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Abstract: In this paper, we concentrate on the propagation dynamics of stochastic reaction–diffusion
equations, including the existence of travelling wave solution and asymptotic wave speed. Based on
the stochastic Feynman–Kac formula and comparison principle, the boundedness of the solution of
stochastic reaction–diffusion equations can be obtained so that we can construct a sup-solution and a
sub-solution to estimate the upper bound and the lower bound of wave speed.
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1. Introduction

In the current paper, we focus on stochastic reaction–diffusion equations driven by
Gaussian noise 

du = [△u + uc1(u, v)]dt + ϵudWt,
dv = [△v + vc2(u, v)]dt + ϵvdWt,
u(0, x) = u0(x), v(0, x) = v0(x),

(1)

where u0 and v0 as initial data are both Heaviside functions. In this paper, it always
holds that

(H1) 0 < ∂c1(u,v)
∂v < a, 0 < ∂c2(u,v)

∂u < a;
(H2) c1(u, v) is decreasing for u, c1(u, 0) ≤ c1(0, 0), and c1(u, 0) < 0 for u > 1

a ; c2(u, v) is
decreasing for v, c2(0, v) ≤ c2(0, 0), and c2(0, v) < 0 for v > 1

a ;
(H3) There exists α ≥ β > a for any ξ ≥ 0, u ≥ 0 and v ≥ 0; it holds that βξ ≤ c1(u, v)−

c1(u + ξ, v) ≤ αξ, βξ ≤ c2(u, v)− c2(u, v + ξ) ≤ αξ;
(H4) ci(0, 0) > 2ϵ2, i = 1, 2.

In general, (H1) and (H2) imply that System (1) is cooperative, so its corresponding
dynamical system is monotonic and a comparison method can be used in this system.
(H4) ensures the noise is moderate, otherwise the solution of Equation (1) tends to zero as
t → ∞.

Under conditions (H1)–(H4), System (1) poses an only positive stable equilibrium
denoted by (p1, p2). If c1(u, v) = c1(u, 0), c2(u, v) = c2(0, v), Zhao and Øksendal [1] inves-
tigated the pathwise property and ergodicity of a stochastic reaction–diffusion equation in
a scalar scale under conditions (H2)–(H4),{

du(t, x) = [D
2 uxx(t, x) + c(u(t, x))u(t, x))dt + k(t)u(t, x)dWt,

u(0, x) = u0(x).
(2)
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Inspired by Benth and Gjessing [2], they successfully obtained the stochastic Feynman–
Kac formula by constructing exponential martingale and revealed that the existence of a
travelling wave solution and its asymptotic wave speed depend on the strength of noise.
In detail, if lim inf

t→∞

∫ t
0 k2(s)ds > c0 = c(0) and the noise is strong, the solution to Equation (2)

almost surely tends to zero. If
∫ t

0 k2(s)ds < ∞ and the noise is weak, the travelling wave
solution of Equation (2) converges to the travelling wave solution of deterministic reaction–
diffusion equation. Moreover, if k∞ = lim

t→∞

∫ t
0 k2(s)ds exist and the noise is moderate,

the wavefront marker is x =
√

D(2c0 − 2k∞)t.
If ϵ = 0, Freidlin [3] studied the asymptotic behavior of the Cauchy problem under

conditions (H1)–(H3),
∂u
∂t = D1

2
∂2u
∂x2 + c11(u, v)u(t, x) + c12v(t, x),

∂v
∂t = D2

2
∂2v
∂x2 + c21(u, v)v(t, x) + c22u(t, x),

u(0, x) = g1(x), v(0, x) = g2(x).

(3)

Until now, many papers have been concerned with stochastic travelling wave solutions
in the scalar equation. Zhao [4] studied the wave speed of a stochastic KPP equation
driven by white noise. Huang and Wang [5–9] investigated the asymptotic behavior of
a stochastic reaction–diffusion equation driven by various noises. Indeed, a way to deal
with the coupling terms is the crux in the research of travelling wave solution of stochastic
reaction–diffusion equations. In this paper, with monotonic random dynamical system
theory and comparison principle, the boundedness of solution to Equation (1) is obtained
and used to construct a sup-solution and a sub-solution under conditions (H1)–(H4). Hence,
via the SCP (Support Compactness Propagation) property proposed by Shiga [10] and two
sufficient conditions proposed by Tribe [11], the existence of a travelling wave solution can
be obtained. Again, with the boundedness of solution, we can estimate the upper bound
and the lower bound of wave speed by a sup-solution and a sub-solution, respectively.

