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Abstract: Bézier and B-spline curves are foundational tools for curve representation in computer
graphics and computer-aided geometric design, with their intersection computation presenting
a fundamental challenge in geometric modeling. This study introduces an innovative algorithm
that quickly and effectively resolves intersections between Bézier and B-spline curves. The number
of intersections between the two input curves within a specified region is initially determined by
applying the resultant of a polynomial system and Sturm’s theorem. Subsequently, the potential
region of the intersection is established through the utilization of the pseudo-curvature-based subdi-
vision scheme and the bounding box detection technique. The projected Gauss-Newton method is
ultimately employed to efficiently converge to the intersection. The robustness and efficiency of the
proposed algorithm are demonstrated through numerical experiments, demonstrating a speedup of
3 to 150 times over traditional methods.
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1. Introduction

Geometric modeling is a computer-based technology for the representation, manip-
ulation, analysis, and design of solids [1]. Curves/surfaces modeling technology, which
originated from shaping the outer appearance of products such as automobiles, ship fuse-
lages, aircraft wings, and other products, is a significant research area in computer-aided
design (CAD) and computer-aided geometric design (CAGD). Its applications span a broad
spectrum of industrial engineering fields, encompassing CNC tooling, alignment of roads,
robot path planning, design of luggage shells, and clearance detection for sheet metal parts,
among others [2–5].

Hoffmann pointed out that computing the intersections of parametric curves and
surfaces represents a foundational challenge within the field of CAGD and geometric
modeling [6]. The resolution of intersections between curves and surfaces is critical in
applications such as Boolean operations on solids [7], surface rendering via ray tracing [8,9],
and collision detection [10]. In the process of geometric modeling, intersections play a
significant role in determining the shape and structure of the model, so it is important to
accurately identify and represent these features to ensure the model is correctly interpreted
and manufactured [11,12]. As CAD/CAGD/CAM systems evolve and scientific and
technological advancements continue, the computational demands and data volumes
required to tackle intersection challenges are rapidly escalating. Therefore, the development
of efficient and robust methods to address these challenges has become crucial.

Bézier curves defined by Bernstein basis functions and control points have a simple
and intuitive mathematical expression and are easy to calculate [1]. B-spline curves, as an
extension of Bézier curves, are a curve representation method renowned for their excellent
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local control capacity and smoothness. The flexibility to adjust the shape of B-spline
curves through manipulation of knot vectors and control points has made them popular in
computer graphics for curve and surface modeling, animation, interpolation and shape
editing, and font design. With their different characteristics and advantages, Bézier curves
and B-spline curves become important tools for representing and manipulating curves
in computer graphics, and many scholars have conducted research on the intersection
problems of Bézier [13,14] and B-spline curves/surfaces [15–17] .

In fact, the problem of curve/curve intersection is somewhat equivalent to finding
the roots of polynomials, leading some researchers to tackle these issues concurrently. The
Bézier clipping algorithm was first proposed by Sederberg to robustly and quickly calculate
not only the intersection points but also the tangent points of two Bézier curves [18]. The
convergence rate of the Bézier clipping algorithm was proved to be second-order in [19].
Since then, various improved algorithms based on the Bézier clipping algorithm have
been developed to address both polynomial root finding and curve intersection challenges.
Based on degree reduction, the quadratic and cubic polynomials were generated to enclose
the graph of the polynomial within the interval of interest, respectively, by Bartoň and
Jüttler [20] and Liu [21] et al. for computing the all roots of a univariate polynomial equation.
Additionally, the cubic clipping was proved to have at least a second-order convergence
rate and used to compute the intersections of two Bézier curves [22]. A geometric interval
algorithm that can tightly bind a curve/surface or contain a point on a curve/surface was
proposed by North [23]. Further advancements were made by Yuan [24], who developed
the cubic hybrid clipping method with a fourth-order convergence rate for root finding of
univariate polynomial equations. This method was subsequently adapted by Wu and Li to
address curve intersection problems [25].

This study focuses on resolving the intricate challenge of identifying all intersection
points between Bézier curves and B-spline curves. We introduce a robust and efficient
approach for determining the intersections for both Bézier curves and B-spline curves. First,
a robust algorithm for determining the number of intersections between two Bézier curves
is proposed. The core of this problem lies in the task of determining the roots of a system
of bivariate polynomial equations. To this end, the resultants of bivariate polynomials
and Sturm’s sequence are employed. Second, a fast computation algorithm based on
pseudo-curvature and subdivision is proposed in this paper. While Newton’s iteration is a
well-known technique for solving non-linear equations, it is known to encounter difficulties,
settling on local solutions in scenarios where multiple solutions exist. To address this, we
subdivide the input curves by considering the pseudo-curvature of the curves and the
intersection of their bounding boxes. Once segments are deemed to be sufficiently straight,
we ensure that any two intersect at most once. Eventually, the Gauss-Newton method is
employed to quickly converge on the intersection points. Numerical experiments validate
the superior performance of our approach compared to traditional algorithms, achieving a
speedup of 3 to 150 times.

