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Abstract: Scrap steel represents a sustainable and recyclable resource, instrumental in diminishing
carbon footprints and facilitating the eco-friendly evolution of the steel sector. However, current
scrap steel recycling faces a series of challenges, such as high labor intensity and occupational risks
for inspectors, complex and diverse sources of scrap steel, varying types of materials, and difficulties
in quantifying and standardizing manual visual inspection and rating. Specifically, we propose
WaveSegNet, which is based on wavelet transform and a multiscale focusing structure for scrap steel
segmentation. Firstly, we utilize wavelet transform to process images and extract features at different
frequencies to capture details and structural information in the images. Secondly, we introduce a
mechanism of multiscale focusing to further enhance the accuracy of segmentation by extracting
and perceiving features at different scales. Through experiments conducted on the public Cityscapes
dataset and scrap steel datasets, we have found that WaveSegNet consistently demonstrates superior
performance, achieving the highest scores on the mIoU metric. Particularly notable is its performance
on the real-world scrap steel dataset, where it outperforms other segmentation algorithms with
an average increase of 3.98% in mIoU(SS), reaching 69.8%, and a significant boost of nearly 5.98%
in mIoU(MS), achieving 74.8%. These results underscore WaveSegNet’s exceptional capabilities in
processing scrap steel images. Additionally, on the publicly available Cityscapes dataset, WaveSegNet
shows notable performance enhancements compared with the next best model, Segformer. Moreover,
with its modest parameters and computational demands (34.1 M and 322 GFLOPs), WaveSegNet
proves to be an ideal choice for resource-constrained environments, demonstrating high computa-
tional efficiency and broad applicability. These experimental results attest to the immense potential of
WaveSegNet in intelligent scrap steel rating and provide a new solution for the scrap steel recycling
industry. These experimental results attest to the immense potential of WaveSegNet in intelligent
scrap steel rating and provide a new solution for the scrap steel recycling industry.

Keywords: intelligent detection; semantic segmentation; wavelet transform; multiscale focusing;
scrap steel

MSC: 68T45

1. Introduction

The steel industry, a cornerstone of global economic development, plays a pivotal role
in driving infrastructure construction and industrial advancement [1]. However, it also
represents a sector with high energy and resource consumption, which imposes significant
environmental pressure. With increasing awareness of environmental issues and a deeper
concern for climate change, the steel industry faces challenges in transformation. Especially
in the context of pursuing carbon peaking and carbon neutrality goals, promoting the
green and low-carbon transition of the steel industry through technological innovation and
process optimization has become a critical issue.

Scrap steel refers to the nonproduct steel waste generated during the steel production
process, includes steel from scrapped equipment and components [2]. It is a highly valuable
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raw material for the steel manufacturing industry. The complete recyclability of steel
ensures that the material input in the production process is fully preserved and can be
sustainably recycled [3]. Additionally, due to the magnetic properties of steel, scrap steel
can be relatively easily separated and recovered from various waste streams, resulting in
a high recovery rate. In steel production, iron ore and recycled scrap steel are primarily
used as metal raw materials. Approximately 30% of the iron-containing materials in global
steel production come from scrap steel. Through melting and recycling, scrap steel can not
only be directly transformed into new steel but can also undergo further refinement in its
chemical composition and shape. In blast furnace production processes, scrap steel can be
used as a coolant to absorb excess heat generated during the exothermic decarbonization
process, and it can also serve as a source of iron material. In the electric arc furnace (EAF)
production process, the proportion of scrap steel in the feedstock can reach up to 100%. The
recycling of scrap steel plays a crucial role in reducing the carbon emissions of the entire
industry and in the reuse of resources. Using every ton of scrap steel in the production
process reduces 1.5 tons of carbon dioxide emissions and saves 1.4 tons of iron ore, 0.74 tons
of coal, and 0.12 tons of limestone [4].

