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Abstract

:

Oriented object detection (OOD) can precisely detect objects with arbitrary direction in remote sensing images (RSIs). Up to now, the two-stage OOD methods have attracted more attention because of their high detection accuracy. However, the two-stage methods only rely on the features of each proposal for object recognition, which leads to the misclassification problem because of the intra-class diversity, inter-class similarity and clutter backgrounds in RSIs. To address the above problem, an OOD model combining scene classification is proposed. Considering the fact that each foreground object has a strong contextual relationship with the scene of the RSI, a scene classification branch is added to the baseline OOD model, and the scene classification result of input RSI is used to exclude the impossible categories. To focus on the hard instances and enhance the consistency between classification and regression, a task-aligned focal loss (TFL) which combines the classification difficulty with the regression loss is proposed, and TFL assigns lager weights to the hard instances and optimizes the classification and regression branches simultaneously. The ablation study proves the effectiveness of scene classification branch, TFL and their combination. The comparisons with 15 and 14 OOD methods on the DOTA and DIOR-R datasets validate the superiority of our method.
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1. Introduction


Oriented object detection (OOD) has a significant role in remote sensing image (RSI) interpretation, which can localize objects with arbitrary direction more accurately by using an oriented rectangular box, comparing with horizontal object detection [1,2,3]. OOD can be applied in resource exploration, urban planning, modern agriculture, military reconnaissance and so on [4,5,6,7,8,9,10].



The existing OOD methods can be classified into three categories, including anchor-free methods, one-stage anchor-based methods and two-stage anchor-based methods. Anchor-free methods directly predict the bounding box and category score for each feature point through fully convolutional networks, such as the dynamic refinement network (DRN) [11], oriented representative points (Oriented RepPoints) [12], etc. One-stage methods predefine a number of anchors for each feature point and then use the fully convolutional network to predict the localization offset and category score of each predefined anchor, such as the single-shot alignment network (  S 2  A-Net) [13], dynamic anchor learning (DAL) [14], etc. [15,16,17,18,19,20,21,22]. Two-stage methods add a region proposal network (RPN), which predicts object proposals from a large number of predefined anchors, and then the localization offset and category score of each proposal are predicted according to its features obtained through a rotated region of interest alignment (RRoIAlign) operation, such as Oriented R-CNN [23], anchor-free oriented proposal generator (AOPG) [24], etc. [25,26,27].



On the whole, the detection accuracy of two-stage methods is better than the other two types of method; therefore, most works have focused on the two-stage methods. However, they suffer from a common problem, i.e., the misclassification caused by solely relying on the features of each proposal itself. Compared with natural scene images, the intra-class diversity, inter-class similarity and complexity of the background are more severe in remote sensing images. In this situation, solely using the features of proposal can easily lead to the misclassification problem. As shown in Figure 1a, a background region is incorrectly identified as a harbor.



To address the above problem, in this paper an OOD model that fuses scene classification is proposed. As shown in Figure 2, a scene classification branch is added to the baseline OOD model, and the result of scene classification can help the object classification branch to exclude the impossible classes. As a matter of fact, each foreground object has a strong contextual relationship with the scene of RSI; consequently, making full use of scene classification to assist object recognition can effectively alleviate the aforementioned misclassification problem. As shown in Figure 1b, our method can effectively exclude the misclassification of the harbor with the help of scene classification.



Furthermore, to focus on the hard instances and enhance the consistency between classification and regression, in this paper a novel task-aligned focal loss (TFL) is proposed. Specifically, the classification difficulty of each instance is combined with the regression loss to obtain the TFL, which can increase the relative weights of hard instances and optimize the classification and regression of each instance simultaneously.



The major contributions of this paper can be summarized as follows:




	
A novel OOD model fusing scene classification is proposed to address the misclassification problem caused by solely relying on the features of each proposal itself. Owing to intra-class diversity and inter-class similarity, the misclassification of objects easily occurs if only the features of each proposal itself are used for object classification. Considering the contextual relationship between the foreground objects and the scene of an RSI, the scene classification branch is incorporated into the baseline OOD model help the object classification branch exclude impossible categories that do not exist in the RSI;



	
A novel TFL is proposed to focus on the hard instances and enhance the consistency between classification and regression. The TFL is obtained through combining the classification difficulty with regression loss, which can increase the relative weights of hard instances and achieve the simultaneous optimization of the classification and regression branches;



	
The superiority of the proposed method is demonstrated on two public RSI datasets, i.e., the DOTA and DIOR-R benchmarks.









2. Related Work


2.1. Oriented Object Detection Methods


Due to the development of deep learning [28,29,30,31,32,33,34,35,36,37,38,39,40,41,42], the OOD of RSI has made rapid progress in recent years [43,44,45,46,47,48,49,50,51,52,53]. The current OOD methods are generally divided into three categories, i.e., anchor-free methods, one-stage anchor-based methods and two-stage anchor-based methods, and their representative approaches are briefly introduced as follows.



Anchor-free methods: DRN; in [11], the authors proposed a feature selection module that allows the receptive fields of neurons to dynamically adapt to the shape and orientation of objects. Moreover, a dynamic refinement head is proposed to model the uniqueness and specificity of each sample by means of object-awareness to refine the features and thus make better inferences. Oriented RepPoints; in [12], the authors utilized adaptive point sets to represent the oriented boxes and designed an adaptive points assessment assignment strategy to select typical samples for better training.