The remainder of this paper is structured as follows: Section 2 presents essential
definitions of Bézier and B-spline curves, along with Sturm’s theorem. In Section 3, we out-
line a method for computing the number of intersections between polynomial parametric
curves, focusing primarily on Bézier curves within the unit square. Section 4 introduces
our proposed subdivision-based method tailored for efficiently computing all intersections
between B-spline curves. Section 5 presents numerical experiments assessing the perfor-
mance of the proposed method. Finally, Section 6 offers concluding remarks summarizing
our contributions and suggesting potential avenues for future research.

2. Preliminary

In this section, we commence with a brief overview of the concepts underlying Bézier
and B-spline curves. Subsequently, we introduce Sturm’s theorem, an essential tool for
isolating the real roots of higher-order polynomial equations.
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2.1. Bézier and B-Spline Curves

A degree-n Bézier curve is expressed as

C(ξ) =
n

∑
i=0

PiBn
i (ξ), ξ ∈ [0, 1], (1)

where Pi ∈ Rd (d = 2, 3 typically) denote the control points, and Bn
i (ξ) = (n

i )ξ
i(1− ξ)n−i

(i = 0, 1, · · · , n) are Bernstein basis functions [1]. These curves are characterized by their
high degree of smoothness, ease of computation, and the property that they are contained
within the convex hull of their control points. Figure 1 illustrates quartic Bernstein basis
functions and its associated Bézier curve.
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(a) Quartic Bernstein basis functions (b) Quartic Bézier curve

Figure 1. Quartic Bernstein basis functions and Bézier Curve.

Building on the concept of Bézier curves, B-spline curves offer increased flexibility
and local modification capability through the introduction of a knot vector. The knot vector,
a non-decreasing sequence denoted as:

Ξ = {ξ0, ξ1, . . . , ξn+p+1}, (2)

where ξi ≤ ξi+1 for i = 1, 2, . . . , n + p serves as the basis for defining B-spline curves [1].
The B-spline basis functions defined over Ξ can be derived recursively by the following

de Boor-Cox formula
Ni,0(ξ) =

{
1, ξ ∈ [ξi, ξi+1),

0, otherwise,

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ), p ≥ 1.

(3)

Consequently, a B-spline curve of degree p is formulated as the linear combination
of its basis functions, Ni,p(ξ), for i = 1, 2, . . . , n, and the corresponding control points, Pi,
where Pi ∈ Rd with d = 2, 3. Thus, a B-spline curve can be expressed as:

C(ξ) =
n

∑
i=1

Pi Ni,p(ξ), ξ ∈ [ξp, ξn+1]. (4)

Figure 2 shows quadratic B-spline basis functions defined over the knot vector
Ξ = {0, 0, 0, 0.25, 0.5, 0.75, 0.75, 1, 1, 1} and its associated B-spline curve.

B-spline basis functions are endowed with essential desirable properties such as
non-negativity and partition of unity, which contribute significantly to the stability and
manipulability of the curves they define. Therefore, B-spline curves, closely related to these
basis functions, exhibit the so-called convex-hull property, ensuring they remain within the
convex hull defined by their control points. These features contribute to their widespread
application in CAGD and CG for their stability and ease of manipulation. Furthermore, a
degree-p Bézier curve can be considered a specific form of a B-spline curve, characterized
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by a particular knot vector Ξ = {0, 0, . . . , 0︸ ︷︷ ︸
p+1

, 1, 1, . . . , 1︸ ︷︷ ︸
p+1

}. This connection means that Bézier

curves inherit many of the advantageous properties of B-spline curves, enhancing their
utility and desirability in various applications.

(a) Quadratic B-spline basis functions (b) Quadratic B-spline curve

Figure 2. Quadratic B-spline basis functions and curve defined over knot vector Ξ = {0, 0, 0, 0.25, 0.5,
0.75, 0.75, 1, 1, 1}.

2.2. Resultant and Sturm’s Theorem

To lay a solid theoretical foundation for the ensuing discussion, this subsection intro-
duces the basic concept of the resultant of two polynomials, the Sturm sequence associated
with a polynomial, and Sturm’s theorem.

Definition 1 ([26]). Let f1(x) = ∑m
i=0 aixi and f2(x) = ∑n

i=0 bixi represent two polynomials of
degree m and n, respectively. The resultant of f1 and f2, Res( f1, f2), is defined by a determinant
that encapsulates the coefficients of these polynomials, i.e.,

Res( f1, f2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 · · · a1 a0 0 · · · 0 row 1
0 am am−1 · · · a1 a0 · · · 0 row 2
...

. . . . . . . . . . . . . . . . . .
...

...
0 · · · am am−1 · · · · · · a1 a0 row n
bn bn−1 · · · b1 b0 0 · · · 0 row n + 1
0 bn bn−1 · · · b1 b0 · · · 0 row n + 2
...

. . . . . . . . . . . . . . . . . .
...

...
0 · · · bn bn−1 · · · · · · b1 b0 row n + m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5)

On a natural extension of Definition 1, when considering the resultant of two bivariate
polynomials concerning one of the variables, the other variable is treated as a constant. A
simple example is given to illustrate below.