The recycling and reuse of scrap steel significantly contribute to environmental protec-
tion and resource conservation. However, the prevalent reliance on manual operations for
scrap steel recycling, characterized by visual inspections and manual measurements, results
in low efficiency and a lack of standardized quantitative evaluation criteria. Additionally,
the vast diversity and complexity of scrap steel sources, coupled with the variability in
shapes, sizes, and materials, further complicates manual assessment. Consequently, the
subjective judgments of operators heavily influence scrap steel classification, leading to
inconsistencies that can jeopardize the safety of the steel smelting process and compromise
the quality of the final products. Furthermore, the recycling work environment, especially
in truck loading and unloading areas, is fraught with safety hazards, exposing workers to
significant risks. Therefore, the reliance on manual rating of scrap steel no longer meets the
development needs of the scrap steel recycling industry.

Current methodologies in scrap steel detection primarily utilize object detection tech-
nologies, which effectively identify and localize scrap objects in images. However, the
intricate shapes and irregular edges of scrap steel frequently hinder these methods from
attaining pixel-level precision in classification, consequently impacting the overall accuracy.
To address these issues, we propose the adoption of semantic segmentation technology
for the automated identification and classification of scrap steel, thereby enhancing classi-
fication accuracy and efficiency while reducing manual labor and associated safety risks.
Specifically, we introduce WaveSegNet, a novel framework utilizing wavelet transform
and multiscale focusing structure for improved scrap steel segmentation. First, we utilize
wavelet transform to process images, extracting features across various frequencies to
capture both fine details and broader structural information. Then, we adopt a multiscale
focusing mechanism that further refines segmentation accuracy by leveraging feature ex-
traction at different scales. Experimental evaluations on the public Cityscapes dataset
and dedicated scrap steel datasets reveal that WaveSegNet surpasses existing advanced
models in semantic segmentation efficiency and performance. These findings underscore
the immense potential of WaveSegNet in the intelligent classification of scrap steel.

In summary, our main contributions are as follows:

• We propose the application of semantic segmentation within the realm of intelligent
classification tasks for scrap steel recycling, aiming to enhance the precision and
efficiency of sorting processes through advanced computational methods.

• To better capture the details and structural information of images, we propose the
method of downsampling with Daubechies wavelets and upsampling with Haar
wavelets to better understand and analyze images.

• We adopt a mechanism of multiscale focusing to further enhance the accuracy of
segmentation by extracting and perceiving features at different scales.
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• Through extensive experiments, we validate that WaveSegNet exhibits excellent perfor-
mance in scrap steel segmentation and confirm the effectiveness of various structures.

2. Related Work
2.1. Semantic Segmentation

Semantic segmentation, as one of the significant research directions in computer
vision, has found widespread applications in various fields. Its objective is to classify the
pixels of input images on a pixel-level basis. Thanks to the powerful capability of CNNs
in feature extraction and semantic understanding, FCN was the first to apply CNNs to
semantic segmentation [5]. Since then, CNNs-based semantic segmentation techniques
have gradually become mainstream. To address the issue of the loss of deep-level pixel
positional information and enhance confidence in boundary classification, Ronneberger et al.
proposed the symmetrically structured network based on FCN–U-Net [6]. By utilizing skip
connections to connect corresponding hierarchical features, U-Net effectively integrates
shallow-level details and deep-level semantics. Chen et al. proposed DeepLabV3 [7],
which utilizes dilated convolutions to expand the receptive field of the network and
achieves multiscale feature extraction by concatenating convolutional kernels with different
dilation rates. Subsequently, Chen et al. proposed DeepLabV3+ [8] by introducing depth-
wise separable convolutions in the ASPP [9] module, leading to further improvement in
the performance of semantic segmentation. In recent years, Transformer-based [10–13]
approaches have shown great potential in the field of semantic segmentation. These
methods utilize self-attention mechanisms to effectively capture long-range dependencies
between pixels, surpassing the performance of traditional CNN methods. However, these
methods often come with the issue of high computational complexity and significant
memory consumption.