One-stage anchor-based methods:   S 2  A-Net; in [13], the authors proposed an aligned convolution module to produce high-quality proposals that could relieve the inconsistency problem between classification and regression to some extent. DAL; in [14], the authors proposed a dynamic anchor learning strategy that combined spatial alignment with feature alignment capabilities for better label assignment. Refined single-stage detector (R3Det); in [54], the authors proposed a feature refinement module and a SkewIou loss to address the detection of objects with large aspect ratios and dense distributions in arbitrary directions.



Two-stage anchor-based methods: RoI Transformer; in [55], the authors converted horizontal proposals to oriented proposals through the proposed RoI learner for accurate OOD. Oriented R-CNN; in [23], the authors proposed an oriented RPN that simply generated high-quality proposals by designing an innovative oriented proposals representation. AOPG; in [24], the authors proposed a coarse location module to acquire oriented anchors and refine them to obtain high-quality oriented proposals. Dual-aligned oriented detector (DoDet); in [56], the authors designed a localization-guided detection head to mitigate the problem of inconsistency between classification and regression. On improving bounding box representations (OIBBR); in [57], the authors proposed a quadrant point representation to handle the boundary discontinuity problem.




2.2. RoI Pooling Methods


For the two-stage detection model, the region of interest (RoI) pooling operation is imposed on the feature maps of each proposal to obtain a feature representation with fixed size. For the original RoI pooling method [58], the feature maps of each proposal are approximately divided into 7 × 7 bins in the spatial dimension, and the max pooing operation is applied to obtain a 7 × 7 feature map, which is used as a channel of feature maps of each proposal. However, the original method suffers from quantization errors, i.e., the size of each proposal is not always evenly divisible by 7.



To address the above problem, an RoI Alignment (RoIAlign) operation [59] is proposed to replace original RoI pooling operation, and it is briefly introduced as follows. Firstly, the feature maps of each proposal are exactly divided into 7 × 7 bins in the spatial dimension, even if the size of the proposal is not evenly divisible by 7; in other words, the coordinates of each bin are decimals. Afterwards, each bin is exactly divided into four regions, and the pixel value of the center point of each region is calculated through the bilinear interpolation of four adjacent pixels of the center point. Finally, the value of each bin is obtained by taking the maximum value of the four center points, and the 7 × 7 feature representation of each proposal in the spatial dimension is obtained without the quantization error.



Note that the RoIAlign operation is designed for horizontal proposals, and cannot be directly applied to oriented proposals. Therefore, an RRoIAlign operation [55] is proposed to handle above restriction, which is a rotated version of RoIAlign operation, i.e., the only difference of them is rotation. So far, the RRoIAlign operation has been widely used in almost all OOD methods besides our method. To the best of our knowledge, no better RoI pooling method has been proposed to replace the RRoIAlign operation.





3. Proposed Method


3.1. Overview


The architecture of the proposed method is illustrated in Figure 2. First of all, the AOPG [24] is used to generate high-quality oriented proposals. Secondly, the classification and regression results of each proposal are derived from its features, obtained through the RROI Align operation, and the classification and regression branches are trained by the proposed TFL. Thirdly, a scene classification branch is added on the basis of shared backbone features, and it is trained by the image-level labels derived from the instance-level labels. In the inference stage, the predicted results of the scene classification branch are binarized by a predefined threshold, and they are then used to exclude the impossible categories for object classification. Finally, the refined category scores and predicted offsets of all proposals are jointly used to determine the final detection results. The proposed scene classification branch and TFL are introduced in detail as follows.




3.2. Scene Classification Branch


As mentioned previously, the existing two-stage methods usually suffer from the misclassification problem caused by solely relying on the features of each proposal itself. Considering the fact that each foreground object has a strong contextual relationship with the scene of the RSI, a scene classification branch is added into the OOD model to assist the object classification.



As shown in Figure 2, the scene classification branch is constructed on the basis of a shared backbone. First of all, the feature maps output from the shared backbone are converted into a one-dimensional feature vector by using the global average pooling operation, which are irrelevant with the features obtained from the RRoI Align operation. Secondly, the feature vector is convolved by a fully connected layer to obtain the scene feature vector, denoted as   f ∈  R  C + 1    , where C indicates the number of categories. Finally, the scene classification result of input RSI, denoted as s, can be obtained through the following equation:


   s i  = S i g m o i d  (  f i  )  ,  s . t .   i ∈ Z   , 1  ≤ i ≤ C + 1 ,  



(1)




where   f i   indicates the ith element in f,   s i   indicates the probability that input RSI belongs to the ith category, the   ( C + 1 )  th category denotes background and   S i g m o i d ( · )   denotes the sigmoid activation function. It is worth noting that the softmax classifier is not suitable for the scene classification branch because a multi-classification task is involved here; consequently, as shown in Figure 2, the sigmoid function is adopted as a binary classifier for the classification of each category.



At this point, the training loss of the scene classification branch, denoted as   L  S C B   , is defined by using the binary cross entropy (BCE) loss:


   L  S C B   =  ∑  i = 1   C + 1     l i  log  s i  +  ( 1 −  l i  )  log  ( 1 −  s i  )   ,  



(2)




where   l i   indicates the image-level label of the ith category of input RSI;    l i  = 1   if input RSI contains the objects belonging to ith category, otherwise,    l i  = 0  . As mentioned previously, the classifier of the scene classification branch consists of multiple binary classifiers; therefore, the BCE loss of each category is accumulated to obtain the   L  S C B   .