Throughout this paper, we set Ω as the space of temper distributions, F as the σ-
algebra on Ω, and (Ω,F ,P) as the white noise probability space. We denote by E the
expectation with respect to P. We denote by ϕλ(x) = exp(−λ|x|). Here are some notations:

• D[0,∞) = {ϕ : R → [0, ∞), ϕ is right continuous and decreasing, ϕ−∞ = lim
x→∞

ϕ(x) exists};

• D[0,1] = {ϕ : R → [0, 1], ϕ is right continuous and decreasing};
• D = {ϕ ∈ D[0,1] : ϕ(−∞) = 1, ϕ(∞) = 0};
• C+ = f | f : R → [0, ∞) and f is continuous;
• || f ||λ = sup

x∈R
(| f (x)ϕλ(x)|);

• C+
λ = f ∈ C+| f is continuous, and | f (x)ϕλ(x)| → 0 as x → ±∞;

• C+
tem = ∩

λ>0
C+

λ ;

• C+
C[0,1] = { f | f : R → [0, 1]} is the space of nonnegative functions with compact

support;
• Φ = f : || f ||λ < ∞ for some λ < 0 is the space of functions with exponential decay;
• R0(t) = sup{x ∈ R : u(t, x) > 0} is the wavefront marker.

Lemma 1 ([11]). A set K ⊂ C+
λ is called relatively compact if and only if

(a) K is equicontinuous on a compact set;
(b) lim

R→∞
sup
f∈K

sup
|x|≥R

| f (x)e−λ|x|| = 0.

Lemma 2 ([11]). K ⊂ C+
tem is (relatively) compact if and only if it is (relatively) compact in C+

λ for
all λ > 0.
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Lemma 3 ([11] (Kolmogorov tightness criterion)). For C < ∞, δ > 0, µ < λ, γ > 0,
we define

K(C, δ, γ, µ) = { f : | f (x)− f (x′)| ≤ C|x − x′|γeµ|x| f or all |x − x′| ≤ δ},

then, with the above conditions, we know that K(C, δ, γ, µ) ∩ { f :
∫

R f (x)ϕ1dx ≤ a} is compact
in C+

λ , where a is a constant.

(1) If {Xn(·)} are Cλ-valued processes, with {
∫

R Xnϕ1dx} tight and there are C0 < ∞, p >
0, γ > 1, µ < λ such that for all n ≥ 1, |x − y| ≤ 1,

E(|Xn(x)− Xn(y)|p) ≤ C0|x − y|γeµp|x|,

then {Xn} are tight.
(2) Similarly, if {Xn} are C([0, T], C+

λ )-valued processes, with {
∫

R Xn(0)ϕ1dx} tight, and there
are C0 < ∞, p > 0, γ > 2, µ < λ such that for all n ≥ 1, |x − y| ≤ 1, |t − t′| ≤ 1, t,
t′ ∈ [0, T],

E(|Xn(x, t)− Xn(y, t′)|p) ≤ C0(|x − y|γ + |t − t′|γ)eµp|x|,

then {Xn} are tight.

2. Asymptotic Behavior of a Travelling Wave Solution

At the beginning of our work, we offer the definition of stochastic travelling wave
solution in law. D[0,∞) values are equipped with the L1

loc(R) metric, D[0,1] and D are
measurable subsets of D[0,∞), and the three spaces are all Polish spaces and are compact.
We consider a stochastic reaction–diffusion equation with a Heaviside function as follows:{

du = [△u + f (u)]dt + ϵudWt,
u(0, x) = u0(x).

(4)

Definition 1. A stochastic travelling wave solution is a solution to u = (u(t) : t ≥ 0) to
Equation (4) with values in D and for which the centered process (ũ = u(t, ·+ R0(t)) : t ≥ 0) is a
stationary process with respect to time, and the law of a stochastic travelling wave solution is the
law of ũ(0) on D.

We denote by Y = (u, v)T and F(Y) = (F1(Y), F2(Y)) = (uc1(u, v), vc2(u, v))T ; then,
Equation (1) can be rewritten as{

dY = [△Y + F(Y)]dt + ϵYdWt,
Y(0, x) = (u0(x), v0(x))T .

(5)

Lemma 4. For any Heaviside functions u0 and v0 as initial data, for, a.e., ω ∈ Ω, there exists a
unique solution to Equation (5) in law with the form

Y(t, x) =
∫

R
G(t, x, y)Y0dy

+
∫ t

0

∫
R

G(t − s, x, y)F(Y)dsdy + ϵ
∫ t

0

∫
R

G(t − s, x, y)YdWsdy,
(6)

where G(t, x, y) is the Green function.