Example 1. Given two bivariate polynomials f1(x, y) = 5x2 − 6xy + 5y2 − 16 and f2(x, y) =
2x2 − (1 + y)x + y2 − y− 4. The resultant defined by f1, f2 with respect to variable x is

Res( f1, f2; x) =

∣∣∣∣∣∣∣∣
5 −6y 5y2 − 16 0
0 5 −6y 5y2 − 16
2 −(1 + y) y2 − y− 4 0
0 2 −(1 + y) y2 − y− 4

∣∣∣∣∣∣∣∣,
which is essentially a polynomial of the variable y.
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Consider a polynomial f (x) with real coefficients and free of any square factors. The
Sturm sequence for f (x) is constructed as follows

Sturm(0) = f (x)

Sturm(1) = f ′(x)

Sturm(i) = −rem
(

Sturm(i−2), Sturm(i−1)
)

, for i = 2, 3, . . . , r,

(6)

where rem denotes the polynomial remainder operator. In this sequence, each successive
term is the negated remainder from dividing the two preceding terms. The construction
of this sequence concludes when a constant term or zero is reached at Sturm(r). The
Sturm sequence, denoted as Sturm = {Sturm(0), Sturm(1), . . . , Sturm(r)}, serves as an
effective tool for identifying the count of zeros that the polynomial f (x) possesses within a
given interval.

Consider the sequence Γ = {γ0, γ1, . . . , γt}. Denote by pre(Γ) the number of sign-
preserving occurrences within Γ. This is quantified by examining each pair of consecutive
values, γi and γi+1. If these values share the same sign, the pair (γi, γi+1) is counted
as contributing 1 to pre(Γ). Notably, a term γi = 0 is treated as though it possesses the
opposite sign of its immediate predecessor γi−1 [27,28].

Example 2. Suppose Γ1 = [1, 2, 1, 2,−1,−2] and Γ2 = [1, 0, 1, 2,−1,−2]. Then, we have the
numbers of sign-preserving occurrences pre(Γ1) = 4 and pre(Γ2) = 2.

Integrating the definition of the resultant for two bivariate polynomials with the
concept of sign-preserving within a Sturm sequence of a specified polynomial, Sturm’s
theorem emerges as a powerful method to ascertain the count of real roots for a bivariate
polynomial system within a defined interval.

Theorem 1 ([29]). Consider a compact set D = [xmin, xmax]× [ymin, ymax] ⊂ R2. Let f1(x, y)
and f2(x, y) be two bivariate polynomials with the degrees of x as n1 and n2, respectively. Define a
polynomial in terms of α by

RES(α, α1, α2) =
Res(Res( f1, g; x), Res( f2, g; x); y)

αn , (7)

where g(x, y) = α + (x− α1)(y− α2) and n = n1 × n2.
Let {Sturm(α, α1, α2)} stand for the Sturm sequence of the polynomial RES(α, α1, α2) of α.

Here, Num_pre(a, b) represents the count of sign-preserving occurrences in the Sturm sequence
{Sturm(α, α1, α2)} when α = 0, α1 = a, and α2 = b. Consequently, the total number of real roots
for the system of equations f1 = f2 = 0 within the compact set D can be determined by

Num( f1, f2,D) = 1
2
[Num_pre(xmin, ymin)− Num_pre(xmin, ymax)

−Num_pre(xmax, ymin) + Num_pre(xmax, ymax)].
(8)

Remark 1. In cases where the first term in a sequence is 0, it is stated that pre([0, 1]) =
pre([0,−1]) = 1/2, as detailed in [29]. This convention implies that roots located on the boundaries
of a specified compact set D are represented by 1/2 in Equation (8). Similarly, roots situated at the
vertices of the compact set D are attributed a value of 1/4.

Theorem 1 provides a theoretical foundation for determining the exact number of
roots for a pair of bivariate polynomial equations f1(x, y) = f2(x, y) = 0 within a specified
compact set D. In the subsequent discussion, we will apply Theorem 1 to ascertain the
number of intersections between two polynomial parametric curves. This step can be
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regarded as a preparatory phase, essential for enhancing the precision and reliability of the
subsequent calculation of intersections.

3. Determining the Number of Intersections

In this section, we provide a method for counting the number of intersections between
two polynomial parametric curves, with an emphasis on Bézier curves within the interval
[0, 1]× [0, 1] for clarity and brevity.

Given two Bézier curves

CA(ξ) =
n

∑
i=0

PiBn
i (ξ)

and

CB(η) =
m

∑
j=0

QjBm
j (η),

where Pi = (xi, yi, zi)
T, Qj = (x̃j, ỹj, z̃j)

T are their control points. Computing the inter-
section of CA(ξ) and CB(η) involves identifying the parameter pair (ξ, η) that fulfills the
condition CA(ξ)− CB(η) = 0.

From the partition of the unity property of Bernstein basis functions, we have

CA(ξ)− CB(η) =
n

∑
i=0

PiBn
i (ξ)−

m

∑
j=0

QjBm
j (η)

=
m

∑
j=0

Bm
j (η) ·

n

∑
i=0

PiBn
i (ξ)−

n

∑
i=0

Bn
i (ξ) ·

m

∑
j=0

QjBm
j (η)

=
n

∑
i=0

m

∑
j=0

(Pi −Qj)Bn
i (ξ)Bm

j (η).

(9)

To simplify the notation and facilitate computation, let us denote

Bn(ξ) = (Bn
0 (ξ), Bn

1 (ξ), . . . , Bn
n(ξ))

T, (10)

Bm(η) = (Bm
0 (η), Bm

1 (η), . . . , Bm
m(η))

T, (11)

∆i = (Pi −Q0, Pi −Q1, . . . , Pi −Qm)
T, (12)

and
R = (R0, R1, . . . , Rn)

T, (13)

where Ri = ∑m
j=0(Pi −Qj)Bm

j (η) = ∆T
i · Bm(η).

