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Abstract: The conventional approach of the local convergence analysis of an iterative method on
Rm, with m a natural number, depends on Taylor series expansion. This technique often requires the
calculation of high-order derivatives. However, those derivatives may not be part of the proposed
method(s). In this way, the method(s) can face several limitations, particularly the use of higher-order
derivatives and a lack of information about a priori computable error bounds on the solution distance
or uniqueness. In this paper, we address these drawbacks by conducting the local convergence
analysis within the broader framework of a Banach space. We have selected an important family of
high convergence order methods to demonstrate our technique as an example. However, due to its
generality, our technique can be used on any other iterative method using inverses of linear operators
along the same line. Our analysis not only extends in Rm spaces but also provides convergence
conditions based on the operators used in the method, which offer the applicability of the method
in a broader area. Additionally, we introduce a novel semilocal convergence analysis not presented
before in such studies. Both forms of convergence analysis depend on the concept of generalized
continuity and provide a deeper understanding of convergence properties. Our methodology not
only enhances the applicability of the suggested method(s) but also provides suitability for applied
science problems. The computational results also support the theoretical aspects.

Keywords: higher-order method; convergence; nonlinear systems; Banach space; continuity
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1. Introduction

Iterative methods stand as a foundation in numerical analysis that can handle the
tough challenge of solving nonlinear equations. These equations came from diverse do-
mains ranging from physics and engineering to economics and finance [1–7]. In general,
the analytical solutions to such problems are almost nonexistent. They can be transmitted
in the form of:

∆(x) = 0, (1)

where ∆ : Φ ⊆ M1 → M2, with M1 and M2 being Banach spaces.
Iterative methods represent numerical strategies that work with an initial approxima-

tion or more than one initial approximation. They enhance the solution until it reaches a
predefined level of precision. One such iterative method is the Newton–Raphson method.
This is one of the most significant iterative methods, which is given by

xσ+1 = xσ − ∆′(xσ)
−1∆(xσ),
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where σ denotes a natural number, including zero. Newton’s method is a well-known
and frequently applied iterative procedure for solving nonlinear problems. However, this
method encounters various challenges when applied to nonlinear equations, such as slower
convergence, divergence when the Jacobian matrix approaches a null matrix, and failure
to function when the Jacobian matrix is null. Consequently, researchers have proposed
improvements or modifications to this method over time. We have also opted for such an
iterative approach.

yσ = xσ − α∆′(xσ)
−1∆(xσ), Aσ = A(α, xσ, yσ),

z(1)σ = xσ − A−1
σ ∆(xσ), Bσ = B(α, xσ, yσ),

...

z(k)σ = z(k−1)
σ − Bσ∆(z(k−1)

σ ),

xσ+1 = z(k+1)
σ = z(k)σ − Bσ∆(z(k)σ ), σ = 0, 1, 2, . . . ,

(2)

where α ∈ R−{0}, k ∈ N, Aσ =
1

2α
∆′(yσ)+

(
1 − 1

2α

)
∆′(xσ), and Bσ = 2A−1

σ −∆′(xσ)−1

and x0 ∈ Φ.
The convergence order k + 2 is shown in [8] using a local Taylor series by assuming

the existence and boundedness of ∆(4) for M1 = M2 = Rm, where m is a natural number.
There exist the same concerns with the Taylor expansion series technique mostly used

to study the convergence of iterative methods.

1.1. Motivation

(L1) The convergence is shown by assuming derivatives not in this method, such as ∆′′,
∆′′′, and ∆(4). Let Φ0 = [−1.3, 1.3]. Define the function g(ξ) = s1ξ3 log t + s2ξ5 + s3ξ4

for t ̸= 0 and g(ξ) = 0 for ξ = 0, where s1 ̸= 0 and s2 + s3 = 0. It follows by this
definition that the functions g′′′ and g(4) are not continuous at ξ = 0. Thus, the results
in [8] can not guarantee the convergence of the method to the solution ξ∗ = 1 ∈ Φ0.
But the method converges to ξ∗, say for k = 1 and ξ0 = 0.9. It follows by this academic
example that the convergence conditions can be weakened. Clearly, it is preferable to
use conditions only on ∆, ∆′ that are in the method.

(L2) The selection of the initial point constitutes a “shot in the dark”. This is because there
is no computable radius of convergence to assist us in choosing possible points x0.

(L3) A priori and computable estimates on ∥xσ − ξ∗∥ are not available. Hence, we do not
know in advance how many iterations should be carried out to arrive at a desirable
error tolerance.

(L4) There is no computable domain about ξ∗ that contains no other solution of the equation
∆(x) = 0.

(L5) There is no information in [8] about the semilocal analysis of convergence for the
method.

(L6) This study is restricted on Rm.

The concerns (L1)− (L6) constitute our motivation for this article.
It is worth noticing that these concerns are present in any other studies using the

Taylor series on Rm [4–7,9–29]. Therefore, the handling of these concerns will also extend
the applicability and inverse of linear operators of other methods along the same lines. Our
technique is demonstrated in method (2) as an example. But if it is so general, it can be
used on any other method using inverses along the same lines. In particular, we deal with
these concerns as follows:
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1.2. Novelty

(L1)
′ The new sufficient convergence conditions involve only the operators in the method.
(See the conditions (H1)− (H7) or (E1)− (E6)).

(L2)
′ A computable radius of convergence is determined. Thus, the selection of initial
points that guarantee the convergence of the method becomes possible. (See (3)).

(L3)
′ The number of iterations required to achieve an error tolerance ϵ > 0 is known in
advance, because we provide computable upper error bounds on ∥xσ − ξ∗∥. (See
Theorem 1).

(L4)
′ A neighborhood of ξ∗ is found that contains no other solution of the equation ∆(x) = 0.
(See the Propositions).

(L5)
′ A semilocal analysis of convergence is developed by relying on majorizing
sequences [1–5]. (See Section 3).

(L6)
′ The convergence is established for Banach space-valued operators.

Notice also that the convergence in both cases is based on the generalized
continuity [1–3] assumption on the operator ∆′.

The rest of this article is structured as follows: Section 1 contains the local analysis
followed by the semilocal analysis in Section 3. The numerical examples appear in Section 4.
This article ends with the ending remarks in Section 5.

2. Local Analysis

Let Q = [0,+∞). The convergence is based on some conditions.
Suppose the following:

(H1) There exists a function ℵ0 : Q → R+, which is continuous as well as nondecreasing,
such that ℵ0(ξ)− 1 = 0 admits a smallest solution, which is positive. Denote such a
solution with the letter ρ0.
Take Q0 = [0, ρ0).