3.3. Task-Aligned Focal Loss


The focal loss [60] has demonstrated that paying more attention to the hard instances can effectively enhance the detection capability; however, it cannot handle the inconsistency between the classification and regression. To focus on the hard instances and enhance the consistency between classification and regression simultaneously, a task-aligned focal loss, denoted as   L  T F L   , is proposed, and its formulation is given as follows:


   L  T F L   =  L  c l s   + α  L  r e g    



(3)






   L  c l s   =      − log  (  p i  )  ,                       if     y i  = 1  and  1 ≤ i ≤ C       −  ( 1 −  p i  )  log  ( 1 −  p i  )  ,  if     y i  = 1  and   i = C + 1       



(4)






   L  r e g   =  e  ( 1 −  p i  )    L  R I o U   ,   s . t .     y i  = 1  and  1 ≤ i ≤ C ,  



(5)




where   L  c l s    and   L  r e g    denote the classification and regression loss in   L  T F L   , respectively,  α  denotes the relative weight of   L  r e g    and is quantitatively analyzed in Section 4.2,    p i  ∈ p   indicates the probability that each proposal belongs to the ith category,     p ∈   C + 1     indicates the classification result of each proposal,   y i   denotes the instance-level label of the ith category of each proposal,  α  is a predefined hyper-parameter and   L  R I o U    denotes the RIoU loss [50], which proposed a new metric named rotated intersection of over union (RIoU) and optimized the RIoU for better bounding box regression (BBR).



The explanation of   L  T F L    is as follows. Each instance will be used for classification and regression if it belongs to the assembly of positive samples, i.e.,    y i  = 1  and  1 ≤ i ≤ C  . At this point, the classification difficulty of each instance, indicated by   e  ( 1 −  p i  )   , is adaptively adjusted with   p i   and is used as the weight of the   L  R I O U   . On the one hand, the hard instances will be assigned larger weights compared with the easy instances in   L  r e g   . On the other hand, the   L  R I O U    is optimized and the   p i   is converged to 1 simultaneously, along with the minimization of   L  r e g   ; in other words, the consistency between classification and regression is enhanced. At this point, the traditional cross entropy, indicated by   − log (  p i  )  , is used for the training of classification of positive samples. The proposal will only be used for classification if it belongs to the assembly of negative samples, i.e.,    y i  = 1  and   i = C + 1  ; consequently, the original focal loss, indicated by   −  ( 1 −  p i  )  log  ( 1 −  p i  )   , is used for the training of the classification of negative samples.




3.4. Overall Training Loss


The overall training loss of our OOD method, denoted as L, is formulated as follows:


  L =  L  R P N   +  L  S C B   +  L  T F L    



(6)






    L  R P N   = L   c l s  ′  + L   r e g  ′   ,  



(7)




where   L  R P N    denotes the loss of the RPN,   L   c l s  ′    denotes the training loss of the classification branch in RPN and is defined by using cross entropy,   L   r e g  ′    denotes the training loss of the BBR branch in RPN and is defined by using the smooth L1 loss [58], and the details of   L  R P N    can be seen in the baseline OOD model [24].




3.5. Inference Stage


First of all, the scene classification result of the input RSI is predicted by the trained scene classification branch, and it is binarized through the following equation:


  t  s i  =      1 ,  if   s i  ≥ T       0 ,  otherwise      ,   t  s i  ∈ t s ,  



(8)




where   t s ∈  R  C + 1     denotes the binarized scene classification result of input RSI,   t  s i    denotes the result of the ith category in   t s  , T is a predefined threshold and is quantitatively analyzed in Section 4.2. In other words,   t  s i  = 0   if the input RSI does not contain the objects belonging to the ith category, otherwise,   t  s i  = 1  . Consequently, the   t s   can be used to exclude impossible categories for each proposal:


  p  s i  =  p i  × t  s i  ,   p  s i  ∈ p s ,  



(9)




where   p s ∈  R  C + 1     denotes the final classification result of each proposal,   p  s i    denotes the result of the ith category in   p s  . The motivation of Equation (9) is as follows. The possibility that a proposal belongs to the ith category will be excluded if the predicted result of the scene classification branch indicates that the input RSI does not contain the scene of the ith category. Finally, the   p s   is used for non-maximumsuppression (NMS) [61].





4. Experiments


4.1. Experiment Setup


4.1.1. Datasets


The DOTA dataset [62] includes 2806 images and 188,282 instances with 15 categories, i.e., plane (PL), baseball (BD), bridge (BR), ground track and field (GTF), small vehicle (SV), large vehicle (LV), ship (SH), tennis court (TC), basketball court (BC), storage tank (ST), soccer fields (SBF), rings (RA), harbors (HA), swimming pools (SP) and helicopters (HC). For single-scale experiments, the raw RSI is cropped into several sub-images with 1024 × 1024 pixels by using a step with 824 pixels. For multi-scale experiments, the raw RSI is initially resized with three ratios, i.e., 0.5, 1 and 1.5, and then the resized RSIs are cut into multiple sub-images with 1024 × 1024 pixels by using a step with 524 pixels. All experimental results were obtained through the DOTA evaluation server.