Therefore, Equation (9) can be expressed in a matrix form as

CA(ξ)− CB(η) = RT · Bn(ξ). (14)

Subsequently, according to the relationship between the Bernstein basis functions and
power basis functions, we have

Bn(ξ) = M · ξ,

where M is the basis transformation matrix and ξ = (1, ξ, ξ2, . . . , ξn)T is the collection of
power basis functions. Therefore, we have

CA(ξ)− CB(η) =

 x(ξ, η)
y(ξ, η)
z(ξ, η)

 = RT ·M · ξ. (15)
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Recall that computing the intersections between CA(ξ) and CB(η) is equivalent to
solving the roots of CA(ξ)− CB(η) = 0. That is,

x(ξ, η) = 0
y(ξ, η) = 0
z(ξ, η) = 0

. (16)

Given that Theorem 1 is applicable solely for isolating the real roots of bivariate
polynomials, Equation (16) can be equivalently converted into the following form{

f1(ξ, η) = x2(ξ, η) + y2(ξ, η) = 0
f2(ξ, η) = y2(ξ, η) + z2(ξ, η) = 0

. (17)

Denote by ∆1
i and ∆2

i the first two lines and the last two lines of ∆i, respectively.
Similarly, we have

Rφ =
(

Rφ
0 , Rφ

1 , . . . , Rφ
n

)T
, (18)

where Rφ
i =

(
∆φ

i

)T
· Bm(η) with φ = 1, 2. Accordingly, the Equation (17) to compute the

intersection of CA(ξ) and CB(η) can thus be reformulated as follows{
f1(ξ, η) =

(
R1Mξ

)T ∗
(
R1Mξ

)
= ξT

(
MT(R1)TR1M

)
ξ,

f2(ξ, η) =
(
R2Mξ

)T ∗
(
R2Mξ

)
= ξT(MT(R2)TR2M

)
ξ.

(19)

Remark 2. Referring to Equation (7) from Theorem 1, the computation of the polynomial
RES(α, α1, α2) necessitates initially deriving the resultant of the polynomials fi (i = 1, 2) and
g with respect to the variable ξ, treating η as a constant during this process. Consequently, we
reformulate Equation (17) into a quadratic equation in terms of ξ.

Remark 3. In the case of plane polynomial parametric curves, the approach simplifies significantly.
We can directly set f1(ξ, η) = x(ξ, η) and f2(ξ, η) = y(ξ, η), thereby streamlining the process.

For clearer understanding, we present an algorithm that determines the number of
intersections between two Bézier curves based on Theorem 1, followed by an illustrative
example in Example 3. Moreover, the proposed algorithm may be naturally applicable to
B-spline curves by combining with the Bézier extraction technique (Algorithm 1).

Algorithm 1: Number of intersections between two Bézier curves
Input: Control points {Pi}n

i=0 and {Qj}m
j=0.

Output: The number of intersections of two Bézier curves Num( f1, f2,D).

1 D← [0, 1]× [0, 1];
2 Compute f1(ξ, η) and f2(ξ, η); // Equation (19)
3 for Dα ← (α1, α2)(α1, α2 = 0, 1) do
4 g(ξ, η)← α + (ξ − α1)(η − α2);
5 Compute Res( f1, g; ξ) and Res( f2, g; ξ); // Example 1
6 Compute RES(α, α1, α2); // Equation (7)
7 {Sturm(α, α1, α2)} ← the Sturm sequence of RES(α, α1, α2);
8 Num_pre(Dα)← pre([Sturm(0, α1, α2)]);
9 end

10 Compute Num( f1, f2,D); // Equation (8)

Example 3. Let P0 = (0, 0), P1 = (1, 1), P2 = (2, 0) and Q0 = (0.5, 0), Q1 = (1, 1),
Q2 = (0, 2) be the control points of two quadratic Bézier curves CA(ξ) and CB(η), as shown in
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Figure 3, respectively. Thus computing the intersections between CA(ξ) and CB(η) is equivalent to
the roots of the following bivariate polynomials f1(ξ, η) = 2ξ +

3
2

η2 − η − 1
2

f2(ξ, η) = −2ξ2 + 2ξ − 2η
.

Now, we propose the detailed procedure for determining the roots of f1(ξ, η) = f2(ξ, η) = 0 in
[0, 1]× [0, 1] by Theorem 1.

Figure 3. Two quadratic Bézier curves CA(ξ) and CB(η) in Example 3.

First, compute Num_pre(0, 0), Num_pre(0, 1), Num_pre(1, 0), and Num_pre(1, 1) in
Theorem 1, respectively. A comprehensive description of the process for calculating Num_pre(0, 0)
is shown below, which can also be applied to appraising Num_pre(0, 1), Num_pre(1, 0), and
Num_pre(1, 1).

