Theorem 5.
If αδ ̸= 0, also βγ ̸= 0. Then we have indeed α, β, γ, δ ̸= 0. Then there exists c ̸= 0
such that α = cβ, γ = cδ. By the change of variable Yt = (c + 1)Xt, one obtains
a homogeneous linear stochastic differential equation with constant coefficients. It
follows that the solution is a Geometrical Brownian Motion.

2. Formula (45) easily follows from Theorem 5. It shows that the solution is a function of
time and the Ito process (44). In Example 2 below, we establish the relation with the
common formulation of the Ornstein–Uhlenbeck process.

3. It holds that
Γ
σ
=

βγ − αδ

γ + δX
.

Hence, Γ/σ does not only depend on time. According to Theorem 4(2), the
Equation (43) cannot have a solution that is a function of time and an Ito process.

Example 2. The well-known Ornstein–Uhlenbeck process corresponds to Part 2 of Proposition 2.
Indeed, by putting θ = −β, µ = α/θ, σ = γ and Rt = Xt, the stochastic differential Equation (43)
takes the more common form{

dRt = θ(µ − Rt)dt + σdBt 0 ≤ t < T
R0 = r0

,

where θ, µ, σ ̸= 0, r0 ∈ R. Its solution is given by the well-known formula

Rt = r0e−θt + µ(1 − e−θt) +
∫ t

0
eθ(s−t)dBs. (47)

Below, we derive (47) by applying Theorem 4(1).
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The integrating factor takes the form

G(t) = ceθt,

for some c ∈ R; hence, Rt = Z(t, Yt), where Yt is of the form

Yt = y0 +
∫ t

0
F(s)ds + c

∫ t

0
eθsdBs,

with y0 ∈ R and F of class C1 on [0, T]. To simplify, we assume that y0 = 0 and c = 1.
The differential Equations (15) and (16) become{

dZ(h)

ds = θµ − σF(s)e−θs − θZ(h)

Z(h)(0) = r0

and {
dZ(v)

dx = σe−θt

Z(v)(0) = Z(h)(t)
.

To simplify, we take F to be non-zero; in fact,

F(s) =
θµ

σ
eθs.

Then the differential equation for Z(h) becomes homogeneous. The solution Z is given by

Z(t, Yt) = r0e−θt + σe−θtYt,

where Yt =
θµ
σ

∫ t
0 eθsds +

∫ t
0 eθsdBs =

µ
σ (e

θt − 1) +
∫ t

0 eθsdBs. This reduces to (47).

Example 3. The stochastic process

Xt = exp(Bt)
(∫ t

0 exp(−Bs)ds +
∫ t

0 exp(−Bs)dBs

)
.

does not have the property of path-independence with respect to the trajectories of an Ito process.
Indeed, it follows from (42) that it is the solution of the linear stochastic differential equation with
constant coefficients (43), as α = 2, β = 1/2, γ = 1, δ = 1 and x0 = 0. Then αδ − βγ = 3/2 ̸= 0.
By Proposition 2(3), the process Xt cannot be a function of time and an Ito process.

5.3. On Nonlinear Stochastic Differential Equations

The most obvious non-linear equations are polynomial equations. However, they are
not appropriate in our context, because they do not satisfy the Lipschitz condition. This
particularity remains if the powers are fractional. The coefficients of Example 4 below are
rational functions with quadratic decay and the coefficients of Example 5 have quadratic
exponential decay.

Example 4. Consider the autonomous stochastic differential equation{
dXt = − Xt

(1+X2
t )

3 dt + 1
1+X2

t
dBt 0 ≤ t < T

X0 = 0
.

We put 
µ(Xt) = − Xt

(1+X2
t )

3

σ(Xt) = 1
1+X2

t

.
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In a straightforward way, one verifies that µ and σ satisfy (33). Hence, according to Theorem
3, the stochastic differential Equation (1) has a functional solution of the form Z(t, Bt).

We will see that Z depends only on Bt. The function Z may be determined by solving
successively the ordinary differential Equations (34) and (35). The solution of (34) is simply
Z(h) = 0. Let 0 ≤ t ≤ T and x = Bt. The Equation (35) becomes{

dZ(v)

dx = 1
1+(Z(v))2

Z(v)(0) = 0
.

One finds Z + Z3/3 = Bt. Then Cardano’s formula [16] yields

Z(Bt) =
3

√√√√3Bt +
√

9B2
t + 4

2
+

3

√√√√3Bt −
√

9B2
t + 4

2
.

Example 5. Consider the stochastic differential Equation (1) with
µ(t, Xt) =

exp
(
− X2

2

)
t+1

∫ X
0 exp ξ2

2 dξ − X(t+1)2

2 exp
(
−X2)

σ(t, Xt) = (t + 1) exp
(
−X2

2

) .

All the terms are infinitely differentiable. Using the fact that they have a factor with exponential
decay, one verifies that the functions σ and ∂σ

∂X are uniformly bounded and µ(t, X) is uniformly
Lipschitz in X. One verifies also that µ and σ satisfy the integration condition (2). Hence, according
to Theorem 3, the stochastic differential Equation (1) has a solution Z(t, Bt), which may be found
by solving the ordinary differential equations with separable variables dZ(h)

dt = 1
t+1 exp

(
− (Z(h))

2

2

) ∫ Z(h)

0 exp ξ2

2 dξ

Z(h)(0) = x0

and  dZ(v)

dx = (t + 1) exp
(
− (Z(v))

2

2

)
Z(v)(0) = Z(h)(t)

.