The DIOR-R dataset [63] includes 23,463 images with 800 × 800 pixels and 192,518 instances with 20 categories, i.e., aircraft (APL), airport (APO), baseball field (BF), BC, BR, chimney (CH), highway service area (ESA), expressway toll station (ETS), dam (DAM), golf field (GF), GTF, HA, overpass (OP), SH, stadium (STA), storage tank (STO), tennis court (TC), train station (TS), vehicle (VE) and windmill (WM).



Similar to other OOD methods [24,49,50,56,57], vertical and horizontal flipping are also used to augment the training samples for fair comparison.




4.1.2. Implementation Details


The stochastic gradient descent (SGD) algorithm was used to optimize our model with a momentum of 0.9 and a weight decay of 0.0001. The initial learning rate, batchsize and the number of epoch were set to 0.02, 8 and 12, respectively. The learning rate was modified to the 0.1-time previous stage at the eighth and eleventh epochs. The threshold of NMS is 0.1 (0.5) on the DOTA (DIOR-R) dataset [62,63].



The experiments were conducted on the mmdetection platform [64] within the PyTorch framework and run on four NVIDIA GeForce RTX 2080Ti (4×11-GB memory).



The mean average precision (mAP) of each category and all categories was used to assess the performance of the proposed method.





4.2. Parameter Analysis


The  α  (T) in Equation (3) (Equation (8)) is quantitatively analyzed on the DOTA dataset to assess its impact on the final result. As shown in Figure 3 and Figure 4, the highest mAP are obtained at   α = 0.5   (  T = 0.1  ); therefore, in this paper the  α  (T) is set to 0.5 (0.1). As shown in Equation (3), the  α  is used to control the relative weight of classification loss and BBR loss; therefore, a too-large or too-small value is not suitable for  α .




4.3. Ablation Study


Ablation studies were conducted on the DOTA dataset to evaluate the contribution of the scene classification branch and task-aligned focal loss. The AOPG [24] was applied as the benchmark methodology. As shown in Table 1, the baseline + SCB (TFL) denotes the combination of the baseline method and scene classification branch (task-aligned focal loss), and the baseline +SCB + TFL denotes our method in which the scene classification branch and task-aligned focal loss are all used.



As shown in Table 1, compared with baseline, the mAP of baseline + SCB, baseline + TFL and baseline +SCB + TFL are increased by 1.51%, 1.45% and 1.77%, respectively, which verifies the effectiveness of SCB, TFL and their combination.




4.4. Comparisons with Other OOD Methods


To fully validate the capability of our method (denoted as SCTFL), it is compared with several other OOD models on two RSI benchmarks, and the details are as follows.



4.4.1. Results on the DOTA Dataset


As shown in Table 2, we compare our model with 15 other OOD methods on the DOTA dataset: RetinaNet-O [60]; Faster RCNN [31]; DRN [11], CenterMap-Net [65]; multi-category rotation detector for small, cluttered and rotated objects (SCRDet) [66];   S 2  A-Net [13]; dynamic prior along with the coarse-to-fine assigner (DCFL) [67]; ROI Transformer [55]; task-collaborated detector (TCD) [68]; AOPG [24]; DODet [56]; Oriented R-CNN [23]; Oriented RepPoints [12]; OIBBR [57] and rotation proposal generation and optimization detector (RPGAOD) [69], and the mAP of our method is boosted by 8.52%, 7.90%, 6.25%, 5.21%, 4.34%, 2.83%, 2.69%, 2.34%, 1.77%, 1.71%, 1.46%, 1.08%, 0.98%, 0.70% and 0.48%, respectively, which shows our best performance on the DOTA dataset.




4.4.2. Results on the DIOR-R Dataset


As shown in Table 3, we compare our method with 14 other OOD methods on the DIOR-R dataset: fully convolutional one-stage object detection (FCOS-O) [70], RetinaNet-O [60], Double-heads [71], Faster RCNN-O [31], Gliding Vertex [65],   S 2  A-Net [13], ROI Transformer [55], OIBBR [57], AOPG [24], Oriented R-CNN [23], TCD [68], DODet [56], Oriented RepPoints [12] and DCFL [67], and the mAP of our method is boosted by 15.89%, 9.73%, 7.83%, 7.74%, 7.22%, 4.38%, 3.41%, 3.08%, 2.87%, 2.65%, 2.24%, 2.18%, 0.57% and 0.48%, respectively, which shows our best performance on the DIOR-R dataset.





4.5. Evaluation of Generalizability


4.5.1. Evaluation under the Condition of Multi-Scale Training and Testing


To evaluate the generalizability of our method through varying spatial resolutions and object scales, seven OOD methods are compared with our method under the condition of multi-scale training and testing: DRN [11],   S 2  A-Net [13], TCD [68], AOPG [24], DODet [56], Oriented R-CNN [23] and OIBBR [57]. These provide multi-scale experiment results. For multi-scale training and testing, the raw RSI is initially resized with three ratios, i.e., 0.5, 1 and 1.5, and then the resized RSIs are cut into multiple sub-images with 1024 × 1024 pixels by using a step with 524 pixels. As shown in Table 4, our method achieves the best results among the eight OOD methods, which validates the generalizability of our method under the condition of multi-scale training and testing.