1. Let α1 = 0, α2 = 0, then g(ξ, η) = α + ξη = ηξ + α. Similar to Example 1, we can state
that the resultant Res( f1, g; ξ) and Res( f2, g; ξ) in Equation (7) as

Res( f1, g; ξ) =

∣∣∣∣ 2 3
2 η2 − η − 1

2
η α

∣∣∣∣ = −3
2

η3 + η2 +
1
2

η + 2α, (20)

and

Res( f2, g; ξ) =

∣∣∣∣∣∣
−2 2 −2η
η α 0
0 η α

∣∣∣∣∣∣ = −2η3 − 2αη − 2α2. (21)

The outer resultant in Equation (7) is computed by

Res(Res( f1, g; ξ),Res( f2, g; ξ); η)

=

∣∣∣∣∣∣∣∣∣∣∣∣

3/2 1 1/2 2α 0 0
0 3/2 1 1/2 2α 0
0 0 3/2 1 1/2 2α
−2 0 −2α −2α2 0 0
0 −2 0 −2α −2α2 0
0 0 −2 0 −2α −2α2

∣∣∣∣∣∣∣∣∣∣∣∣
= 27α6 + 126α5 + 173α4 + 54α3 + 3α2,

(22)
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and

RES(α, 0, 0) =
Res(Res( f1, g; ξ), Res( f2, g; ξ); η)

α1×2

= 27α4 + 126α3 + 173α2 + 54α + 3.
(23)

2. The Sturm sequence {Sturm(α, 0, 0)} of RES(α, 0, 0) can be obtained by the method of
successive division. That is

Sturm(0) = −0.017341− 0.312139α− α2 − 0.728324α3 − 0.156069α4,

Sturm(1) = −0.142857− 0.915344α− α2 − 0.285714α3,

Sturm(2) = −0.211034− α− 0.393103α2,

Sturm(3) = −0.056683 + α,

Sturm(4) = 1.

(24)

3. By substituting α = 0 into Equation (24), we obtain the sequence Γ = [−0.017341,−0.142857,
−0.211034,−0.056683, 1]. It is observed that Num_pre(0, 0) = 3, corresponding to the
sign-preserving of Γ.

Analogously, we find that Num_pre(0, 1) = 2, Num_pre(1, 0) = 2, and Num_pre(1, 1) =
3, respectively. Consequently, according to Equation (8), it is concluded that the Bézier curves P(ξ)
and Q(η) intersect exactly once.

4. A Fast Subdivision-Based Intersection Algorithm

In the realm of geometric modeling and computer graphics, accurately determining
the intersections between two parametric curves is a fundamental challenge with numerous
applications. This task is particularly demanding due to the need for computational effi-
ciency and high precision. In this section, we propose a novel subdivision-based approach
specifically designed to compute all intersections between B-spline curves efficiently.

4.1. Pseudo-Curvature of B-Spline Curves

Central to our intersection algorithm lies an effective subdivision scheme, capitalizing
on the curvature characteristics of B-spline curves for more efficient computation. This
scheme introduces an effective curvature-based subdivision strategy, boosting computa-
tional efficiency and accuracy when identifying intersection points.

Generally, the point-wise curvature at any given parameter ξ along a parametric curve
is determined by

κp(C(ξ)) =
∣∣C ′(ξ)× C ′′(ξ)

∣∣∣∣C ′(ξ)∣∣3 . (25)

To ascertain the total curvature energy across the curve, one integrates the point-wise
curvature as follows:

κtradition =
∫

κp(C(ξ)) dξ. (26)

In practice, the above integration is typically executed using numerical quadrature tech-
niques, such as Simpson’s rule or Gauss-Legendre quadrature.

Although the above traditional methods for calculating the curvature of parametric
curves are accurate, they involve intricate calculations that can be computationally expen-
sive. To address this, we introduce the concept of pseudo-curvature, with a particular focus
on B-spline curves. This approach seeks to offer a less computationally intensive alternative
while maintaining sufficient accuracy for intersection determination tasks.

For a B-spline curve represented as C(ξ) = ∑n
i=0 Pi Ni(ξ), we define its pseudo-

curvature as:

κ(C) =
n−1

∑
i=0

∥∥PiPi+1
∥∥

2∥∥P0Pn
∥∥

2
, (27)
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where ∥·∥ stands for the Euclidean length of the vector. This formula effectively approxi-
mates the bending of the curve, as shown in Figure 4, by considering the relative lengths of
segments formed by consecutive control points PiPi+1 (i = 0, 1, . . . , n− 1) in comparison to
the segment formed by the first and last control points P0Pn.

⋱ ⋱

Figure 4. Illustration of pseudo-curvature concept applied to a B-spline curve.

The principle underlying the pseudo-curvature defined in Equation (27) capitalizes
on the convex hull property inherent to B-spline curves, which ensures that the B-spline
curve lies entirely within the convex polygon formed by its control points. Leveraging the
convex hull property, we ascertain that the bending of the B-spline curve approaches its
minimum when the value of the pseudo-curvature in Equation (27) approaches 1.

The pseudo-curvature offers a significant reduction in computational complexity
compared to traditional curvature metrics. By leveraging the geometric properties inherent
in the control points of B-spline curves, we can obtain a useful approximation of the original
curve with far less computational effort.

4.2. Subdivision-Based Potential Intersection Ranges Computation

Central to our methodology is a sophisticated subdivision scheme tailored to the
unique characteristics of B-spline curves, which significantly enhances the efficiency and
accuracy of intersection point identification. With the aforementioned pseudo-curvature
concept established in Section 4.1, we have the essential tools for splitting curves effectively.
In this section, we integrate subdivision techniques with bounding box intersection de-
tection to compute potential intersection ranges between B-spline curves efficiently. The
algorithmic framework for this process is presented in Algorithm 2.