2.2. Wavelet Transform in CNNs

In the field of computer vision research, wavelet transform is widely utilized as a
powerful tool for multiresolution time–frequency analysis, particularly in image processing
such as denoising, enhancement, fusion, and especially compression. Shin Fujieda et al. [14]
proposed a novel architecture, Wavelet CNNs, which combines multiscale resolution anal-
ysis with CNNs for image classification and annotation tasks. Liu et al. [15] introduced
a MultiLevel Wavelet Convolutional Neural Network (MWCNN), which strikes a better
balance between receptive field size and computational efficiency, and applied it to image
restoration. Wu et al. [16] utilized MWCNN to train a denoiser that effectively removes
Cauchy noise and restores blurry images. To address the performance degradation and
excessive smoothing issues when dealing with low-resolution images, Huang et al. [17]
proposed a wavelet-based CNN method that reconstructs high-resolution images by learn-
ing to predict the corresponding high-resolution wavelet coefficients of low-resolution
images. Ma et al. [18] presented iWave, an image compression framework based on CNNs
that simulates wavelet transform and achieves improved compression performance in
both general and specific texture images. However, unlike the aforementioned works, our
approach replaces the traditional upsampling and downsampling with wavelet transform.

2.3. Intelligent Scrap Steel Detection

Despite numerous attempts by researchers in the field of intelligent classification for scrap
steel, this area is still in its nascent stages of exploration and development. Kim et al. [19]
designed an automatic sorting system utilizing image processing techniques, which can
automatically sort specified materials from mixtures, particularly extracting copper and
other nonferrous metal waste from iron filings mixtures. In [20], researchers proposed an
automatic classification system for light metal waste, which measures shape parameters us-
ing a 3D imaging camera and performs multivariate analysis with data processing software
to achieve accurate classification of waste aluminum and magnesium, potentially replacing
traditional manual sorting. Weczorek et al. [21] employed computer vision methods to
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extract features such as color and shape from scrap steel images for classification research.
Xu et al. [22] utilized machine learning and a nonlinear equal-scale clustering algorithm to
achieve an online automated rating of deep-drawn steel product quality. Duan et al. [23]
made improvements based on the YOLOv3, realizing the classification and detection of
small, light, medium, and heavy scrap steel. Xu et al. [24] proposed CSBFNet for the classifi-
cation and rating of multiple categories of scrap steel, which exhibits significant advantages
in terms of accuracy and fairness compared with manual methods. The intelligent quality
inspection system for scrap steel, developed by HBIS Digital Technology Co.Ltd, employs
artificial intelligence and machine vision technologies to enable real-time monitoring and
automated analysis during the scrap steel unloading process. The system is capable of
automatically identifying noncompliant scrap steel, impurities, and foreign objects during
unloading and promptly issuing warnings. Additionally, Qingdao Special Iron and Steel
Co, Ltd. has developed an automatic scrap steel rating system that constructs a scrap steel
rating model capable of analyzing scrap steel images and calculating their similarity to
known scrap steel types, thus achieving automated classification [25].

To address the limitations of current methods in achieving pixel-level classification of
scrap steel, we propose WaveSegNet. This method is based on wavelet transform and a
multiscale focusing structure for scrap steel segmentation. It facilitates classification at the
pixel level, offering refined granularity in the categorization of scrap steel and leading to
markedly improved results.

3. Scrap Steel Dataset

Currently, an intelligent rating for scrap steel is still in the developmental stage, and
there is no publicly available dataset. In this research, we independently collected images
of scrap steel and meticulously annotated these images, thereby creating two datasets
specifically designed for scrap steel segmentation.

3.1. Simulated Scenario Dataset

In order to obtain accurate and usable data, we used a scrap steel transport car with
dimensions of 3 m × 2 m × 1 m and purchased various types of scrap steel to simulate the
recycling operation site. To ensure the accuracy and completeness of the data, we fixed a
Hikvision ball camera with a resolution of 1920 × 1080 on a bracket at a height of 4.2 m to
4.5 m. This ensures that the camera can overlook the entire car from all angles, capturing
a diverse range of scrap steel images. Figure 1 shows some of the collected scrap steel
image samples.

Figure 1. The collection site for simulated scenario dataset.
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Referencing the national standard for scrap steel classification GB/T 4223-2017 [26],
we performed a detailed categorization of the scrap steel images. Table 1 comprehensively
lists the categorization criteria along with corresponding examples.