4.5.2. Evaluation in Densely Populated Scenes


To evaluate the generalizability of our method in densely populated scenes, it is compared with popular OOD methods in the four densely populated scenes of two RSI datasets, respectively. The four densely populated scenes of the DOTA dataset include SV, LV, SH and TC, and scenes of the DIOR-R dataset include APL, SH, TC and VE. As shown in Table 5 and Table 6, our method has the highest mAP in the four densely populated scenes of the two RSI datasets, which indicates that our method has better generalizability in densely populated scenes.



In addition, as shown in Table 2, Table 3 and Table 4, the overall performance of our method is the best in 29 object categories of the DOTA and DIOR-R datasets (a total of 35 categories eliminate 6 duplicated categories), which demonstrates that our method has excellent generalizability in different object categories, and it can validate certain matters to some extent, i.e., our method can provide good performance when novel object categories are introduced.





4.6. Subjective Evaluation


To intuitively evaluate the effectiveness of our method, some its detection results on the two benchmarks are visualized in Figure 5 and Figure 6, respectively.





5. Discussion


5.1. Analysis of Experiment Results


As shown in Table 2 (Table 3), our method achieved the best performances in 4 (9) categories, sub-optimal performances in 2 (3) categories and the third best performances in 1 (2) categories on the DOTA (DIOR-R) datasets, respectively. This is attributed to the effectiveness of the proposed scene classification branch and task-aligned focal loss. For example, as shown in Table 3, our method gives the best performance in the ship category. A possible reason for this is that our method can exclude the misclassification of ships with the help of the scene classification branch since ships are closely related to a certain scene, e.g., sea. For another example, most of the OOD methods give poor performance in bridge and vehicle categories; however, our method shows the best performance in the above two categories. A possible reason for this is that the proposed task-aligned focal loss can assign larger weights to hard instances and enhance the consistency of classification and regression tasks. Furthermore, as shown in Table 2 and Table 3, the mAP of all categories of our method is the highest among all OOD methods, which also demonstrates the effectiveness of the scene classification branch and task-aligned focal loss.




5.2. Analysis of Failure Results


Although the proposed method provides better performance compared with other OOD methods, it still obtains failure results on some occasions, and the reasons are summarized below.



	
Caused by inter-class similarity. It is difficult for OOD methods to distinguish objects with similar characteristics but are of different categories because of the inter-class similarity of RSI, and our method also cannot handle it if similar objects exist in one RSI simultaneously. As a matter of fact, the scene classification branch introduced by our method can only exclude the impossible categories that do not exist in the input RSI. As shown in Figure 7a, the large vehicles are mistakenly detected as small vehicles because of their similar characteristics.



	
Caused by shadows. The shadows of foreground objects have similar shapes to the foreground objects themselves; therefore, on some occasions they are mistakenly detected as a part of the foreground objects. As shown in Figure 7b, the shadows of a chimney and a windmill are mistakenly recognized as a part of the targets.








6. Conclusions


This paper proposes an OOD model combining scene classification to handle the misclassification problem caused by only relying on the features of each proposal itself. The scene classification branch is added into the baseline OOD model, and the scene classification results are employed to help the object classification branch to exclude impossible categories in the RSI. In addition, a task-aligned focal loss is proposed to focus on hard instances and enhance the consistency between classification and regression, which combines the instance difficulty with regression loss to increase the relative weight of hard instance and optimize the classification and regression branches simultaneously. Ablation experiments show the effectiveness of the scene classification branch, task-aligned focal loss and their fusion. Comparisons with 15 and 14 OOD methods on the DOTA and DIOR-R datasets demonstrate the excellent performance of our method.
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Figure 1. Illustration of misclassification problem. (a) Detection result of OOD model without scene classification. (b) Detection result of our method. The blue and yellow rectangles denote tennis courts and a harbor, respectively. The red circle denotes the misclassification object. 
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Figure 2. Framework of the proposed method. 
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Figure 3. Parameter analysis of  α  on DOTA dataset. 
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Figure 4. Parameter analysis of T on DOTA dataset. 
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Figure 5. Visualizations of detection results on the DOTA dataset. 
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Figure 6. Visualization of detection results on the DIOR-R dataset. 
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Figure 7. Illustration of some failure results of our method. (a) failure results caused by inter-class similarity on the DOTA dataset. (b) failure results caused by shadows on the DIOR-R dataset. The meaning of colors of bounding boxes in (a) and (b) refers to Figure 5 and Figure 6, respectively. 
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Table 1. Ablation study of SCB and TFL on the DOTA dataset.
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	Baseline
	SCB
	TFL
	mAP





	✓
	
	
	75.24



	✓
	✓
	
	76.75



	✓
	
	✓
	76.69



	✓
	✓
	✓
	76.95










 





Table 2. Comparisons with 15 OOD methods on the DOTA dataset under the condition of single-scale training and testing. The AP of each category and the mAP of 15 categories are listed here. The best, sub-optimal and third best results are denoted in red, green and blue colors, respectively (the same below).
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	Methods
	Backbone
	Epoch
	PL
	BD
	BR
	GTF
	SV
	LV
	SH
	TC





	Retina-O [60]
	ResNet50
	12
	88.67
	77.62
	41.81
	58.17
	74.58
	71.64
	79.11
	90.29



	Faster-RCNN [31]
	ResNet50
	12
	88.34
	73.06
	44.86
	59.09
	73.25
	71.49
	77.11
	90.84