The algorithm depicted in Algorithm 2 begins by computing the bounding boxes for
the input curves. It then proceeds to check for bounding box intersections. If no intersection
is detected, the algorithm concludes that the curves themselves cannot intersect, reducing
unnecessary computation.

In cases where bounding boxes intersect, the algorithm evaluates the pseudo-curvature
of the curves in Equation (27). If the curvature falls below a predefined threshold κmax,
indicative of minimal bending, direct intersection checks between curve segments are
performed. Conversely, if the curvature exceeds this threshold, suggesting potential com-
plex intersections, the algorithm recursively applies itself to subdivided curve segments,
iteratively refining the search space.

This iterative process continues until all potential intersection ranges have been exhaus-
tively examined, ensuring a comprehensive identification of intersection points without
omission.

In Algorithm 2, the selection of κmax is critical. Setting it too low may result in excessive
subdivision, thereby prolonging computation time. Conversely, setting it too high may risk
overlooking complex intersections. Striking the right balance for this parameter is essential
to achieving optimal performance. In our numerical experiments, we set the default value
of κmax to 1 + 5× 10−6.

While bounding boxes provide an initial filter for potential intersections, the preci-
sion of intersection detection relies on the subsequent subdivision and direct intersection
checks. Maintaining geometric precision throughout the process is crucial. To enhance
computational accuracy and efficiency, we employ the projected Gauss-Newton method in
the following section.
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Algorithm 2: Subdivision-based potential intersection ranges computation
Input: Curve CA, curve CB, max curvature κmax.
Output: Vector of potential intersection ranges.

1 hA ← BoundingBox(CA);
2 hB ← BoundingBox(CB);
3 if hA does NOT intersect hB then
4 return ∅ ;
5 end
6 Compute pseudo-curvatures κ(CA) and κ(CB); // Equation (27)
7 if κ(CA) ≤ κmax and κ(CB) ≤ κmax then
8 return Potential intersection range hA and hB;
9 end

10 if κ(CA) > κmax and κ(CB) > κmax then
11 Split both curves CA and CB at their central parameters;
12 Recursively call this function;
13 else if κ(CA) ≤ κmax and κ(CB) > κmax then
14 Split only CB at its central parameter and recursively call this function;
15 else if κ(CB) ≤ κmax and κ(CA) > κmax then
16 Split only CA at its central parameter and recursively call this function;
17 else
18 return ∅;
19 end

4.3. Projected Gauss-Newton Method

Upon obtaining the output from Algorithm 2, we acquire pairs of potential intersection
ranges where the curve segments exhibit very limited bending. According to Bézout’s
theorem, as these segments closely resemble straight lines (degree-1 curves), only one inter-
section point is anticipated within each pair. Hence, leveraging Gauss-Newton iteration
proves to be an efficient approach for intersection computation. However, it is essential
to note that the computed results may extend beyond the parameter ranges of the current
segments. To mitigate this issue, we implement the projected Gauss-Newton method,
thereby ensuring that the computed intersections remain within the designated segments.

Consider a nonlinear system F (ξ) = 0. The essence of the projected Gauss-Newton
method is captured by a two-fold iterative process. Initially, we calculate an intermediate
point ξ̃k+1 using the classic Gauss-Newton iteration formula

ξ̃k+1 = ξk − J†
k F(ξk), (28)

where J†
k = (AT A)−1 AT is the Moore-Penrose inverse of the Jacobian matrix of the non-

linear system F at iteration k. The Moore-Penrose inverse J†
k can be computed using the

singular value decomposition (SVD).
Subsequently, we refine our estimate by projecting ξ̃k+1 onto the feasible set

Dk = [ξk
min, ξk

max]× [ηk
min, ηk

max], optimizing for proximity to the initial estimate

ξk+1 = Pξ∈Dk

(
ξ̃k+1

)
, (29)

where Pξ∈Dk
denotes the projection operator. In our implementation, we adopt the follow-

ing projection operator

Pξ∈Dk
(ξ̃) =

(
min

(
max(ξ̃, ξk

min), ξk
max

)
, min

(
max

(
η̃, ηk

min

)
, ηk

max

))
. (30)

This projection ensures our solution remains within the parameter ranges of the curves, an
essential consideration for maintaining geometric validity.
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In the case of 3D scenarios, our approach to the curve intersection problem involves
addressing the following nonlinear system

F (ξ, η) = CA(ξ)− CB(η) =

 xA(ξ)− xB(η)
yA(ξ)− yB(η)
zA(ξ)− zB(η)

 = 0. (31)

The corresponding Jacobian matrix, a 3× 2 matrix, can be computed as follows:

J (ξ, η) =
[

dCA(ξ)
dξ −dCB(η)

dη

]
=


dxA(ξ)

dξ −dxB(η)
dη

dyA(ξ)
dξ −dyB(η)

dη
dzA(ξ)

dξ −dzB(η)
dη

. (32)

For the 2D case, the nonlinear system becomes

F (ξ, η) = CA(ξ)− CB(η) =

(
xA(ξ)− xB(η)
yA(ξ)− yB(η)

)
= 0. (33)

The corresponding Jacobian matrix, a 2× 2 matrix, is computed by

J (ξ, η) =
[

dCA(ξ)
dξ −dCB(η)

dη

]
=

 dxA(ξ)
dξ −dxB(η)

dη
dyA(ξ)

dξ −dyB(η)
dη

. (34)

Different from the 3D case, the Moore-Penrose inverse in Equation (28) degenerates into
the inverse of the Jacobian matrix (34).