Table 1. Scrap Steel Classification Guidelines.

Category Description Example

<3 mm Thickness of fewer than or equal to 3 mm.

3–6 mm Thickness ranging from 3 mm to 6 mm.

>6 mm Thickness greater than 6 mm.

paint The surface has paint or baked paint coat-
ing.

galvanized Thickness ≤ 2.5 mm and surface coating.

greasy dirt The surface is contaminated with oil.

inclusion Nonmetallic materials such as rocks, rubber,
plastic, sand, etc.

Based on the aforementioned scrap steel classification standards, we collaborated
with workers involved in scrap steel recycling and researchers in related fields to jointly
formulate annotation rules applicable to scrap steel images for this study. During the
image annotation process using LabelMe, we outlined the boundary region of each piece of
scrap steel, determined its grade, and labeled the corresponding label information. These
labels include information on the category, shape, and size of the scrap steel. Due to the
diverse characteristics of scrap steel, some subjective judgment may be required during the
annotation process. After completing the annotation, we conducted quality checks on the
annotated data to ensure consistency and accuracy. Figure 2 shows some annotated scrap
steel images and their corresponding label mask images.
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Figure 2. The original images of the dataset along with their corresponding label mask images.

The simulated scenario dataset consists of 1112 images, each with resolution of
1920 × 1080. We divided the dataset into training and validation sets in an 8:2 ratio,
with 890 images used for training and 222 images used for validation. The dataset is stored
in the PASCAL VOC [27] format. We conducted a statistical analysis of the number of labels
and pixels for each category in the dataset, revealing a total of 81,088 labels, with an average
of 73 labels per image. Figure 3a displays the number of labels for each category, while
Figure 3b illustrates the pixel count for each category. We observe significant variations
in the number of labels across different categories, as well as distinct differences in the
proportion of pixels occupied by different category labels. Among them, the category with
the highest number of labels is “>6 mm” which accounts for 77.34% of the total labels. In
terms of pixel count, “>6 mm” also has the highest proportion, representing 60.80% of the
total pixels. In contrast, the category with the fewest samples is “<3 mm”, which accounts
for only 1.27% of the total labels. The category with the smallest pixels is “inclusion”,
representing a mere 0.53% of the total annotated pixels.

In the real-world environment of scrap steel recycling, capturing images of scrap
steel is often subject to a variety of external interferences, such as changes in lighting,
physical obstructions, and various weather conditions. These factors not only increase the
complexity of image processing but also make the identification of scrap steel features more
challenging. To enhance the model’s adaptability to these real-world disturbances, we
employed data augmentation techniques to increase the diversity of the scrap steel image
dataset. The specific data augmentation techniques applied are as follows:

Rotation: By randomly rotating scrap steel images, we simulate the visual effect of
scrap steel at different viewing angles, training the model to accurately identify scrap steel
from all directions.

Occlusion: Introducing random occlusion elements into scrap steel images simulates
potential line-of-sight obstructions that may occur on-site, enhancing the model’s ability to
recognize features when partial information is obscured.

Shadowing: Applying shadows of varying intensities and directions to simulate the
appearance of scrap steel under changing lighting conditions, improving the model’s
adaptability to light variations.

Noise: Incorporating various types of random noise (e.g., Gaussian noise, salt-and-
pepper noise) into the scrap steel images to simulate potential visual disturbances encoun-
tered in real environments.
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Figure 3. Detailed information about simulated scenario dataset. The same category is the same color.

As shown in Figure 4, the adoption of the aforementioned data augmentation strategies
has generated a more diverse dataset, thus significantly improving the model’s robustness
when dealing with complex disturbances in real-world scenarios.

Figure 4. Images of scrap steel following various data augmentation.

3.2. Real-World Scenario Dataset

While simulated data can provide preliminary insights, they may not fully capture the
complexity of real scrap steel recycling sites, potentially leading to a lack of generalization
capability in practical applications. To bridge this gap, our research team established
a collaboration with a steel plant to collect the required scrap steel images directly. To
ensure the high quality of the data, we employed three Hikvision 8-megapixel network
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cameras for image collection, which can capture high-definition images with a resolution
of 3840 × 2160.