	DRN [11]
	H-104
	120
	88.91
	80.22
	43.52
	63.35
	73.48
	70.69
	84.94
	90.14



	CenterMap-Net [65]
	ResNet50
	12
	88.88
	81.24
	53.15
	60.65
	78.62
	66.55
	78.10
	88.83



	SCRDet [66]
	ResNet50
	12
	89.34
	80.65
	52.09
	68.36
	60.32
	72.41
	90.85
	87.94



	  S 2  A-Net [13]
	ResNet50
	12
	89.11
	82.84
	48.37
	71.11
	78.11
	79.39
	87.25
	90.83



	DCFL [67]
	ResNet50
	12
	-
	-
	-
	-
	-
	-
	-
	-



	ROI Transformer [55]
	ResNet50
	12
	88.65
	82.60
	52.53
	70.87
	77.93
	76.67
	86.87
	90.71



	TCD [68]
	ResNet50
	12
	89.27
	83.79
	56.91
	72.13
	65.75
	76.76
	70.67
	90.88



	AOPG [24]
	ResNet50
	12
	89.27
	83.49
	52.50
	69.97
	73.51
	82.31
	87.95
	80.89



	DODet [56]
	ResNet50
	12
	83.94
	84.31
	51.39
	71.04
	79.04
	82.86
	88.15
	90.90



	Oriented R-CNN [23]
	ResNet50
	12
	89.46
	82.12
	54.78
	70.86
	78.93
	83.00
	88.20
	90.90



	Oriented RepPoints [12]
	ResNet50
	40
	87.02
	83.17
	54.13
	71.16
	80.18
	78.40
	87.28
	90.90



	OIBBR [57]
	ResNet50
	12
	89.55
	83.66
	54.06
	73.93
	78.93
	83.08
	88.29
	80.89



	RPGAOD [69]
	ResNet50
	12
	89.34
	83.53
	54.39
	76.59
	78.09
	81.44
	87.64
	90.83



	SCTFL (Ours)
	ResNet50
	12
	89.85
	83.49
	55.61
	74.61
	78.71
	83.47
	88.05
	90.90



	Methods
	Backbone
	Epoch
	BC
	ST
	SBF
	RA
	HA
	SP
	HC
	mAP



	Retina-O [60]
	ResNet50
	12
	82.18
	74.32
	54.75
	60.60
	62.57
	69.57
	60.64
	68.43



	Faster-RCNN [31]
	ResNet50
	12
	78.94
	83.90
	48.59
	62.95
	62.18
	64.91
	56.18
	69.05



	DRN [11]
	H-104
	120
	83.85
	84.11
	50.12
	58.41
	67.62
	68.60
	52.50
	70.70



	CenterMap-Net [65]
	ResNet50
	12
	77.80
	83.61
	49.36
	66.19
	72.10
	72.36
	58.70
	71.74



	SCRDet [66]
	ResNet50
	12
	87.94
	86.86
	65.02
	66.68
	66.25
	68.24
	65.21
	72.61



	  S 2  A-Net [13]
	ResNet50
	12
	84.90
	85.64
	60.36
	62.60
	65.26
	69.13
	57.94
	74.12



	DCFL [67]
	ResNet50
	12
	-
	-
	-
	-
	-
	-
	-
	74.26



	ROI Transformer [55]
	ResNet50
	12
	83.83
	82.51
	53.95
	67.61
	74.67
	68.75
	61.03
	74.61



	TCD [68]
	ResNet50
	12
	86.95
	83.81
	60.16
	71.21
	76.54
	71.95
	70.89
	75.18



	AOPG [24]
	ResNet50
	12
	87.64
	84.71
	60.01
	66.12
	74.19
	68.30
	57.80
	75.24



	DODet [56]
	ResNet50
	12
	86.88
	84.91
	62.69
	67.63
	75.47
	72.22
	45.54
	75.49



	Oriented R-CNN [23]
	ResNet50
	12
	87.50
	84.68
	63.97
	67.69
	74.94
	68.84
	52.28
	75.87



	Oriented RepPoints [12]
	ResNet50
	40
	85.97
	86.25
	59.90
	70.49
	73.53
	72.27
	58.97
	75.97



	OIBBR [57]
	ResNet50
	12
	86.60
	84.80
	62.03
	65.55
	74.16
	70.09
	58.16
	76.25



	RPGAOD [69]
	ResNet50
	12
	58.89
	85.33
	65.44
	64.96
	73.73
	70.31
	59.50
	76.47



	SCTFL (Ours)
	ResNet50
	12
	86.87
	84.35
	66.31
	67.10
	74.55
	68.21
	62.20
	76.95










 





Table 3. Comparisons with 14 OOD methods on the DIOR-R dataset. The AP of each category and the mAP of 20 categories are listed here.
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	Methods
	Backbone
	Epoch
	