Proof. We denote by Yn = (un, vn)T, since c1(u, v) and c2(u, v) are Lipschitz continuous, per-
form some truncations and let Fn(Yn) = ((un ∧

√
n)c1(un ∧

√
n, vn ∧

√
n), (vn ∧

√
n)c2(un ∧
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√
n, vn ∧

√
n)); then, Fn(Yn) is Lipschitz continuous. Hereto, the truncated Equation (7) can

be constructed: {
dYn = [△Yn + Fn(Yn)]dt + ϵYndWt,
Yn(0, x) = Yn

0 (x),
(7)

where Yn
0 (x) ∈ C+

tem, and Yn
0 (x) → Y0(x) as n → +∞. We refer to [12]. There exists

a unique solution Yn(t, x) to Equation (7) in law and Yn(t, x) ∈ C+
tem. According to the

Kolmogorov tightness criterion, we can show that for, a.e., ω ∈ Ω there is a unique solution
Y(t, x) to Equation (5) such that Yn(t, x) converges to Y(t, x) as n → ∞.

Lemma 5 ([12]). All solutions to (5) with initial date Y0 have the same law which is denoted by

QY0, ∂c1
∂u , ∂c1

∂v , ∂c2
∂u , ∂c2

∂v , and map (Y0, ∂c1
∂u , ∂c1

∂v , ∂c2
∂u , ∂c2

∂v ) → QY0, ∂c1
∂u , ∂c1

∂v , ∂c2
∂u , ∂c2

∂v is continuous. For any

Heaviside function Y0, law QY0, ∂c1
∂u , ∂c1

∂v , ∂c2
∂u , ∂c2

∂v forms a strong Markov family.

Next, we perform several estimations about Y(t, x) which play an important role in
constructing travelling wave solution and estimating its asymptotic wave speed.

Theorem 1. For any Heaviside functions u0 and v0 as initial data, if (H1)–(H4) hold, for any
t > 0 fixed and, a.e., ω ∈ Ω, it is true that

E[u(t, x) + v(t, x)] ≤ C(ϵ, t), ∀x ∈ R, (8)

where C(ϵ, t) = E[exp( sup
0≤r≤t

∫ t
r ϵdWs)] is a constant.

Proof. We consider Equation (1):
du = [△u + uc1(u, v)]dt + ϵudWt,
dv = [△v + vc2(u, v)]dt + ϵvdWt,
u(0, x) = u0(x), v(0, x) = v0(x).

(9)

We denote by ϕ(t, x) = u(t, x) + v(t, x); we have{
dϕ = [△ϕ + uc1(u, v) + vc2(u, v)]dt + ϵϕdWt,
ϕ(0, x) = ϕ0 = u0 + v0.

(10)

We let c0 = max
i=1,2

{ci(0, 0)}; with (H1) and (H3), we know that there exists β > a > 0

such that

|c1(u, v)| ≤ c0 + β|u|+ a|v|, c2(u, v) ≤ c0 + β|v|+ a|u|, (11)

combination with (H2) and (11) gives

c1(u, v) ≤ c0 − βu + av, c2(u, v) ≤ c0 − βv + au. (12)

Frequently, it can be determined that
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uc1(u, v) + vc2(u, v) ≤u(c0 − βu + av) + v(c0 − βv + au)

≤c0(u + v)− β(u2 + v2) + 2auv

≤c0(u + v)− β − a
2

(u + v)2

=(u + v)(c0 −
β − a

2
(u + v)).

We denote c3(x) = c0 − β−a
2 x; c3(x) is decreasing for x ∈ [0,+∞), and c3(x) < 0 for

x > 2c0
β−a . We let ψ(t, x) be the solution to Equation (13):{

dψ = [△ψ + ψ(c0 − β−a
2 ψ)]dt + ϵψdWt,

ψ0 = u0 + v0.
(13)

According to monotone random dynamical systems theory [13] and its corresponding
comparison principle [14], it can be determined that u(t, x) ≤ ψ(t, x) a.s. and v(t, x) ≤
ψ(t, x) a.s. We let ζ(t, x) be the solution to the following equation:{

dζ = [△ζ + ζ(c0 − β−a
2 ζ)]dt − ϵ2

2 ζ,
ζ0 = ψ0.

(14)

We refer to [12] and use a stochastic Feynman–Kac formula. We have

exp( inf
0≤r≤t

∫ t

r
ϵdWs)ζ(t, x) ≤ ψ(t, x) ≤ exp( sup

0≤r≤t

∫ t

r
ϵdWs)ζ(t, x) a.s. (15)

For any fixed t > 0, for any σ > 0, multiplying G(t − s + σ, x − y) in (14) and
integrating over R, it can be determined that

∂

∂s

∫
R

ζ(s, y)G(t − s + σ, x − y)dy =(c0 −
ϵ2

2
)
∫

R
ζ(s, y)G(t − s + σ, x − y)dy

− β − a
2

∫
R

ζ2(s, y)G(t − s + σ, x − y)dy

≤(c0 −
ϵ2

2
)
∫

R
ζ(s, y)G(t − s + σ, x − y)dy

− β − a
2

(
∫

R
ζ(s, y)G(t − s + σ, x − y)dy)2.