6. On Path-Dependent Functional Solutions

In general, it seems not to be very relevant to study a general condition enabling the
expression of the solution of the stochastic differential Equation (1) as a function of time
and a continuous semi-martingale, i.e., a process given by another stochastic differential
equation. Indeed, the equality of mixed derivatives (8) would lead to a system of coupled
partial differential equations involving two processes.

However, in [10], H. Doss expresses the solution of a stochastic differential equation
successfully as a function

Xt = h(Dt, Mt) (48)

of a stochastic process with differential trajectories Dt and a continuous semi-martingale Mt.
In general, these processes are path-dependent. It is shown that the function h satisfies a
partial differential equation, and the random variables Dt(ω) satisfy an ordinary differential
equation, where ω ∈ Ω for some probability space Ω. Though the approach of [10] is valid
for time-dependent stochastic differential equations, it is treated in detail for autonomous
equations, i.e., equations of the form (30). Below, we sketch briefly this approach. For
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simplicity we take Mt to be equal to Brownian motion Bt, corresponding to [10] (Theorem 3),
i.e., (48) becomes

Xt = h(Dt, Bt).

As in [10], we denote the derivative a function f by f ′, and also, with some abuse of
language, for every ω ∈ Ω, the derivative of the random variable Dt(ω) with respect to
time will be written D′

t(ω). Like in the Main Theorems, we assume that µ and σ, figuring
in (30), are of class C2, and satisfy the Lipschitz condition.

The function h : R2 → R is defined by{
∂h(u,x)

∂x = σ(h(u, x))
h(u, 0) = u

. (49)

We recognize the differential equation for Z(v) as given in (12), with a different initial
condition. It is shown in [10] (Theorem 3.i, Equation (V)) that the random variables D′

t(ω)
satisfy almost surely

D′
t(ω) = exp

(
−
∫ Bt(ω)

0
σ′(h(Ds(ω), s))ds

)(
µ(h(Dt, (Bt(ω)))− 1

2
σ′σ(h(Dt, (Bt(ω)))

)
. (50)

In the special case of path-independence corresponding to

Dt(ω) = t ∀ω ∈ Ω, (51)

we will derive from the differential Equation (50) a partial differential equation for the
solution h, i.e.,

∂h(t, x)
∂t

= µ(h(t, x))− 1
2

σ′σ(h(t, x)). (52)

We will see that also the integration condition (31) is satisfied.
As indicated in [10] (Lemme 2), the function h is of class C22. Then the equality of

mixed derivatives
∂2h(u, x)

∂u∂x
=

∂2h(u, x)
∂x∂u

.

holds. Then also
∂

∂h(u,x)
∂u

∂x
=

∂σ(h(u, x))
∂u

= σ′(h(u, x))
∂h(u, x)

∂u
,

hence,
∂h(u, x)

∂u
= exp

(∫ x

0
σ′(h(u, v))dv

)
. (53)

One derives from Ito’s Lemma, (49), (53) and (30) that

dh(Dt, Bt) = ∂h
∂D D′

tdt + ∂h
∂B dBt +

1
2

∂2h
∂B2 dt

=
(

exp
(∫ x

0 σ′(h(Ds, s))ds
)

D′
t +

1
2 σ′σ

)
dt + σdBt

= µdt + σdBt.

It follows that

D′
t exp

(∫ x

0
σ′(h(Ds, s))ds

)
+

1
2

σ′σ = µ.

This implies (50).
Finally, we assume that D is given by (51), and derive (52) and the integration

condition (31). Observe that D′
t = 1, so (52) follows from (53) and (50). Hence, using (49)

∂2h(t, x)
∂x∂t

= σµ′(h(t, x))− 1
2

σ′′σ2(h(t, x))− 1
2

σ(σ′)2(h(t, x)).
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Also, again using (49) and (52)

∂2h(t, x)
∂t∂x

= σ′(h(t, x))
(

µ(h(t, x))− 1
2

σ′σ(h(t, x))
)

.

Hence, (31) holds, for

σµ′(h(t, x))− σ′(h(t, x))µ(h(t, x)− 1
2

σ′′σ2(h(t, x)) =
∂2h(t, x)

∂x∂t
− ∂2h(t, x)

∂t∂x
= 0.

7. Conclusions

A necessary and sufficient criterion was given for the existence and uniqueness of a
solution of a stochastic differential equation, which is a function of time and an Ito process.
This criterion determines the martingale part of the Ito process, and seems to be new. The
deterministic part of the Ito process may be chosen by convenience. The solution being
functional, path-independence holds for the trajectories of the process, and because it is
given in terms of a twice continuously differentiable function, path-independence also
holds when determining its value along a piece-wise differentiable curve starting at an
initial condition. Choosing a horizontal path, followed by a vertical path, this value can be
determined by solving successively two ordinary differential equations. The special case
where the Ito process reduces to Brownian motion leads to some simplifications.

A functional solution, in particular in the case of Brownian motion with its Gaussian
probability distribution, can be used as a tool to study the properties of the random
variables of the process, like expectation and variance. A well-known application in this
sense concerns the Black–Scholes model [17], in economics. This model states that the price
of an option on an asset is determined by a self-financing stochastic process, which has
the form of a stochastic differential equation. Its solution is a Geometric Brownian Motion,
hence is a function of time and Brownian Motion. In particular the Black–Scholes formula
for the price of a European option is given by an expectation, in terms of an integral of this
function. This motivates research for applications of functional solutions in other areas
outside mathematics. In particular functional solutions facilitate the study of the behavior
of trajectories, which is relevant for, say, population dynamics. The presence of formulas for
densities and distribution functions may also be interesting from a numerical point-of-view.
For instance, usually it is easier to estimate the conditional variance of a process than its
trend. As a primary guess, one could choose a trend satisfying an integration condition,
and test whether the corresponding distribution function leads to a reasonable fit.
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