(H2) The rest exists as a function that is continuous and nondecreasing ℵ : Q0 → R+ such
that for h0 : Q0 → R, the equation h0(ξ)− 1 = 0 admits a smallest positive solution
denoted by r0, where

h0(ξ) =

∫ 1
0 ℵ

(
(1 − ω)ξ

)
dω + |1 − α|

(
1 +

∫ 1
0 ℵ0(ωξ)dω

)
1 − ℵ0(ξ)

.

(H3) If ℵ̃(ξ) =


ℵ
((

1 + h0(ξ)
)

ξ

)
or

ℵ0(ξ) + ℵ0

(
h0(ξ)ξ

)
,

define P(ξ) =
1

2|α| ℵ̃(ξ) + ℵ0(ξ). The equation

P(ξ)− 1 = 0 admits a smallest solution, which is positive, denoted by ρ1 ∈ (0, ρ0).
Set ρ = min{ρ0, ρ1} and Q1 = [0, ρ).

(H4) The equations h1(ξ)− 1 = 0 and hi(ξ)− 1 = 0, i = 2, 3, . . . , k + 1 admit a smallest
positive solution denoted by r1, ri ∈ (0, ρ), respectively, where

h1(ξ) =

∫ 1
0 ℵ

(
(1 − ω)ξ

)
dω

1 − ℵ0(ξ)
+

ℵ̃(ξ)
(

1 +
∫ 1

0 ℵ0(ωξ)dω
)

2|α|(1 − ℵ0(ξ))(1 − P(ξ))

and for

w̃i−1(ξ) =


ℵ
((

1 + hi−1(ξ)
)

ξ

)
ℵ0(ξ) + ℵ0

(
hi−1(ξ)ξ

)
,
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hi(ξ) =


∫ 1

0 ℵ
(
(1 − ω)hi−1(ξ)ξ

)
dω

1 − ℵ0

(
hi−1(ξ)ξ

) +

 1
2|α| ℵ̃(ξ) + w̃i−1(ξ)(

1 − ℵ0

(
hi−1(ξ)ξ

))(
1 − P(ξ)

)

+
ℵ̃(ξ)(

1 − ℵ0(ξ)
)(

1 − P(ξ)
)
(

1 +
∫ 1

0
ℵ0

(
ωhi−1(ξ)ξ

)
dω

)hi−1(ξ)

Take
r = min{rj}, j = 0, 1, 2, . . . , k + 1, (3)

and set Q∗ = [0, r).
The definitions imply that for each ξ ∈ Q∗,

0 ≤ℵ0(ξ) < 1, (4)

0 ≤P(ξ) < 1, (5)

0 ≤ℵ0(hi−1(ξ)ξ) < 1, (6)

0 ≤hj(ξ) < 1. (7)

The developed scalar functions ℵ0 and ℵ are associated to the operator ∆′ in the
method.

(H5) There exists an invertible operator γ ∈ ℓ
(
M1,M2

)
such that for each x ∈ Φ,∥∥∥γ−1(∆′(x)− γ)

∥∥∥ ≤ ℵ0(∥x − ξ∗∥).

Take T0 = S(ξ∗, ρ0) ∩ Φ.

(H6)
∥∥∥γ−1

(
∆(y)− ∆(x)

)∥∥∥ ≤ ℵ(∥y − x∥) for each x, y ∈ T0

and
(H7) S[ξ∗, r] ⊂ Φ.

Remark 1.

(i) A possible and popular choice for γ = I or γ = ∆′(ξ∗). In the latter choice, ξ∗ is a simple
solution of the equation ∆(x) = 0 according to the condition (H5). In our analysis, we do not
necessarily assume that ξ∗ is simple. Thus, the method can also be used to find solutions of ξ∗

of multiplicity greater than one. Another selection is γ = I. Other choices can be considered
as (H5) and (H6) hold.

(ii) We shall choose the smallest version of the functions ℵ̄ in the examples to obtain tighter error
bounds on ∥xσ − ξ∗∥ as well as a larger r.

Next, the local analysis follows for the method (2).

Theorem 1. Suppose that the conditions (H1)− (H7) are satisfied. Then, if x0 ∈ S0 = S(ξ∗, r)−
{ξ∗}, the sequence {xσ} is convergent to ξ∗.

Proof. The following items are established by induction:

∥yσ − ξ∗∥ ≤ h0(∥xσ − ξ∗∥)∥xσ − ξ∗∥ ≤ ∥xσ − ξ∗∥ < r, (8)

∥z(1)σ − ξ∗∥ ≤ h1(∥xσ − ξ∗∥)∥xσ − ξ∗∥ ≤ ∥xσ − ξ∗∥, (9)

∥z(i)σ − ξ∗∥ ≤ hi(∥xσ − ξ∗∥)∥xσ − ξ∗∥ ≤ ∥xσ − ξ∗∥, i = 2, 3, . . . , k + 1, (10)
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where the radius r is determined by the formula (3), and all the scalar functions gm,
m = 0, 1, 2, . . . , k + 1 are as given previously. The condition (H5), (3), and the definition of
ρ0 and r give in turn∥∥∥γ−1

(
∆′(x0)− γ

)∥∥∥ ≤ ℵ0(∥x0 − ξ∗∥) ≤ ℵ0(r) < 1. (11)

So, the linear operator ∆′(x0) is invertible by the standard perturbation Lemma on operators
that are invertible due to Banach [1–5]. We also have∥∥∥∆′(x0)

−1γ
∥∥∥ ≤ 1

1 − ℵ0(∥x0 − ξ∗∥) . (12)

Consequently, the iterate x0 exists by the first substep of the method (2), and

y0 − ξ∗ =x0 − ξ∗ − ∆′(x0)
−1∆(x0) + (1 − α)∆′(x0)

−1∆(x0)

=
∫ 1

0
∆′(x0)

−1(∆′(ξ∗ + ω(x0 − ξ∗))− ∆′(x0))dω(x0 − ξ∗)

+(1 − α)∆′(x0)
−1S′

0(∆
′(ξ∗ + ω(x0 − ξ∗))− ∆′(x0) + ∆′(x0))dω(x0 − ξ∗).

(13)

By applying the condition (H6), and using (7) (for j = 0), (12), and (13), we obtain in
turn that

∥y0 − ξ∗∥ ≤

[∫ 1
0 ℵ((1 − ω)∥x0 − ξ∗∥)dω + |1 − α|(1 +

∫ 1
0 ℵ0(ω∥x0 − ξ∗∥)dω)

]
∥x0 − ξ∗∥

1 − ℵ0(∥x0 − ξ∗∥)
≤h0(∥x0 − ξ∗∥)∥x0 − ξ∗∥ ≤ ∥x0 − ξ∗∥ < r.