We let φ(s) =
∫

R ζ(s, y)G(t − s + σ, x − y)dy; then, we have{
dφ(s)

ds ≤ (c0 − ϵ2

2 )φ(s)− β−a
2 φ2(s),

φ0 =
∫

R ζ0G(t + σ, x − y)dy.
(16)

It can be deduced that

φ(s) ≤ φ0 +
2c0

β − a
− ϵ2

β − a
. (17)

Furthermore, we have∫
R

ζ(t, y)G(σ, x − y)dy ≤
∫

R
ζ0G(t + σ, x − y)dy +

2c0

β − a
− ϵ2

β − a
. (18)
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Then, we let σ → 0, and we have

ζ(t, x) ≤
∫

R
ζ0G(t+, x − y)dy +

2c0

β − a
− ϵ2

β − a
. (19)

Therefore, we perform combination with (15) and obtain

u(t, x) + v(t, x) ≤ ψ(t, x) ≤ exp( sup
0≤r≤t

∫ t

r
ϵdWs)

× (
∫

R
ψ0G(t, x − y)dy +

2c0

β − a
− ϵ2

β − a
) a.s.

(20)

Moreover, since the initial data u0 and v0 are both Heaviside functions, we take the
expectation and obtain

E[u(t, x) + v(t, x)] ≤ C(ϵ, t)(u0 + v0 +
2c0

β − a
− ϵ2

β − a
), (21)

where C(ϵ, t) = E[exp( sup
0≤r≤t

∫ t
r ϵdWs)].

Theorem 2. For any Heaviside functions u0 and v0 as initial data, if (H1)–(H4) hold, for, a.e.,
ω ∈ Ω, any T > 0 fixed, it it true that

E sup
0≤t≤T

[|u(t)|2 + |v(t)|2] ≤ E[|u0|2 + |v0|2]e−t + K(ϵ)(1 − e−t), (22)

where K(ϵ) > 0 is constant.

Proof. We let V(t) = |u(t)|2 + |v(t)|2 using the Itô formula, and we obtain

dV(t) =2⟨u,△u⟩dt + 2⟨v,△v⟩dt + 2⟨u, c1(u, v)⟩ dt

+ 2⟨v, c2(u, v)⟩dt + ϵ2[u2 + v2]dt + 2ϵ[u2 + v2]dWt.

Then, integrating both sides in [0, t] and taking the expectation implies

E[V(t)] =E[|u0|2 + |v0|2] + 2E
∫ t

0
⟨u,△u⟩ds + 2E

∫ t

0
⟨v,△v⟩ds + ϵ2E

∫ t

0
(u2 + v2)ds

+ 2E
∫ t

0
⟨u, c1(u, v)⟩ds + 2E

∫ t

0
⟨v, c2(u, v)⟩ ds

≤E[|u0|2 + |v0|2]− 2E
∫ t

0
|∇u|2ds − 2E

∫ t

0
|∇v|2ds + ϵ2E

∫ t

0
(u2 + v2)ds

+ 2c0E
∫ t

0
(u2 + v2)ds − 2(β − a)E

∫ t

0
(u3 + v3)ds

≤E[|u0|2 + |v0|2]− 2(β − a)E
∫ t

0
(u3 + v3)ds + 2c0E

∫ t

0
(u2 + v2)ds

+ ϵ2E
∫ t

0
(u2 + v2)ds +E

∫ t

0
(u2 + v2)ds −E

∫ t

0
(u2 + v2)ds.

Hence, with Young inequality and Gronwall inequality, we have

E[|u(t)|2 + |v(t)|2] ≤ E[|u0|2 + |v0|2]e−t + K(ϵ)(1 − e−t), (23)

where K(ϵ) is a constant.

With the boundedness of Y(t, x), the sup-solution can be constructed to describe how
fast the support of Y(t, x) can spread and the SCP property can be obtained.
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Lemma 6. We let Y(t, x) be the solution to (1) with initial data Y0 as a Heaviside function. We
suppose for some r > 0 such that Y0 is supported outside (−r − 2, r + 2); then, for any t ≥ 1,

P(
∫ t

0

∫ r

−r
||Y(s, x)||∞dsdx > 0)

≤Cet
∫ √

t
|x| − (r + 1)

exp(− (|x| − (r + 1))2

2t
)||Y0||∞dx.