The comprehensive algorithm is presented in Algorithm 3.

Algorithm 3: Projected Gauss-Newton method
Input: Initial guess ξ0 = {ξ0, η0},

Curve CA and curve CB,
Residual tolerance tol_res,
ξ variation tolerance tol_ξ,
Maximum iterations maxIter.

Output: Residual r, Intersection parameter pair ξ = {ξ, η}.

1 Compute initial nonlinear system F and its Jacobian J // Equations (31) and (32)
2 Compute initial residual r ← norm(F ) ;
3 ∆← J †F ;
4 for k← 1 to maxIter do
5 ξ0 ← ξ0 − ∆; // Gauss-Newton iteration, Equation (28)

6 ξ ← Pξ∈Dk

(
ξ̃
)

; // Projection, Equation (29)

7 ξ0 ← ξ; // Update parameter pair
8 if norm(ξ − ξ0) > 100 ∗MACHINE_EPSILON then
9 Evaluate F at ξ0 and update current residual r ← norm(F ) ;

10 break;
11 end
12 Evaluate F and its Jacobian J at ξ0; // Equations (31) and (32)
13 Compute current residual r ← norm(F ) ;
14 if r < tol_res then
15 break;
16 end
17 ∆← J †F ;
18 if norm(∆) < tol_ξ then
19 break;
20 end
21 end
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5. Numerical Experiments

This section presents numerical experiments conducted to evaluate the effectiveness
and efficiency of the proposed algorithm across both Bézier curves and B-spline curves. We
implemented the algorithm in C++ using Clang-15 compiler and conducted the experiments
on a MacBook Pro (14-inch, 2021) equipped with an Apple M1 Pro CPU and 16 GB of RAM.
Matlab® 2023a and ParaView (version 5.10.1) were employed for visualization.

In all experiments, the parameter settings were standardized as follows: maximum
curvature, κmax, was set to 1+ 5× 10−6; residual tolerance, tol_res, was defined at 1× 10−5;
variation tolerance for ξ, denoted as tolξ , was also set at 1× 10−5; and the limit for the
maximum number of iterations, maxIter, was fixed at 20. Computing all the intersections
between two Bézier curves is a topic that has received considerable attention in the CAGD
community. The Bézier clipping algorithm, as proposed by Sederberg in 1990 [18], stands
out for its second-order convergence rate, a finding further supported by Schulz in 2009 [19].
Since then, the algorithm has seen several enhancements aimed at improving its efficiency.
Noteworthy among these are the quadratic and cubic clipping methods [20,22], which are
based on degree reduction techniques; the geometry interval clipping algorithm [23]; and
the cubic hybrid clipping method [25].

For B-spline curves, a prevalent strategy is to first convert them into Bézier segments
using the Bézier extraction technique. This transformation allows the application of the
previously mentioned clipping methods to each pair of Bézier segments, facilitating the
computation of intersections. In this section, we compare our proposed method with
these existing intersections computation techniques through detailed analysis. Specifically,
different methods are conducted on four examples depicted in Figure 5, which include cubic
Bézier curves with two intersections, a quadratic B-spline and a cubic B-spline each with
two intersections, and two cubic B-splines with eight intersections, including a scenario
where two intersection are notably proximal.

(a) (b)

(c) (d)

Figure 5. Examples used for comparisons of different methods. (a) Example 1: cubic Bézier curves
with 2 intersections. (b) Example 2: quadratic B-spline and cubic B-spline with 2 intersections.
(c) Example 3: cubic B-splines with 8 intersections. (d) Example 4: cubic B-splines with 8 intersections.
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Table 1 presents a comprehensive comparison of the computational efficiency between our
proposed method and several established techniques, including Bézier Clipping [18], Quadratic
Degree Reduction [20], Cubic Degree Reduction [22], Geometry Interval Clipping [23], and
Cubic Hybrid Clipping [25]. The evaluation encompasses a range of scenarios, as depicted
in the table and Figure 5, characterized by varying numbers of control points, Bézier
segments, and intersections, thereby offering a broad perspective on performance across
different curve complexities.

Table 1. Computation results comparison of the proposed method against existing methods. The
curves information includes the numbers of control points, Bézier segments, and intersections for
clearer interpretation. Data highlighted in bold indicate the best performance.