(14)

Thus, the iterate y0 ∈ S(ξ∗, r), and the item (8) is satisfied for σ = 0. We need the estimate∥∥∥γ−1
(

A0 − α
)∥∥∥ ≤ 1

2|α|

∥∥∥γ−1
(

∆′(y0)− ∆′(x0)
)∥∥∥+ ∥γ−1(∆′(x0)− γ)∥

≤ 1
2|α| ℵ̃0(∥y0 − ξ∗∥) + ℵ0(∥x0 − ξ∗∥) = ρ0 < 1,

(15)

(by (5)), where the first norm in (15) can be calculated by two different ways:∥∥∥γ−1
(

∆′(y0)− ∆′(x0)
)∥∥∥ ≤ℵ(∥y0 − ξ∗∥+ ∥x0 − ξ∗∥)

≤ℵ((1 + h0(∥x0 − ξ∗∥))∥x0 − ξ∗∥)
≤ℵ̃0(∥x0 − ξ∗∥)

or ∥∥∥γ−1
(

∆′(y0)− ∆′(x0)
)∥∥∥ ≤

∥∥∥γ−1
(

∆′(x0)− γ
)∥∥∥+ ∥∥∥γ−1

(
∆′(y0)− γ

)∥∥∥
≤ℵ0(∥x0 − ξ∗∥) + ℵ0(∥y0 − ξ∗∥)
≤ℵ0(∥x0 − ξ∗∥) + ℵ0(h0(∥x0 − ξ∗∥)∥x0 − ξ∗∥)
≤ℵ̃0(∥x0 − ξ∗∥).

So, the linear operator A0 is invertible and∥∥∥A−1
0 γ

∥∥∥ ≤ 1
1 − P(∥x0 − ξ∗∥) . (16)

It follows that the iterate z(1)0 exists by the second substep of the method (2), and

z(1)0 − ξ∗ =x0 − ξ∗ − ∆′(x0)
−1∆(x0) + (∆′(x0)

−1 − A−1
0 )∆(x0)

=x0 − ξ∗ − ∆′(x0)
−1∆(x0)− A−1

0 (∆′(x0)− A0)∆′(x0)
−1∆(x0).

(17)
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Hence, we obtain by (3), (7) (for j = 2), (16), and (17) that

∥∥∥z(1)0 − ξ∗
∥∥∥ ≤

[∫ 1
0 ℵ((1 − ω)∥x0 − ξ∗∥)dω

1 − ℵ0(∥x0 − ξ∗∥)

+
ℵ̃0(∥x0 − ξ∗∥)(1 +

∫ 1
0 ℵ0(ω∥x0 − ξ∗∥)dω)

2|α|(1 − ℵ0(∥x0 − ξ∗∥))(1 − P(∥x0 − ξ∗∥))

]
∥x0 − ξ∗∥

≤h1(∥x0 − ξ∗∥)∥x0 − ξ∗∥ ≤ ∥x0 − ξ∗∥.

(18)

It follows by (18) that the iterate z(1)0 ∈ S(ξ∗, r), and the item (9) holds if σ = 0. Moreover,

the iterate z(2)0 is well defined by the third substep of the method (2), and

z(2)0 − ξ∗ =z(1)0 − ξ∗ − ∆′(z(1)0 )−1∆(z(1)0 ) + (∆′(z(1)0 )−1 + ∆′(x0)
−1 − 2A−1

0 )∆(z(1)0 )

=z(1)0 − ξ∗ − ∆′(z(1)0 )−1∆(z(1)0 ) + ∆′(z(1)0 )−1(A0 − ∆′(z(1)0 ))A−1
0 ∆(z(1)0 )

+∆′(x0)
−1(A0 − ∆′(x0))A−1

0 ∆(z(1)0 ),

(19)

leading to

∥∥∥z(2)0 − ξ∗
∥∥∥ ≤

[ ∫ 1
0 ℵ((1 − ω)∥z(1)0 − ξ∗∥)dω

1 − ℵ0(∥z(1)0 − ξ∗∥)
+

 1
2|γ| ℵ̃0(∥x0 − ξ∗∥) + ℵ(∥z(1)0 − ξ∗∥)

(1 − ℵ0(∥z(1)0 − ξ∗∥))(1 − P(∥x0 − ξ∗∥))

+
ℵ̃0(∥x0 − ξ∗∥)

(1 − ℵ0(∥x0 − ξ∗∥))(1 − P(∥x0 − ξ∗∥))

)(
1 +

∫ 1

0
ℵ0(ω∥z(1)0 − ξ∗∥)dω

)]
∥z(1)0 − ξ∗∥

≤h2(∥x0 − ξ∗∥)∥x0 − ξ∗∥ ≤ ∥x0 − ξ∗∥.

(20)

Thus, the iterate z(2)0 ∈ S(ξ∗, r), and the item (10) is satisfied if i = 2. But the computations

for the derivation of (20) can be repeated if z(3)0 , z(4)0 , . . . , z(k+1)
0 replace z(1)0 , respectively,

in the preceding estimations, which terminates the induction for (10). Hence, the iterate
xk+1 ∈ S(ξ∗, r) and

∥xσ+1 − ξ∗∥ = ∥zk+1
σ − ξ∗∥ ≤ c∥xσ − ξ∗∥ < r, (21)

where c = hk+1(∥x0 − ξ∗∥) ∈ [0, 1). Therefore, we conclude that all the iterates {xσ} stay
in S(ξ∗, r) and lim

σ→∞
xσ = ξ∗.

Next, a neighborhood of ξ∗ is determined containing no other solution.

Proposition 1. Suppose the following:
The solution ξ∗ ∈ S(ξ∗, ρ2) for some ρ2 > 0.
The condition (H5) is satisfied in the ball S(ξ∗, ρ2), and there exists ρ3 ≥ ρ2 such that∫ 1

0
ℵ0(ωρ3)dω < 1. (22)

Define D1 = Φ ∩ S[ξ∗, ρ3].
Then, the only solution of the equation ∆(x) = 0 in the set D1 is ξ∗.

Proof. Let x̃ ∈ D1 be such that ∆(x̃) = 0.
Consider the linear operator T =

∫ 1
0 ∆′(ξ∗ + ω(x̃ − ξ∗))dω. Then, by applying the

condition (H5) and using (22), we obtain in turn that∥∥∥γ−1(T − γ)
∥∥∥ ≤

∫ 1

0
v0(ω∥x̃ − ξ∗∥)dω ≤

∫ 1

0
v0(ωρ3)dω < 1. (23)

It follows by (23) that the operator T is invertible. Finally, by the identity, we obtain

x̃ − ξ∗ = T−1(∆(x̃)− ∆(ξ∗)) = T−1(0) = 0.
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Thus, we deduce that x̃ = ξ∗.