To optimize viewing angles and expand coverage, these cameras were installed on
supports ranging from 10.2 to 10.5 m in height at the scrap steel recycling site. This setup not
only provides an overhead view of the entire site but also captures images from multiple
angles, significantly enhancing the diversity and comprehensiveness of the data. The
methodology for image collection and the site configuration are detailed in Figure 5.

Figure 5. The collection site for the real-world scenario dataset.

In the practical scenarios of scrap steel recycling operations, we encounter a wide
variety of scrap steel types, each with its unique characteristics and properties. To achieve
more accurate identification and description of these categories, we have adopted a more
detailed classification method, subdividing scrap steel into 19 specific categories. This
refined classification not only allows us to gain a deeper understanding of the diversity
and complexity of scrap steel but also provides more precise guidance for the effective
recycling and processing of scrap steel. In Table 2, we present several common types of
scrap steel found in real recycling settings, along with their classification standards.

Table 2. Scrap Steel Classification Guidelines.

Category Description Example

overweight Single piece weight > 700 KG.

airtight Container isolated from external environment.

scattered Fine shredded steel powder, rust, iron filings, etc.

cast_iron Cast iron with a carbon content ranging from 2% to
6.67%.

ungraded There is significant contamination, corrosion on the
surface, or defects in size and shape.

The real-world dataset, akin to the simulated scenario dataset, consists of 1340 carefully
annotated scrap steel images, each with a resolution of 3840 × 2160 pixels. These images
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are split into training and validation sets following an 8:2 ratio, allocating 1088 images
for training the model and 272 for validating its performance. The data are meticulously
organized and stored in the PASCAL VOC format, with the dataset featuring a total of
134,584 labels, averaging about 100 labels per image.

As depicted in Figure 6, there is a notable disparity in the number of labels across
different categories. Remarkably, the “3–6 mm” accounts for the largest proportion, making
up 43.28% of the overall label count, while the “steel_bar(>2 m)”, with the fewest labels,
accounts for only 0.01% of the total. Additionally, Figure 7 depicts the variation in pixel
counts for annotations across various categories, revealing significant differences in the
volume of pixel annotations among them. Interestingly, while the “3–6 mm” had the highest
number of labels, it did not lead in terms of annotated pixel volume. This trend was also
evident in other categories, with the “>6 mm” category comprising 43.77% of the total
annotated pixel volume.

Figure 6. The number of labels corresponding to each category of scrap steel.

Figure 7. The number of pixels corresponding to each category of scrap steel.

In the images collected, not only is the wagon’s interior filled with scrap steel, but
there are also extraneous piles of scrap steel around the exterior, causing disruption to the
identification process. The majority of the scrap steel and waste materials within the wagon
consist of small, densely arranged pieces that are tightly stacked, resulting in considerable
overlap among the targets. This overlap leads to significant mutual obstruction, preventing
a complete exposure of all scrap steel targets. Furthermore, even among scrap steel of the
same category, there is a notable lack of uniformity in shape, which further complicates the
identification process.
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4. Methods

In this section, we provide a comprehensive overview of the WaveSegNet that we
have proposed for scrap steel image segmentation. As illustrated in Figure 8, WaveSegNet
employs an encoder-decoder architecture similar to previous works. In order to design
a powerful backbone network capable of handling complex scrap steel scene segmenta-
tion, we incorporate a four-stage feature hierarchy to generate feature maps at different
scales. Each stage consists of a downsampling module and multiple MultiScale Focusing
Convolution Attention Blocks (MSFCABs).

Figure 8. The architecture of WaveSegNet.

4.1. Encoder
4.1.1. MultiScale-Focusing-Based Self-Attention

Research indicates that short-term context and long-term context both play important
roles in visual modeling [28,29]. Short-term context provides information about local
details and spatial relationships, helping to identify low-level features such as edges and
textures and capture relationships between local objects. Long-term context, on the other
hand, provides global semantic and contextual information, which helps to understand
the relationship between targets and the overall. To comprehensively consider the roles of
short-term context and long-term context, we propose MSPF, as shown in Figure 9.