(24)

Proof. Since Y(t, x) is bounded and we construct a sup-solution solving the following
equation: 

du⋆ = [△u⋆ + u⋆(ρ − βu⋆)]dt + ϵu⋆dWt,
dv⋆ = [△v⋆ + v⋆(ρ − βv⋆)]dt + ϵv⋆dWt,
u⋆(0) = u0, v⋆(0) = v0,

(25)

where ρ > 0 is a constant such that uc1(u, v) ≤ u(ρ − βu) and vc2(u, v) ≤ v(ρ − βv), then
we refer to [11,12]. The proof can be completed.

Then, we show that Y(t, x) satisfy the Kolmogorov tightness criterion and Y(t, x) ∈
K(C, δ, µ, γ), which is dedicated to constructing a tight probability measure sequence and
furthermore obtain the existence of a travelling wave solution.

Lemma 7. For any Heaviside functions u0 and v0 as initial data, if (H1)–(H4) hold, for, a.e.,
ω ∈ Ω, any p ≥ 2 fixed, t > 0, if |x − x′| ≤ 1, there exits C(p, t) < ∞ such that

QY0(|Y(t, x)− Y(t, x′)|p) ≤ C(p, t)|x − x′|p/2−1.

Proof. Direct calculation shows that

|Y(t, x)− Y(t, x′)|p

≤3p−1|
∫

R
(G(t, x − y)− G(t, x′ − y))u0dy|p

+ 3p−1|
∫

R
(G(t, x − y)− G(t, x′ − y))v0dy|p

+ 3p−1|
∫

R

∫ t

0
(G(t − s, x − y)− G(t − s, x′ − y))uc1(u, v)dsdy|p︸ ︷︷ ︸

I

+ 3p−1|
∫

R

∫ t

0
(G(t − s, x − y)− G(t − s, x′ − y))vc2(u, v)dsdy|p︸ ︷︷ ︸

I I

+ 3p−1ϵp|
∫

R

∫ t

0
(G(t − s, x − y)− G(t − s, x′ − y))udWsdy|p︸ ︷︷ ︸

I I I

+ 3p−1ϵp|
∫

R

∫ t

0
(G(t − s, x − y)− G(t − s, x′ − y))vdWsdy|p︸ ︷︷ ︸

IV

.

Since ∫ t

0

∫
R
(G(t − s, x − y)− G(t − s, x′ − y))2dsdy ≤ C(t)|x − x′|,
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and Y(t, x) is bounded, for I I I and IV, we have

E[I I I] ≤C(p)ϵpE(
∫ t

0

∫
R
(G(t − s, x − y)− G(t − s, x′ − y))2dsdy)p/2−1

× (
∫ t

0

∫
R
(G(t − s, x − y)− G(t − s, x′ − y))2updsdy)

≤C1(p, t)|x − x′|p/2−1,

and

E[IV] ≤ C2(p, t)|x − x′|p/2−1.

With Hölder inequality, for I and I I, we have

E[I] =3p−1E|
∫ t

0

∫
R
(G(t − s, x − y)− G(t − s, x′ − y))(u − a1u2 + b1uv)dsdy|p

≤3p−1(
∫ t

0

∫
R
(G(t − s, x − y)− G(t − s, x′ − y))2dsdy)p/2−1

× (
∫ t

0

∫
R
|G(t − s, x − y)− G(t − s, x′ − y)|2E[(u − a1u2 + b1uv)p]dsdy)

≤C3(p, t)|x − x′|p/2−1,

and

E[I I] ≤ C4(p, t)|x − x′|p/2−1.

Meanwhile, we have

E|
∫

R
(G(t, x − y)− G(t, x′ − y))u0dy|p

=E|
∫

R

∫ x

x′

(y − r)
2t
√

4πy
exp(− (y − r)2

4t
)u0drdy|p

≤K(t)(
∫

R

∫ x

x′

1√
t

exp(− (y − r)2

5t
)u0drdy)p

≤K(t)|x − x′|p
∫

R

1√
t

exp(− (y − x)2

5t
)|u0|pdy

≤C5(p, t)|x − x′|p/2−1, (since |x − x′| ≤ 1),

and

E|
∫

R
(G(t, x − y)− G(t, x′ − y))v0dy|2 ≤ C6(p, t)|x − x′|p/2−1.