	APL
	APO
	BF
	BC
	BR
	CH
	DAM
	ETS
	ESA
	GF





	FCOS-O [70]
	ResNet50
	12
	
	48.70
	24.88
	63.57
	80.97
	18.41
	68.99
	23.26
	42.37
	60.25
	64.83



	RetinaNet-O [60]
	ResNet50
	12
	
	61.49
	28.52
	73.57
	81.17
	23.98
	72.54
	19.94
	72.39
	58.20
	69.25



	Double-heads [71]
	ResNet50
	12
	
	62.13
	19.53
	71.50
	87.09
	28.01
	72.17
	20.35
	61.19
	64.56
	73.37



	Faster RCNN-O [31]
	ResNet50
	12
	
	62.79
	26.80
	71.72
	80.91
	34.20
	72.57
	18.95
	66.45
	65.75
	66.63



	Gliding Vertex [65]
	ResNet50
	12
	
	65.35
	28.87
	74.96
	81.33
	33.88
	74.31
	19.58
	70.72
	64.70
	72.30



	  S 2  A-Net [13]
	ResNet50
	12
	
	65.40
	42.04
	75.15
	83.91
	36.01
	72.61
	28.01
	65.09
	75.11
	75.56



	ROI Transformer [55]
	ResNet50
	12
	
	63.34
	37.88
	71.78
	87.53
	40.68
	72.60
	26.86
	78.71
	68.09
	68.96



	OIBBR [57]
	ResNet50
	12
	
	63.22
	41.39
	71.97
	88.55
	41.23
	72.63
	28.82
	78.90
	69.00
	70.07



	AOPG [24]
	ResNet50
	12
	
	62.39
	37.79
	71.62
	87.63
	40.90
	72.47
	31.08
	65.42
	77.99
	73.20



	Oriented R-CNN [23]
	ResNet50
	12
	
	62.00
	44.92
	71.78
	87.93
	43.84
	72.64
	35.46
	66.39
	81.35
	74.10



	TCD [68]
	ResNet50
	12
	
	67.95
	45.30
	73.48
	83.55
	40.38
	74.74
	33.60
	70.54
	79.33
	78.03



	DODet [56]
	ResNet50
	12
	
	63.40
	43.35
	72.11
	81.32
	43.12
	72.59
	33.32
	78.77
	70.84
	74.15



	Oriented RepPoints [12]
	ResNet50
	12
	
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-



	DCFL [69]
	ResNet50
	12
	
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-



	SCTFL (Ours)
	ResNet50
	12
	
	69.45
	43.78
	77.42
	88.26
	46.67
	72.54
	35.17
	79.43
	63.95
	72.79



	Methods
	Backbone
	Epoch
	GTF
	HA
	OP
	SH
	STA
	STO
	TC
	TS
	VE
	VM
	mAP



	FCOS-O [70]
	ResNet50
	12
	50.66
	31.84
	40.80
	73.09
	66.32
	56.61
	77.55
	38.10
	30.69
	55.87
	51.39



	RetinaNet-O [60]
	ResNet50
	12
	79.54
	32.14
	44.87
	77.71
	65.57
	61.09
	81.46
	47.33
	38.01
	60.24
	57.55



	Double-heads [71]
	ResNet50
	12
	81.97
	40.68
	42.40
	80.36
	73.12
	62.37
	87.09
	54.94
	41.32
	64.86
	59.45



	Faster RCNN-O [31]
	ResNet50
	12
	79.24
	34.95
	48.79
	81.14
	64.34
	71.21
	81.44
	47.31
	50.46
	65.21
	59.54



	Gliding Vertex [65]
	ResNet50
	12
	78.68
	37.22
	49.64
	80.22
	69.26
	61.13
	81.49
	44.76
	47.71
	65.04
	60.06



	  S 2  A-Net [13]
	ResNet50
	12
	80.47
	35.91
	52.10
	82.33
	65.89
	66.08
	84.61
	54.13
	48.00
	69.67
	62.90



	ROI Transformer [55]
	ResNet50
	12
	82.74
	47.71
	55.61
	81.21
	78.23
	70.26
	81.61
	54.86
	43.27
	65.52
	63.87



	OIBBR [57]
	ResNet50
	12
	83.01
	47.83
	55.54
	81.23
	72.15
	62.66
	89.05
	58.09
	43.38
	65.36
	64.20



	AOPG [24]
	ResNet50
	12
	81.94
	42.32
	54.45
	81.17
	72.69
	71.31
	81.49
	60.04
	52.38
	69.99
	64.41



	Oriented R-CNN [23]
	ResNet50
	12
	80.95
	43.52
	58.42
	81.25
	68.01
	65.52
	88.62
	59.31
	43.27
	66.31
	64.63



	TCD [68]
	ResNet50
	12
	78.22
	48.46
	56.00
	85.89
	65.07
	68.99
	81.61
	57.22
	48.72
	63.79
	65.04



	DODet [56]
	ResNet50
	12
	75.47
	48.00
	59.31
	85.41
	74.04
	71.56
	81.52
	55.47
	51.86
	66.40
	65.10



	Oriented RepPoints [12]
	ResNet50
	12
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	66.71



	DCFL [69]
	ResNet50
	12
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	66.80



	SCTFL (Ours)
	ResNet50
	12
	81.17
	47.50
	53.34
	89.23
	78.99
	77.99
	88.54
	60.02
	53.19
	71.22
	67.28










 





Table 4. Comparisons with 7 OOD methods on the DOTA dataset under the condition of multi-scale training and testing. The AP of each category and the mAP of 15 categories are listed here. The bold font denotes the best results (the same below).
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	Methods
	Backbone
	Epoch
	PL
	BD
	BR
	GTF
	SV
	LV
	SH
	TC





	DRN [11]
	H-104
	120
	89.45
	83.16
	48.98
	62.24
	70.63
	74.25
	83.99
	90.73



	  S 2  A-Net [13]
	ResNet50
	12
	88.89
	83.60
	57.74
	81.95
	79.94
	83.19
	89.11
	90.78