Remark 2. Clearly, we can take ρ2 = r in Proposition 1.

In the next section, similar estimates are used to show the semilocal analysis of
convergence for the method (2). But the role of the functions ℵ0,ℵ and the solution ξ∗ is
exchanged by the functions v0, v and the initial point x0, respectively.

3. Semilocal Analysis

Suppose the following:

(E1) There exists a function that is continuous and nondecreasing v0 : Q → R+ such that
the equation v0(ξ)− 1 = 0 has a smallest solution, which is positive, denoted by ρ4.
Set Q2 = [0, ρ4).

(E2) There exists a function that is continuous and nondecreasing v : Q2 → R+.

Define the scalar sequence {a(m)
σ } for a(0)0 = 0, some a(0)1 ∈ [0, ρ4), and each

σ = 0, 1, 2, . . . , m = 0, 1, 2, . . . , k
by

ṽσ =


v(a(1)σ − a(0)σ )

or

v0(a(0)σ ) + v0(a(1)σ ),

λσ =
1

2|α| ṽσ + (1 + v0(a(0)σ )),

µ
(m)
σ =

(
1 +

∫ 1

0
v0(a(0)σ + ω(a(m+1)

σ − a(0)σ ))dω

)
(a(m+1)

σ − a(0)σ )

+
1
|α| (1 + v0(a(0)σ ))(a(1)σ − a(0)σ ),

qσ =
1

2|α| ṽσ + v0(a(0)σ ),

a(2)σ =a(1)σ +
|1 − α|

(
1 + v0(a(0)σ ) + 1

2 ṽσ

)(
a(1)σ − a(0)σ

)
|α|(1 − qσ)

,

a(m+2)
σ =a(m+1)

σ +
λσ µ

(m)
σ

(1 − v0(a(0)σ ))(1 − qσ)
,

bσ+1 =
∫ 1

0
v((1 − ω)(a(0)σ+1 − a(0)σ ))dω(a(0)σ+1 − a(0)σ )

+
1
|α| (1 + v0(a(0)σ ))(a(1)σ − a(0)σ ),

and

a(1)σ+1 =a(0)σ+1 + |α| bσ+1

1 − v0(a(0)σ+1)
.

(24)

This sequence is shown to be majorizing for the method (2) in Theorem 2. However,
let us first give a convergence condition for it.

(E3) There exists ρ5 ∈ [0, ρ4) such that for each = 0, 1, 2, . . . , m = 1, 2, . . . , k,

v0(a(0)σ ) < 1, qσ < 1, and a(m)
σ < ρ5.

It follows by the formula (24), (E1), (E2), and this condition that

0 ≤ a(m)
σ ≤ a(m)

σ+1 ≤ ρ5



Mathematics 2024, 12, 1278 8 of 18

and this sequence is convergent to some a∗ ∈ [0, ρ5].
As in the local analysis, the functions v0 and v relate to ∆′ as follows:

(E4) There exist x0 ∈ Φ and an invertible operator γ such that for each x ∈ Φ,∥∥∥γ−1
(

∆′(x)− γ
)∥∥∥ ≤ v0(∥x − x0∥).

Notice that ∥∥∥γ−1
(

∆′(x0)− γ
)∥∥∥ ≤ v0(0) < 1.

Consequently, the inverse of the linear operator ∆′(x0) exists, and we can choose
∥∆′(x0)

−1∆(x0)∥ ≤ a(0)1 .
Set D2 = Φ ∩ S(x0, ρ4).

(E5)
∥∥∥γ−1

(
∆′(y)− ∆′(x)

)∥∥∥ ≤ v(∥y − x∥) for each x, y ∈ D2.

(E6) S[x0, a∗] ⊂ Φ.

The main semilocal analysis of convergence follows under these conditions in the
next result.

Theorem 2. Suppose that the conditions (E1)− (E6) are satisfied. Then, there exists a solution
ξ∗ ∈ S[x0, a∗] of the equation ∆(x) = 0 such that for each σ = 0, 1, 2, . . .,

∥ξ∗ − xσ∥ ≤ a∗ − a(k)σ . (25)

Proof. As the local case but using the conditions E instead of H, we have the series of
calculations

∆′(xσ)− αAσ =∆′(xσ)−
1
2

∆′(yσ)− α∆′(xσ) +
1
2

∆′(xσ)

=(1 − α)∆′(xσ) +
1
2
(∆′(xσ)− ∆′(yσ)),∥∥∥γ−1

(
∆′(xσ)− αAσ

)∥∥∥ ≤|1 − α|
(

1 + v0(a(0)σ )
)
+

1
2

ṽσ. (26)

So, from the first two substeps, we have

z(1)σ − yσ =[α∆′(xσ)
−1 − A−1

σ ]∆(xσ)

=− (A−1
σ − α∆′(xσ)

−1)∆(xσ)

=− A−1
σ (∆′(xσ)− αAσ)∆′(xσ)

−1∆(xσ)

=
1
α

A−1
σ (∆′(xσ)− αAσ)(yσ − xσ).

(27)

Thus, we obtain from (26) and (27),∥∥∥z(1)σ − yσ

∥∥∥ ≤ 1
|α|

∥∥∥A−1
σ γ

∥∥∥ ∥∥∥γ−1
(

∆′(xσ)− αAσ

)∥∥∥ ∥yσ − xσ∥

≤

(
|1 − α|

(
1 + vo(a(0)σ )

)
+

1
2

ṽσ

)(
a(1)σ − a(0)σ

)
|α|(1 − qσ)

= a(2)σ − a(1)σ ,

(28)

and ∥∥∥z(1)σ − x0

∥∥∥ ≤ ∥z(1)σ − yσ∥+ ∥yσ − x0∥

≤ a(2)σ − a(1)σ + a(1)σ − a(0)0 = a(2)σ < a∗,

hence, the iterate z(1)σ ∈ S[x0, a∗].
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We also need the estimate for the definition of Bσ that

2∆′(xσ)− Aσ =2∆′(xσ)−
1

2α

(
∆′(yσ)− ∆′(xσ)

)
− ∆′(xσ),

=∆′(xσ)−
1

2α

(
∆′(yσ)− ∆′(xσ)

)
.

So, we have

∥γ−1(2∆′(xσ)− Aσ)∥ ≤ 1
2|α| ṽσ + (1 + v0(a(0)σ )) = λσ,

∥Bσγ∥ ≤
∥∥∥A−1

σ γ
∥∥∥ ∥∥∥γ−1(2∆′(xσ)− Aσ)

∥∥∥ ∥∥∥∆′(xσ)
−1γ

∥∥∥
≤ λσ

(1 − v0(a(0)σ ))(1 − qσ)
,

(29)

∆(z(1)σ ) =∆(z(1)σ )− ∆(xσ)−
1
α

∆′(xσ)(yσ − xσ),

and ∥∥∥γ−1∆(z(1)σ )
∥∥∥ ≤

(
1 +

∫ 1

0
v0(a(0)σ + ω(a(2)σ − a(0)σ ))dω

)
(a(2)σ − a(0)σ )

+
1
|α| (1 + v0(a(0)σ ))(a(1)σ − a(0)σ )

= µ
(1)
σ .