Combining all the inequalities above completes the proof:

E[|Y(t, x)− Y(t, x′)|p] ≤ C(p, t)|x − x′|p/2−1. (26)

In order to construct a travelling weave solution, according to the two sufficient
conditions proposed by Tribe [11], we are required to show that the wavefront marker is
bounded for all t > 0 and the translation of solution with respect to a wavefront marker
is stationary. However, it is quite difficult to deal with R0(t) directly, so we turn to a new
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suitable wavefront marker for help. We define QY0 as the law of the unique solution to
Equation (5) with initial data Y0. For a probability measure ν on C+

tem, we define

Qν(A) =
∫

C+
tem

QY0(A)ν(dY0),

define a new wavefront marker R1(t) : C+
tem → [−∞, ∞],

R1( f ) = ln
∫

R
ex f dx, R1(u(t)) = ln

∫
R

exu(t, x)dx,

and
R1(t) := R1(Y(t)) = max{R1(u(t)), R1(v(t))};

then, R1(t) is an approximation to R0(Y(t)) = max{R0(u(t)), R0(v(t))}. We let Z(t) =
Y(t, ·+ R1(t)) = (Z1(t), Z2(t))T , Z0(t) = Y(t, ·+ R0(Y(t))), and define

Z(t) =


(0, 0)T , R1(t) = −∞,
(u(t, ·+ R1(t)), v(t, ·+ R1(t)))T , −∞ < R1(t) < ∞,
(p1, p2)

T , R1(t) = ∞.

Next, define

νT = the law o f
1
T

∫ T

0
Z(s)ds under QY0 .

Now, we summarize the steps of constructing a travelling wave solution. First, we
show that the new wavefront marker is bounded (see Lemma 8) to ensure the shifting does
not destroy the tightness (see Lemma 7). Based on this, we construct a tight probability
measure sequence {νT}T∈N (see Lemma 9) and show that any limit point is nontrivial (see
Theorem 3), where Qν is the law of a travelling wave solution.

Lemma 8. For any Heaviside functions u0 and v0 as initial data, for, a.e., ω ∈ Ω, any t ≥ 0,
d > 0, T ≥ 1, there exists C(t) < ∞ such that

QνT (|R1(t)| > d) ≤ C(t)
d

. (27)

Proof. With the comparison principle, we construct a sup-solution solving Equation (28):
dũ = [△ũ + kũ]dt + ϵũdWt,
dṽ = [△ṽ + kṽ]dt + ϵṽdWt,
ũ0 = u0, ṽ0 = v0,

(28)

where k > 0 is a constant such that uc1(u, v) ≤ ku and vc2(u, v) ≤ kv; thus, we determine
that u(t, x) ≤ ũ(t, x) and v(t, x) ≤ ṽ(t, x) hold on [0, T] uniformly, and for, a.e., ω ∈ Ω the
solution to Equation (28) can be expressed by

Ỹ(t, x) =
∫

R
ektG(t, x − y)Y0(y)dy + ϵ

∫
R

∫ t

0
G(t − s, x − y)ỸdWsdy. (29)
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Without generality, we assume that R1(t) = R1(u(t)) and take u(t, x) for an example.
We have

Qu0(
∫

R
u(t, x)exdx) ≤E[

∫
R

ũ(t, x)exdx]

=E[
∫

R

∫
R

ektG(t, x − y)u0(y)dyexdx]

=ekt+t
∫

R
u0(x)exdx, (30)

according to the definition of R1(t), we know∫
R

u(t, x + R1(t))exdx = e−R1(t)
∫

R
u(t, x)exdx = 1; (31)

meanwhile, we have ∫
R

v(t, x + R1(t))exdx ≤ 1.

Combining (30) with (31) implies that

QνT (R1(t) ≥ d) =
1
T

∫ T

0
Qu0(Qu(s)(R1(t) ≥ d))ds

=
1
T

∫ T

0
Qu0(Qu(s)(e−d

∫
R

u(t, x)exdx ≥ 1))ds

≤e−d 1
T

∫ T

0
Qu0(Qu(s)(

∫
R

u(t, x)exdx))ds

≤e−dekt+t 1
T

∫ T

0

∫
R

u(s, x + R1(s))exdxds

=e−dekt+t. (32)

On the other hand, Jensen’s inequality offers

Qu0(R1(t)) ≤ ln(ekt+t
∫

R
u0(x)exdx) ≤ kt + t + R1(u0),

additionally, we can obtain such estimation:

1
T

Qu0(
∫ T+t

t
R1(s)ds −

∫ T

0
R1(s)ds)

=
1
T

Qu0(
∫ T

0
R1(t + s)− R1(s)ds)

=
1
T

∫ T

0

∫
{R1(t+s)−R1(s)>−d}

(R1(t + s)− R1(s))Qu0(du)ds

+
1
T

∫ T

0

∫
{R1(t+s)−R1(s)≤−d}

(R1(t + s)− R1(s))Qu0(du)ds

≤ 1
T

∫ T

0

∫
{R1(t+s)−R1(s)>0}

(R1(t + s)− R1(s))Qu0(du)ds

− d
T

∫ T

0
Qu0(R1(t + s)− R1(s) ≤ −d)ds

≤ 1
T

∫ T

0

∫ ∞

0
Qu0(R1(t + s)− R1(s) ≥ y)dyds
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− d
T

∫ T

0
Qu0(R1(t + s)− R1(s) ≤ −d)ds

=
∫ ∞

0
QνT (R1(t) ≥ y)dy − dQνT (R1(t) ≤ −d).

Rearranging the inequalities above implies

QνT (R1(t) ≤ −d) ≤1
d

∫ ∞

0
QνT (R1(t) ≥ y)dy +

1
dT

∫ T

0
QνT (R1(s))ds

− 1
dT

∫ T+t

t
Qu0(R1(s))ds

≤1
d

∫ ∞

0
e−y+k0t+tdy +

1
dT

∫ T

0
k0s + s + R1(u0)ds

≤C(t)
d

. (33)

We combine (32) with (33), and the proof can be completed.

Via the boundedness of wavefront marker R1(t), we can construct the tight sequence
{νT : T ∈ N} with Y(t, x) ∈ K(C, δ, µ, γ).

Lemma 9. For any Heaviside functions u0 and v0 as initial data, for, a.e., ω ∈ Ω, the sequence
{νT : T ∈ N} is tight.

Proof. Similarly, we start discussion with u(t, x). Since Y(t, x) ∈ K(C, δ, µ, γ), it can be
determined that u(t, x) ∈ K(C, δ, µ, γ), and furthermore, we have

νT(K(C, δ, γ, µ)) =
1
T

∫ T

0
Qu0(u(t, ·+ R1(t)) ∈ K(C, δ, γ, µ))ds

≥ 1
T

∫ T

0
Qu0((u(t, ·+ R1(t − 1)) ∈ K(Ce−µd, δ, γ, µ))

× |R1(t)− R1(t − 1)| ≤ d)ds

:=I − I I.

According to Lemma 8, it can be easily determined that I I → 0 as d → ∞. In addition,
for any given d, µ > 0, we choose C, δ, γ to make I as close to T

T−1 as desired. In addition,
we know

νT{u0 :
∫

R
u0(x)e−|x|dx ≤

∫
R

u0(x)exdx = 1} = 1;

thus, for a given µ > 0, we can choose C, δ, γ such that νT(K(C, δ, µ, γ)∩{u0 :
∫

R u0(x)e−|x|dx})
as close to one as desired for T and d that are sufficiently large, which means that sequence
{νT : T ∈ N} is tight. We refer to Lemma 3.9 in [12]. The proof can be completed.

Theorem 3. For any Heaviside functions u0 and v0 as initial data, if (H1)–(H4) hold, for, a.e.,
ω ∈ Ω, any T > 0 fixed, there is a travelling wave solution to Equation (1), and Qν is the law of
travelling wave solution.

Proof. Refer to Theorem 3.10 in [12]. The proof can be completed.
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Based on the existence of a stochastic travelling wave solution, we can estimate the wave
speed by the comparison principle in the following. First, we construct the sup-solution

dū = [△ū + ūc̄(ū)]dt + ϵūdWt,
dv̄ = [△v̄ + v̄c̄(v̄)]dt + ϵv̄dWt,

ū0 = c̄(0)
c1(0,0)u0, v̄0 = c̄(0)

c2(0,0)v0,
(34)

where c̄(x) is Lipschitz continuous and decreasing for x ∈ [0, ∞), and there exists δ > 0,
such that c̄(x) < 0 for x > δ. Since (u, v) is the solution to (1) and bounded, it holds that
c1(u, v) ≤ c̄(u) and c2(u, v) ≤ c̄(v). Then, we construct the sub-solution

du = [△u + uc1(u, 0)]dt + ϵudWt,
dv = [△v + vc2(0, v)]dt + ϵvdWt,
u0 = u0, v0 = v0,

(35)

where c1(u, v) ≥ c1(u, 0), c2(u, v) ≥ c2(0, v). According to the comparison theorem of wave
speed (see Lemma 4.2 in [12]), the wave speed of travelling wave solution to Equation (1)
can be estimated.

Theorem 4. For any Heaviside functions u0 and v0 as initial data, if (H1)–(H4) hold, we denote
by c the wave speed of the travelling wave solution to Equation (1); then,√

4c0 − 2ϵ2 ≤ c ≤
√

4c̄0 − 2ϵ2 a.s. (36)

where c0 = max{c1(0, 0), c2(0, 0)}, c̄0 = c̄(0).