Example Curves Info. Methods Time (µs) Relative Time

Bézier Clipping [18] 210 1.84
Quadratic Degree Reduction [20] 3293 28.89

Example 1 CA: 4 / 1 / 2 Cubic Degree Reduction [22] 17,074 149.77
(Figure 5a) CB: 4 / 1 / 2 Geometry Interval Clipping [23] 2941 25.79

Cubic Hybrid Clipping [25] 2861 25.10
Our Method 114 1.00

Bézier Clipping [18] 6435 38.53
Quadratic Degree Reduction [20] 7312 43.78

Example 2 CA: 29 / 26 / 2 Cubic Degree Reduction [22] 7028 42.08
(Figure 5b) CB: 29 / 27 / 2 Geometry Interval Clipping [23] 4219 25.26

Cubic Hybrid Clipping [25] 1873 11.22
Our Method 167 1.00

Bézier Clipping [18] 2176 3.74
Quadratic Degree Reduction [20] 4440 7.63

Example 3 CA: 63 / 60 / 8 Cubic Degree Reduction [22] 3384 5.81
(Figure 5c) CB: 24 / 21 / 8 Geometry Interval Clipping [23] 2066 3.55

Cubic Hybrid Clipping [25] 1667 2.86
Our Method 582 1.00

Bézier Clipping [18] 1863 4.05
Quadratic Degree Reduction [20] 3948 8.58

Example 4 CA: 63 / 60 / 8 Cubic Degree Reduction [22] 2970 6.46
(Figure 5d) CB: 24 / 21 / 8 Geometry Interval Clipping [23] 1558 3.39

Cubic Hybrid Clipping [25] 1184 2.57
Our Method 460 1.00

The findings underscore the superior performance of our method, consistently achiev-
ing the lowest computation times (highlighted in bold) across all examples. Specifically,
in Example 1 (Figure 5a), our method demonstrates a significant efficiency advantage,
achieving a computation time of only 114 microseconds, which is substantially lower than
the next fastest method, Bézier Clipping, by a factor of 1.84. This trend of outperformance
persists across the other examples, with our method maintaining the position of optimal
efficiency with the lowest relative times of 1.00 in all cases.

Example 2 (Figure 5b) further illustrates the robustness of our approach, handling
complex curves (29 control points, 26/27 Bézier segments, and 2 intersections) with a
computation time of merely 167 microseconds, whereas the competing methods exhibit
significantly higher times, up to 43.78 times slower in the case of quadratic degree reduction.

In Examples 3 (Figure 5c) and 4 (Figure 5d), which involve an even greater number of
intersections and control points, our method continues to exhibit unparalleled efficiency,
further evidencing its potential as a superior computational tool for the intersection of
Bézier and B-spline curves.



Mathematics 2024, 12, 1344 15 of 17

Traditional techniques require computing intersections for each pair of Bézier seg-
ments, leading to a computational complexity of O(#BezSeg2), with #BezSeg denoting the
number of Bézier segments. For instance, in Example 3, curve CA comprises 60 Bézier
segments, as illustrated in Figure 6, whereas curve CB contains 21 segments. Conse-
quently, the process of determining Bézier intersections must be executed as many as
60× 21 = 1260 times. As the number of Bézier segments grows—reflecting an increase in
the number of inner knot values—the computational demand escalates.

Figure 6. Illustration of Bézier segments for curve CA in Example 3, which is composed of
60 segments.

In contrast, our method is engineered to function independently of Bézier curve seg-
mentation. As demonstrated in Figure 7, the computation time of our method remains
constant regardless of the increase in Bézier segment count. However, the computation
times of the other methods rise linearly with #BezSeg2, which coincides with the theoretical
computational complexity analysis. This design choice eliminates the necessity for inter-
section calculations between segment pairs, thereby significantly reducing computational
overhead. This strategic departure from segment-pair dependency not only streamlines
the process but also enhances efficiency, providing a robust solution for handling complex
curve intersections with greater computational economy.

The comparative analysis not only highlights the computational merits of our pro-
posed method but also underscores the significance of algorithmic efficiency in the realm
of geometric computation, especially for applications requiring the rapid processing of
complex B-spline curve intersections.

However, it is crucial to highlight that the selection of parameters in the algorithm
presented in this paper is heuristic. A larger tolerance will result in the obtained intersection
point deviating from the actual position. Conversely, a smaller tolerance will increase the
number of iterations, thereby reducing the speed of the solution. The selection of the most
suitable parameters is therefore imperative for users, following the specific circumstances
of the problem. Furthermore, the subdivision method based on pseudo-curvature is only
applicable to parametric curves formed by control points and basis functions.



Mathematics 2024, 12, 1344 16 of 17

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
·107µs

#BezSeg2

Bézier Clipping
Quadratic Degree Reduction
Cubic Degree Reduction
Geometry Interval Clipping
Cubic Hybrid Clipping
Our Method

Figure 7. Comparison of computation times across different methods w.r.t. the square of Bézier
segment. This assessment encompasses Bézier clipping [18], quadratic degree reduction [20], cubic
degree reduction [22], geometric interval clipping [23], cubic hybrid clipping [25], and our method.

6. Conclusions

In this paper, we develop a rapid and robust algorithm designed to address the inter-
section challenges of Bézier and B-spline curves, which are fundamental components in
the realms of computer graphics and computer-aided geometric design. By incorporating
Sturm’s theorem, we have established a methodical approach to determine the number
of intersections within a predetermined region. To handle multiple intersections, a fast
subdivision-based algorithm is proposed. The bounding box detection and the definition
of pseudo-curvature for curve segmentation further refine the process, enabling the par-
titioning of curves into segments that closely emulate straight lines. The deployment of
the projected Gauss-Newton method facilitates efficient convergence to intersection points,
marking a significant advancement over traditional techniques.

For future work, the exploration of efficient and robust algorithms for the surface/
surface intersection problem presents a more challenging and interesting frontier.
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