(30)

Thus, (29) and (30) lead to∥∥∥z(2)σ − z(1)σ

∥∥∥ ≤
∥∥∥B−1

σ γ
∥∥∥ ∥∥∥γ−1∆(z(1)σ )

∥∥∥
≤ λσ µ

(1)
σ

(1 − v0(a(0)σ ))(1 − qσ)
= a(3)σ − a(2)σ ,

(31)

and ∥∥∥z(2)σ − x0

∥∥∥ ≤
∥∥∥z(2)σ − z(1)σ

∥∥∥+ ∥∥∥z(1)σ − x0

∥∥∥
≤a(3)σ − a(2)σ + a(2)σ − a(0)0 = a(3)σ < a∗.

Hence, the iterate z(2)σ ∈ S(x0, a∗). Similarly, we have from

z(m+1)
σ − z(m)

σ = −Bσ∆(z(m)
σ )

that ∥∥∥z(m+1)
σ − z(m)

σ

∥∥∥ ≤ λσ µ
(m)
σ(

1 − v0(a(0)σ )
)
(1 − qσ)

= a(m+2)
σ − a(m+1)

σ (32)

and ∥∥∥z(m+1)
σ − x0

∥∥∥ ≤
∥∥∥z(m+1)

σ − z(m)
σ

∥∥∥+ ∥∥∥z(m)
σ − x0

∥∥∥
≤a(m+2)

σ − a(m+1)
σ + a(m+1)

σ − a(0)0 = a(m+2)
σ < a∗,

so the iterate z(m+1)
σ ∈ S(x0, a∗).

Then, from the identity

∆(xσ+1) = ∆(xσ+1)− ∆(xσ)−
∆′(xσ)

α
(xσ+1 − xσ) + ∆′(xσ)(xσ+1 − yσ),

we obtain
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∥γ−1∆(xσ+1)∥ ≤
∫ 1

0
v((1 − ω)(a(0)σ+1 − a(0)σ ))dω)(a(0)σ+1 − a(0)σ ) +

1
|α| (1 + v0(a(0)σ ))(a(1)σ − a(0)σ )

= bσ+1,
(33)

leading to

∥yσ+1 − xσ+1∥ = |α|
∥∥∥∆′(xσ+1)

−1γ
∥∥∥ ∥∥∥γ−1∆(xσ+1)

∥∥∥
≤ |α| bσ+1

1 − v0(a(0)σ+1)
= a(1)σ+1 − a(0)σ+1,

(34)

and
∥yσ+1 − x0∥ ≤∥yσ+1 − xσ+1∥+ ∥xσ+1 − x0∥

≤a(1)σ+1 − a(0)σ+1 + a(0)σ+1 − a(0)0 = a(1)σ+1 < a∗,

so the iterate yσ+1 ∈ S(x0, a∗).
Hence, we showed that all the iterates {xσ} ⊂ S(x0, a∗) and the items (31), (32), and

(34) are satisfied. By the condition (E3), the majorizing sequence {a(m)
σ } is Cauchy as

convergent. Thus, the sequence {xσ} is also Cauchy in the Banach space by (31), (32), and
(34). Consequently, it is convergent to some ξ∗ ∈ S[x0, a∗].

By letting σ → +∞ in (33), and using the continuity of the operator ∆, we deduce that
∆(ξ∗) = 0. Then, in the estimation ∥x(k)σ+i − xσ∥ ≤ a(k)σ+i − a(k)σ . Let i → +∞ to conclude that
(25) is satisfied.

Next, as in the local case, the uniqueness of the solution is established for the equation
∆(x) = 0 in a neighborhood of the initial point x0.

Proposition 2. Suppose the following:
There exists a solution x̃ ∈ S(x0, ρ6) for some ρ6 > 0.
The condition (E4) is satisfied in the ball S(x0, ρ6), and there exists ρ7 ≥ ρ6 such that∫ 1

0
v0

(
ωρ6 + (1 − ω)ρ7

)
dω < 1. (35)

Take D3 = Φ ∩ S[x0, ρ7].
Then, the only solution of the equation ∆(x) = 0 in the set D3 is x̃.

Proof. Let u ∈ D3 such that ∆(u) = 0. Define the linear operator T1 =
∫ 1

0 ∆′(x̃ + ω(u −
x̃))dω. It follows by the condition (E4) and (35) that∥∥∥γ−1(T1 − γ)

∥∥∥ ≤
∫ 1

0
v0

(
ω∥x̃ − x̃0∥+ (1 − ω)∥u − x0∥

)
dω

≤
∫ 1

0
v0

(
ωρ6 + (1 − ω)ρ7

)
dω < 1,

(36)

so the operator T1 is invertible. Then, from the identity

u − x̃ = T−1
1

(
∆(u)− ∆(x̃)

)
= T−1

1 (0) = 0,

we conclude that u = x̃.

Remark 3.

(i) A popular choice for γ = ∆′(x0) or γ = I. Other selections are possible as long as the
conditions (E4) and (E5) hold.

(ii) The limit point a∗ can be replaced by ρ4 in the condition (E6).
(iii) Under all the conditions (E1)− (E6) in Proposition 2, one can take x̃ = ξ∗ and ρ6 = a∗.
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4. Numerical Illustrations

We illustrate numerically the theoretical consequences proposed in the previous sec-
tions. We have illustrated the applicability in real-life and standard nonlinear problems
along with initial guesses that are depicted in Examples 1–5. These examples involve a good
mixture of scalar and nonlinear systems. We display not only the radius of convergence
in the Tables 1–5 but also the least number of iterations corresponding to the solutions of
P(x), absolute residual error at the corresponding iteration, and (COC). Additionally, we
obtain the COC approximated by means of

χ =
ln ∥xσ+1−ξ∗∥

|xσ−ξ∗∥

ln ∥xσ−ξ∗∥
∥xσ−1−ξ∗∥

, for σ = 1, 2, . . . (37)

or ACOC [7,15–17] by:

χ∗ =
ln ∥xσ+1−xσ∥

∥xσ−xσ−1∥

ln ∥xσ−xσ−1∥
∥xσ−1−xσ−2∥

, for σ = 2, 3, . . . (38)

We adopt ϵ = 10−100 as a sanction error. Ceasing criteria are adopted for computer
programming to solve the nonlinear system: (i)∥xσ+1 − xσ∥ < ϵ and (ii)∥∆(xσ)∥ < ϵ.