	TCD [68]
	ResNet50
	12
	71.77
	80.56
	58.18
	89.78
	88.31
	77.84
	83.88
	68.04



	AOPG [24]
	ResNet50
	12
	89.88
	85.57
	60.90
	81.51
	78.70
	85.29
	88.85
	90.89



	DODet [56]
	ResNet50
	12
	89.96
	85.52
	58.01
	81.22
	78.71
	85.46
	88.59
	90.89



	Oriented R-CNN [23]
	ResNet50
	12
	89.84
	85.43
	61.09
	79.82
	79.71
	85.35
	88.82
	90.88



	OIBBR [57]
	ResNet50
	12
	90.14
	85.31
	60.98
	79.92
	80.21
	85.04
	88.80
	90.87



	SCTFL (Ours)
	ResNet50
	12
	89.79
	84.67
	60.97
	79.39
	79.31
	85.46
	88.36
	90.88



	Methods
	Backbone
	Epoch
	BC
	ST
	SBF
	RA
	HA
	SP
	HC
	mAP



	DRN [11]
	H-104
	120
	84.60
	85.35
	55.76
	60.79
	71.56
	68.82
	63.92
	72.95



	  S 2  A-Net [13]
	ResNet50
	12
	84.87
	87.81
	70.30
	68.25
	78.30
	77.01
	69.58
	79.41



	TCD [68]
	ResNet50
	12
	86.29
	78.92
	90.84
	78.97
	72.50
	88.01
	86.85
	80.05



	AOPG [24]
	ResNet50
	12
	87.60
	87.65
	71.66
	68.69
	82.31
	77.32
	73.10
	80.66



	DODet [56]
	ResNet50
	12
	87.12
	87.80
	70.50
	71.54
	82.06
	77.43
	45.54
	74.47



	Oriented R-CNN [23]
	ResNet50
	12
	86.68
	87.73
	72.21
	70.80
	82.42
	78.18
	74.11
	80.87



	OIBBR [57]
	ResNet50
	12
	86.45
	88.04
	70.88
	71.72
	82.99
	80.55
	73.19
	81.00



	SCTFL (Ours)
	ResNet50
	12
	87.28
	87.39
	71.25
	72.04
	83.35
	81.98
	74.20
	81.09










 





Table 5. Comparisons with 14 OOD methods in the densely populated scenes of the DOTA dataset. The AP of each scene and the mAP of 4 scenes are listed here.






Table 5. Comparisons with 14 OOD methods in the densely populated scenes of the DOTA dataset. The AP of each scene and the mAP of 4 scenes are listed here.





	Methods
	SV
	LV
	SH
	TC
	mAP





	SCRDet [66]
	68.36
	60.32
	72.41
	90.85
	72.98



	TCD [68]
	65.75
	76.76
	70.67
	90.88
	76.01



	CenterMap-Net [65]
	78.62
	66.55
	78.10
	88.83
	78.02



	Faster RCNN [31]
	73.25
	71.49
	77.11
	90.84
	78.17



	Retina-O [60]
	74.58
	71.64
	79.11
	90.29
	78.90



	DRN [11]
	73.48
	70.69
	84.94
	90.14
	79.81



	ROI Transformer [55]
	77.93
	76.67
	86.87
	90.71
	83.04



	  S 2  A-Net [13]
	78.11
	78.39
	87.25
	90.83
	83.64



	AOPG [24]
	73.51
	82.31
	87.95
	90.89
	83.66



	Oriented RepPoints [12]
	80.18
	78.40
	87.28
	90.90
	84.19



	RPGAOD [69]
	78.09
	81.44
	87.64
	90.83
	84.50



	DODet [56]
	79.04
	82.86
	88.15
	90.90
	85.23



	Oriented R-CNN [23]
	78.93
	83.00
	88.20
	90.90
	85.25



	OIBBR [57]
	78.93
	83.08
	88.29
	90.89
	85.29



	SCTFL (Ours)
	78.61
	83.66
	88.27
	90.90
	85.36










 





Table 6. Comparisons with 12 OOD methods in the densely populated scenes of the DIOR-R dataset. The AP of each scene and the mAP of 4 scenes are listed here.
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	Methods
	APL
	SH
	TC
	VE
	mAP





	FCOS-O [70]
	48.70
	73.09
	77.55
	30.69
	57.50



	RetinaNet-O [60]
	61.49
	77.71
	81.46
	38.01
	64.66



	ROI Transformer [55]
	63.34
	81.21
	81.61
	43.27
	67.35



	Double-heads [71]
	62.13
	80.36
	87.09
	41.32
	67.72



	Gliding Vertex [65]
	65.35
	80.22
	81.49
	47.71
	68.69



	Oriented R-CNN [23]
	62.00
	81.25
	88.62
	43.27
	68.78



	Faster RCNN-O [31]
	62.79
	81.14
	81.44
	50.46
	68.95



	OIBBR [57]
	63.22
	81.23
	89.05
	43.38
	69.22



	AOPG [24]
	62.39
	81.17
	81.49
	52.38
	69.35



	  S 2  A-Net [13]
	65.40
	82.33
	84.61
	48.00
	70.08



	DODet [56]
	63.40
	85.41
	81.52
	51.86
	70.54



	TCD [68]
	67.95
	85.89
	81.61
	48.72
	71.04



	SCTFL (Ours)
	69.45
	89.23
	88.54
	53.19
	75.10
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