Proof. According the definition of wave speed,

c = lim
t→∞

R0(t)
t

a.s.,

the wave speed of stochastic reaction–diffusion equations is the maximum value between
the two sub-systems; thus, with the comparison theorem of wave speed and referring to
Theorems 4.1 and 4.2 in [12], the proof can be completed.

3. Conclusions

In this paper, we are devoted to the propagation dynamics of stochastic reaction–
diffusion equations and offer the definition of the stochastic travelling wave solution in law.
According to the random monotonic dynamical system theory, the existence of travelling
wave solution is determined via the two sufficient conditions proposed by Tribe, and we
summarize the general methods of constructing a stochastic travelling wave solution.
Furthermore, the estimation of asymptotic wave speed can be obtained by constructing
sup-solution and sub-solution and using the comparison method of wave speed. Obviously,
the upper bound and the lower bound of wave speed depend on the nonlinear terms and
the strength of noise, and it is in line with reality. In the deterministic condition, the wave
speed relies on the nonlinear term. After introducing the noise term, its impact is reflected
in the estimate of wave speed.

Author Contributions: Conceptualization, H.W.; writing, H.W.;review and editing, Y.W. and G.L.;
supervision, D.L. All authors have read and agreed to the published version of the manuscript.

Funding: This paper is funded by National Natural Science Foundation of China (11802328).



Mathematics 2024, 12, 1284 13 of 13

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Øksendal, B.; Våge, G.; Zhao, H. Two properties of stochastic KPP equations: Ergodicity and pathwise property. Nonlinearity

2001, 3, 639–662. [CrossRef]
2. Benth, F.; Gjessing, H. A nonlinear parabolic equation with noise. Potential Anal. 2000, 4, 385–401. [CrossRef]
3. Freidlin, M. On wave fronts propagation in multicomponent media. Trans. Am. Math. Soc. 1983, 1, 181–191. [CrossRef]
4. Øksendal, B.; Våge, G.; Zhao, H. Asymptotic properties of the solutions to stochastic KPP equations. Proc. R. Soc. Edinb. Sect. A

2000, 6, 1363–1381. [CrossRef]
5. Huang, Z.; Liu, Z. Stochastic traveling wave solution to stochastic generalized KPP equation. NoDea-Nonlinear Differ. Equ. Appl.

2015, 1, 143–173. [CrossRef]
6. Huang, Z.; Liu, Z. Random traveling wave and bifurcations of asymptotic behaviors in the stochastic KPP equation driven by

dual noises. J. Differ. Equ. 2016, 2, 1317–1356. [CrossRef]
7. Huang, Z.; Liu, Z; Wang, Z. Utility indifference valuation for defaultable corporate bond with credit rating migration. Mathematics

2020, 8, 2033. [CrossRef]
8. Wang, Z.; Zhou, T. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discret. Contin. Dyn.

Syst. Ser. B 2021, 9, 5023–5045. [CrossRef]
9. Huang, Z.; Miao, Y.; Wang, Z. Free boundary problem pricing defaultable corporate bonds with multiple credit rating migration

risk and stochastic interest rate. AIMS Math. 2020, 6, 7746–7775. [CrossRef]
10. Shiga, T. Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Can. J. Math. 1994,

2, 415–437. [CrossRef]
11. Tribe, R. A travelling wave solution to the kolmogorov equation with noise. Stoch. Stoch. Rep. 1996, 56, 317–340. [CrossRef]
12. Wen, H.; Huang, J.; Li, Y. Propagation of stochastic travelling waves of cooperative systems with noise. Discret. Contin. Dyn. Syst.

Ser. B 2022, 10, 5779–5803. [CrossRef]
13. Chueshov, I. Monotone Random Systems: Theory and Applications; Springer: New York, NY, USA, 2002.
14. Kotelenez, P. Comparison methods for a class of function valued stochastic partial differential equations. Probab. Theory Relat.

Fields 1992, 93, 1–19. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1088/0951-7715/14/3/311
http://dx.doi.org/10.1023/A:1008652108416
http://dx.doi.org/10.1090/S0002-9947-1983-0684501-1
http://dx.doi.org/10.1017/S030821050000072X
http://dx.doi.org/10.1007/s00030-014-0279-9
http://dx.doi.org/10.1016/j.jde.2016.04.003
http://dx.doi.org/10.3390/math8112033
http://dx.doi.org/10.3934/dcdsb.2020323
http://dx.doi.org/10.3934/math.2020495
http://dx.doi.org/10.4153/CJM-1994-022-8
http://dx.doi.org/10.1080/17442509608834047
http://dx.doi.org/10.3934/dcdsb.2021295
http://dx.doi.org/10.1007/BF01195385

	Introduction
	Asymptotic Behavior of a Travelling Wave Solution
	Conclusions
	References