The computational work is implemented with the software Mathematica 9 by adopting
higher-precision arithmetic. In addition, we have chosen α = 1 and γ = ∆′(ξ∗) in the next
two examples.

Example 1. We selected a well-known mathematical issue involving a first-order nonlinear integral
equation and a Hammerstein operator that is used in many fields, including physics and engineering.
Both integral and nonlinear components are present in this problem. These problems have either no
analytical answers at all or very complex ones. To provide an example, let us take ϕ = S[0, 1] and
M1 = M2 = C[0, 1]. The Hammerstein operator ∆ [1–4,6] is involved in this first-kind nonlinear
integral equation, which is defined by

∆(v)(x) = v(x)− 8
∫ 1

0
xωv(ω)3dω.

The derivative of operator ∆ is given below:

∆′
(

v(q)
)
(x) = q(x)− 24

∫ 1

0
xωv(ω)2q(ω)dω,

for q ∈ C[0, 1]. The values of the operator ∆′ satisfy the hypotheses of Theorem 1, if we choose for
ξ∗ = 0

ℵ(ξ) = 24ξ, ℵ0(ξ) = 12ξ, k = 2, ℵ̃(ξ) = ℵ
((

1 + h0(ξ)
)

ξ

)
, and ℵ̃1(ξ) = ℵ

((
1 + h1(ξ)

)
ξ

)
.

Hence, we present the convergence radii of illustration (Example 1) in Table 1.

Table 1. Radii of illustration (Example 1) of method (2).

α ρ0 ρ1 ρ r0 r1 r2 r

1 0.083333 0.036537 0.036537 0.04167 0.018854 0.013528 0.013528
1
2 0.083333 0.017014 0.017014 0.018518 0.0091788 0.0072646 0.0072646
1
4 0.083333 0.0083754 0.0083754 0.0087719 0.0045910 0.0039538 0.0039538
2
3 0.083333 0.023074 0.023074 0.025641 0.012293 0.0093465 0.0093465
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Example 2. A three-by-three nonlinear system is a complicated math problem found in science
and engineering. It becomes more complicated when it mixes together polynomials and exponential
terms. That is why we are picking one of these systems to work on in order to show the applicability
of our methods. Let M1 = M2 = R3 and ϕ = S(0, 1), where u∗ = (0, 0, 0)T . Consider P on ϕ
by means of

∆(u) = ∆(u1, u2, u3) =

(
eu1 − 1,

e − 1
2

u2
2 + u2, u3

)T
, (39)

where u = (u1, u2, u3)
T . It has the succeeding Fréchet-derivative defined by

∆′(u) =

eu1 0 0
0 1 + u2(e − 1) 0
0 0 1

.

Then, ∆′(ξ∗) = ∆′(ξ∗)−1 = diag{1, 1, 1}; so, we have

ℵ(ξ) = e
1

e−1 ξ, ℵ0(ξ) = (e − 1)ξ, k = 2, ℵ̃(ξ) = ℵ
((

1 + h0(ξ)
)

ξ

)
,

and ℵ̃1(ξ) = ℵ
((

1 + h1(ξ)
)

ξ

)
.

Hence, we present the convergence radii of illustration (Example 2) in Table 2.

Table 2. Radii of illustration (Example 1) of method (2).

α ρ0 ρ1 ρ r0 r1 r2 r

1 0.581977 0.380074 0.380074 0.382692 0.20423 0.15438 0.15438
1
2 0.581977 0.18349 0.18349 0.16433 0.103706 0.084580 0.084580
1
4 0.581977 0.092482 0.092482 0.076748 0.053632 0.046965 0.046965
2
3 0.581977 0.24531 0.24531 0.22993 0.13639 0.10772 0.10772

Examples for SLAC

We illustrate the theoretical results of the semilocal convergence on three different
problems, namely, (3)–(5). In addition, we select four cases from expression (2): the fifth-
order method with (k = 2, & α = 1), and

(
k = 2, & α = 2

3
)
, denoted as Case-1 and Case-2,

respectively; and the seventh-order method with (k = 3, & α = 1), and
(
k = 3, & α = 2

3
)
,

denoted by Case-3 and Case-4, respectively. The considered three examples, (3)–(5), are
renowned 2D Bratu, BVP, and Fisher problems, which are applied science concerns that
comprise three nonlinear systems of order 100 × 100, 90 × 90, and 100 × 100, respectively.

Example 3. Bratu 2D Problem:
Defined in [18], there is the well-known 2D Bratu problem ϕ = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤

1}, which is given below:

uxx + utt + Ceu = 0, on

with boundary conditions u = 0 on ∂ϕ.
(40)

To have a nonlinear system, we use the finite difference discretization procedure for the expression
(40). The required answer at a mesh’s grid points is ui,j = u(ui, tj). In addition, the step numbers
x and t correspond to the corresponding directions M and N. Moreover, the step sizes in the
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corresponding M and N are h and k. Applying the central differences to the PDE (40) ( uxx and
utt) mentioned before, we obtain

uxx(ui, tj) = (ui+1,j − 2ui,j + ui−1,j)/h2, C = 0.1, t ∈ [0, 1]

As an example of a nonlinear system of size 100× 100, we picked M = 11 and N = 11. It converges
to the following column vector, which is not a matrix,

u∗ =



0.00111 . . . , 0.00181 . . . , 0.00226 . . . , 0.00253 . . . , 0.00266 . . . , 0.00266 . . . , 0.00253 . . . , 0.00226 . . . ,

0.00181 . . . , 0.00111 . . . , 0.00181 . . . , 0.00305 . . . , 0.00387 . . . , 0.00437 . . . , 0.00461 . . . , 0.00461 . . . ,

0.00437 . . . , 0.00387 . . . , 0.00305 . . . , 0.00181 . . . , 0.00226 . . . , 0.00387 . . . , 0.00497 . . . , 0.00565 . . . ,

0.00598 . . . , 0.00598 . . . , 0.00565 . . . , 0.00497 . . . , 0.00387 . . . , 0.00226 . . . , 0.00253 . . . , 0.00437 . . . ,

0.00565 . . . , 0.00645 . . . , 0.00684 . . . , 0.00684 . . . , 0.00645 . . . , 0.00565 . . . , 0.00437 . . . , 0.00253 . . . ,

0.00266 . . . , 0.00461 . . . , 0.00598 . . . , 0.00684 . . . , 0.00726 . . . , 0.00726 . . . , 0.00684 . . . , 0.00598 . . . ,

0.00461 . . . , 0.00266 . . . , 0.00266 . . . , 0.00461 . . . , 0.00598 . . . , 0.00684 . . . , 0.00726 . . . , 0.00726 . . . ,

0.00684 . . . , 0.00598 . . . , 0.00461 . . . , 0.00266 . . . , 0.00253 . . . , 0.00437 . . . , 0.00565 . . . , 0.00645 . . . ,

0.00684 . . . , 0.00684 . . . , 0.00645 . . . , 0.00565 . . . , 0.00437 . . . , 0.00253 . . . , 0.00226 . . . , 0.00387 . . . ,

0.00497 . . . , 0.00565 . . . , 0.00598 . . . , 0.00598 . . . , 0.00565 . . . , 0.00497 . . . , 0.00387 . . . , 0.00226 . . . ,

0.00181 . . . , 0.00305 . . . , 0.00387 . . . , 0.00437 . . . , 0.00461 . . . , 0.00461 . . . , 0.00437 . . . , 0.00387 . . . ,

0.00305 . . . , 0.00181 . . . , 0.00111 . . . , 0.00181 . . . , 0.00226 . . . , 0.00253 . . . , 0.00266 . . . , 0.00266 . . . ,

0.00253 . . . , 0.00226 . . . , 0.00181 . . . , 0.00111 . . . ,



T

.

In Table 3, we mention the computational results based on Example 3.

Table 3. Radii of illustration (Example 3).

Method (4) x0 N IT ∥xσ+1 − xσ∥ ∥∆(xσ)∥ COC CPU

Case-1


0.1 sin(iπh) sin(jπh)

...

0.1 sin(iπh) sin(jπh)

 3 3.8 × 10−390 6.7 × 10−391 4.9999 42.3046

Case-2


0.1 sin(iπh) sin(jπh)

...

0.1 sin(iπh) sin(jπh)

 3 2.4 × 10−402 4.6 × 10−403 4.9989 43.9509

Case-3


0.1 sin(iπh) sin(jπh)

...

0.1 sin(iπh) sin(jπh)

 3 3.8 × 10−1109 6.5 × 10−1110 6.9999 44.0704

Case-4


0.1 sin(iπh) sin(jπh)

...

0.1 sin(iπh) sin(jπh)

 3 2.5 × 10−1043 4.9 × 10−1044 6.9997 43.1974

(i, j = 1, 2, 3, · · · , 10.)

Example 4. Boundary value problems (BVPs) are important parts of mathematics and physics.
They work with differential equations that have several, frequently boundary-based conditions.
The modeling of practical phenomena such as heat transfer, fluid flow, and quantum mechanics relies
heavily on BVPs, which provide valuable insights into physical systems. Therefore, we chose the
following BVP (see [14]):

u′′ + a2u′2 + 1 = 0 (41)
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with u(0) = u(1) = 0. The partition of the interval [0, 1] into ℓ pieces provides us with the
following:

γ0 = 0 < γ1 < γ2 < · · · < γℓ−1 < γℓ, γℓ+1 = γℓ + h, h =
1
ℓ

.

The u0, u1, u2, . . . uℓ stands for u(γ0), u(γ1), u(γ2), . . . , u(γℓ), respectively. In addition, u0 = 0,
and uℓ = 1. By using them in the expression (41), we have

u′
θ =

uθ+1 − uθ−1

2h
, u′′

θ =
uθ−1 − 2uθ + uθ+1

h2 , θ = 1, 2, 3, . . . , ℓ− 1,

with the help of the discretization technique. In this way, we obtain the proceeding nonlinear system
of equations of order (θ − 1)× (θ − 1)

uθ−1 − 2uθ + uθ+1 +
µ2

4
(uθ+1 − uθ−1)

2 + h2 = 0. (42)

We picked ℓ = 91 and µ = 1
2 in order to obtain a larger nonlinear system of order 90 × 90.

In Table 4, we depicted the number of iterations, residual errors, COC, CPU timing, and error
differences between two iterations for Example (4). The above system (42) converges to the following
estimated zero:

ξ∗ =



0.01853 . . . , 0.03685 . . . , 0.05497 . . . , 0.07289 . . . , 0.09061 . . . , 0.1081 . . . , 0.1254 . . . , 0.1426 . . . ,

0.1595 . . . , 0.1763 . . . , 0.1928 . . . , 0.2092 . . . , 0.2253 . . . , 0.2413 . . . , 0.2571 . . . , 0.2728 . . . ,

0.2882 . . . , 0.3035 . . . , 0.3186 . . . , 0.3335 . . . , 0.3482 . . . , 0.3628 . . . , 0.3772 . . . , 0.3914 . . . ,

0.4054 . . . , 0.4193 . . . , 0.4330 . . . , 0.4465 . . . , 0.4599 . . . , 0.4731 . . . , 0.4862 . . . , 0.4990 . . . ,

0.5118 . . . , 0.5243 . . . , 0.5367 . . . , 0.5489 . . . , 0.5610 . . . , 0.5730 . . . , 0.5847 . . . , 0.5963 . . . ,

0.6078 . . . , 0.6191 . . . , 0.6303 . . . , 0.6413 . . . , 0.6521 . . . , 0.6628 . . . , 0.6734 . . . , 0.6838 . . . ,

0.6940 . . . , 0.7042 . . . , 0.7141 . . . , 0.7239 . . . , 0.7336 . . . , 0.7432 . . . , 0.7525 . . . , 0.7618 . . . ,

0.7709 . . . , 0.7799 . . . , 0.7887 . . . , 0.7974 . . . , 0.8059 . . . , 0.8143 . . . , 0.8226 . . . , 0.8307 . . . ,

0.8387 . . . , 0.8466 . . . , 0.8543 . . . , 0.8619 . . . , 0.8693 . . . , 0.8766 . . . , 0.8838 . . . , 0.8909 . . . ,

0.8978 . . . , 0.9046 . . . , 0.9112 . . . , 0.9177 . . . , 0.9241 . . . , 0.9304 . . . , 0.9365 . . . , 0.9425 . . . ,

0.9484 . . . , 0.9541 . . . , 0.9597 . . . , 0.9652 . . . , 0.9706 . . . , 0.9758 . . . , 0.9809 . . . , 0.9858 . . . ,

0.9907 . . . , 0.9954 . . .



T

.

Table 4. Radii of illustration (Example 4).

Method (4) x0 N IT ∥xσ+1 − xσ∥ ∥∆(xσ)∥ COC CPU

Case-1


1.002

...

1.002

 4 3.7 × 10−640 5.4 × 10−641 4.9964 26.7025

Case-2


1.002

...

1.002

 4 3.7 × 10−640 5.4 × 10−641 4.9964 26.2708

Case-3


1.002

...

1.002

 3 1.5 × 10−332 2.1 × 10−333 6.9971 17.8274
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Table 4. Cont.

Method (4) x0 N IT ∥xσ+1 − xσ∥ ∥∆(xσ)∥ COC CPU

Case-4

1.002
...

1.002

 3 1.5 × 10−332 2.1 × 10−333 6.9971 17.7859

Example 5. We adopt a renowned Fisher’s equation [22]

ηt = Dηxx + η(1 − η) = 0,

along with homogeneous Neumann’s boundary conditions

η(x, 0) = 1.5 + 0.5cos(πx), 0 ≤ x ≤ 1,

ηx(0, t) = 0, ∀t ≥ 0,

ηx(1, t) = 0, ∀t ≥ 0.

(43)

We refer to the D as a diffusion parameter. To obtain a nonlinear system, we use the finite difference
discretization procedure for the expression (43). The required solution at a mesh’s grid points is
wi,j = η(ui, tj). In addition, the step numbers x and t correspond to the corresponding directions M
and N, respectively. Moreover, the step sizes in the corresponding M and N are h and l, respectively.
Utilizing the center, backward, and forward distinctions that follow, we obtain

ηxx(ui, tj) = (wi+1,j − 2wi,j + wi−1,j)/h2,

ηt(ui, tj) = (wi,j − wi,j−1)/l,

and

ηx(ui, tj) = (wi+1,j − wi,j)/h, t ∈ [0, 1],

leading to

w1,j − wi,j−1

l
− wi,j

(
1 − wi,j

)
− D

wi+1,j − 2wi,j + wi−1,j

h2 , i = 1, 2, 3, . . . , M, j = 1, 2, 3, . . . , N. (44)

Here, h = 1
M , l = 1

N are used. The system of nonlinear equations of dimension 100 × 100 is
obtained by choosing M = N = 10, h = l = 0.1, and D = 1. The above nonlinear system
converges to the following column vector solution (not a matrix):

u∗ = u(ui, tj) =



1.6248 . . . , 1.4519 . . . , 1.3549 . . . , 1.2941 . . . , 1.2520 . . . , 1.2201 . . . , 1.1945 . . . , 1.1731 . . . ,

1.1547 . . . , 1.1386 . . . , 1.5999 . . . , 1.4411 . . . , 1.3500 . . . , 1.2919 . . . , 1.2509 . . . , 1.2196 . . . ,

1.1943 . . . , 1.1730 . . . , 1.1546 . . . , 1.1386 . . . , 1.5541 . . . , 1.4209 . . . , 1.3407 . . . , 1.2876 . . . ,

1.2489 . . . , 1.2186 . . . , 1.1938 . . . , 1.1727 . . . , 1.1545 . . . , 1.1386 . . . , 1.4929 . . . , 1.3933 . . . ,

1.3280 . . . , 1.2816 . . . , 1.2461 . . . , 1.2173 . . . , 1.1932 . . . , 1.1725 . . . , 1.1544 . . . , 1.1385 . . . ,

1.4230 . . . , 1.3612 . . . , 1.3131 . . . , 1.2747 . . . , 1.2428 . . . , 1.2158 . . . , 1.1925 . . . , 1.1721 . . . ,

1.1542 . . . , 1.1384 . . . , 1.3514 . . . , 1.3279 . . . , 1.2976 . . . , 1.2674 . . . , 1.2394 . . . , 1.2142 . . . ,

1.1917 . . . , 1.1717 . . . , 1.1540 . . . , 1.1383 . . . , 1.2851 . . . , 1.2965 . . . , 1.2828 . . . , 1.2604 . . . ,

1.2361 . . . , 1.2126 . . . , 1.1910 . . . , 1.1714 . . . , 1.1539 . . . , 1.1383 . . . , 1.2304 . . . , 1.2702 . . . ,

1.2703 . . . , 1.2546 . . . , 1.2334 . . . , 1.2113 . . . , 1.1904 . . . , 1.1711 . . . , 1.1537 . . . , 1.1382 . . . ,

1.1921 . . . , 1.2513 . . . , 1.2613 . . . , 1.2503 . . . , 1.2313 . . . , 1.2104 . . . , 1.1899 . . . , 1.1709 . . . ,

1.1536 . . . , 1.1381 . . . , 1.1728 . . . , 1.2414 . . . , 1.2566 . . . , 1.2480 . . . , 1.2303 . . . , 1.2099 . . . ,

1.1897 . . . , 1.1708 . . . , 1.1536 . . . , 1.1381 . . .



T

.

We illustrate the numerical results in the Table 5.
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Table 5. Radii of illustration (Example 5).

Method (4) x0 N IT ∥xσ+1 − xσ∥ ∥∆(xσ)∥ COC CPU

Case-1


1 + i

100
...

1 + i
100 .

 4 4.6 × 10−508 5.4 × 10−507 12.8955 4.9998

Case-2


1 + i

100
...

1 + i
100 .

 4 4.6 × 10−508 5.4 × 10−507 12.8211 4.9998

Case-3


1 + i

100
...

1 + i
100 .

 4 1.4 × 10−1875 1.7 × 10−1874 32.0008 7.0000

Case-4


1 + i

100
...

1 + i
100 .

 4 1.4 × 10−1875 1.7 × 10−1874 32.3537 7.0000

(i = 1, 2, 3, · · · , 100.)

5. Conclusions

This paper concludes by highlighting the nature of a convergence analysis in iterative
approaches, especially when there are no explicit assurances about convergence. It is
shown that the investigation of convergence behaviors is different from conventional
assumptions by taking into account derivatives such as ∆′′, ∆′′′, and ∆(4) with the help
of Taylor series expansion. In the previous work, there was no computable radius of
convergence, and there was missing information about the choice of the initial point.
However, we made a significant contribution by offering computable bounds on ||xσ − ξ∗||,
which allows one to make well-informed decisions about the number of iterations needed to
achieve acceptable error tolerances. Furthermore, the computation of a convergence radius
makes the process of choosing an initial location more confident. This study’s relevance to a
wide range of issues is highlighted by its emphasis on Banach space operators. In addition,
we also introduce a semilocal analysis and careful consideration of generalized continuity
assumptions, which significantly advance our understanding of convergence behaviors
in iterative methods. We have checked the semilocal convergence by offering practical
examples for real-world applications. In particular, the drawbacks of the Taylor expansions
series approach listed in (L1)− (L6) of the introduction have all been positively addressed
by (L1)

′ − (L6)
′. The technique developed in this paper can also be used with the same

benefits on other iterative methods requiring inverses of linear operators or not in an
analogous fashion [5–14,23] . This will be the direction of our future research, including the
further weakening of the sufficient convergence conditions presented in this article.
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