Feature Map Projection. For the input feature map F ∈ RC×H×W , we first use
DWConv for mapping to generate the feature map Fkv ∈ R2×C×H×W . It aims to extract a
richer and more diverse feature representation from the original feature map. Next, we
partition Fkv into Fk, Fv ∈ RC×H×W , along the channel dimension. The above operation can
be represented as

Fk, Fv = Split(DW-Conv5×5, [C, C], dim = 1) (1)

where Split represents the function torch.split() , DW-Conv5×5 represents a depth-wise
separable convolution with a kernel size of 5 × 5, stride of 1, and the number of groups
is C. [C, C] indicates the size or splitting positions of each subtensor after splitting, dim
represents the split dimension. Fk and Fv are the output feature maps.

MultiScale Perception Aggregation. To obtain visual tokens of different grains, we
perform multiscale aggregation on the feature maps Fk and Fv. We use patches of different
sizes to generate features of the same resolution in order to capture feature information
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at different scales. Specifically, we perform multiscale convolution on the feature maps
by using convolutional kernels with different receptive fields. For the feature map Fk,
we employ depth-wise separable convolutions with kernel sizes of 7 × 7, 11 × 11, and
21 × 21. This enables us to capture feature maps Fki ∈ RC×H×W with different scale feature
information, where i ∈ {1, 2, 3}. This operation can be represented as

Fki = f ocus(Fk, Scalei × Scalei) (2)

where f ocus represents a depth-wise separable convolution with a stride of 1 and the
number of groups equals C. Scalei × Scalei represents the kernel size, and Fki represents
the generated feature map.

Figure 9. The architecture of MSPF.

Compared with traditional convolution, stripe convolution is more lightweight and
better suited for extracting features from objects with stripe-like shapes. Scrap steel often
has a long and striped shape, and using stripe convolution can better capture the features
of scrap steel, thereby improving the accuracy of model recognition. For Fv, we utilize
three sets of stripe convolutions instead of standard convolution to obtain feature maps
Fvi ∈ RC×H×W . For instance, we replace the convolutional kernel size of K × K with a set
of convolutional kernels of size K × 1 and 1 × K. This can be expressed as

Fvi = f ocus( f ocus(Fv, Scalei × 1), 1 × Scalei) (3)

Through multiscale aggregation, we are able to obtain fine-grained and coarse-grained
visual representations, thereby capturing feature information at different scales
more effectively.

Local Feature Interaction–Global Feature Fusion. In this step, our goal is to extract
information about structure and local relationships from features at different levels and
combine them with a global context transformer. Specifically, we first take the element-wise
multiplication and addition of the local Fk, Fv ∈ RC×H×W at different granularity levels,
obtaining the feature map Fatt ∈ RC×H×W . This not only achieves feature aggregation
across different levels but also preserves the detailed information and encodes the rela-
tionships between local features. Then, the global context transformer is used to globally
attend to and allocate weights to the feature map Faat. Mathematically, this process can be
summarized as

Fout = F ⊗ G(
3

∑
i=0

(Fki ⊗ Fvi)) ∈ RC×H×W (4)

The function G represents a convolution with a kernel size of 1 × 1 and a stride of 1. The
symbol ⊗ denotes element-wise multiplication. Fout represents the output feature map.

Through this, we can fully leverage the advantages of features at different levels,
enhancing the ability to understand overall semantics and local relationships.
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4.1.2. Daubechies Wavelet Downsampling

In segmentation tasks, traditional CNNs often employ pooling operations, such as max
pooling or average pooling, or use strided convolutions for downsampling to reduce the
size of feature maps and extract more salient features. However, these methods can lead to
the loss of crucial information, particularly affecting fine-grained details such as boundaries,
textures, and small-sized object details. Wavelet transforms enable multiscale, lossless
signal decomposition, effectively retaining crucial image details often lost in conventional
downsampling techniques. Our method diverges by significantly increasing the number of
channels within the feature maps and concurrently reducing their spatial resolution through
the application of wavelet transform. This approach not only maintains the integrity of the
image information but also enhances the ability to discern more nuanced and discriminative
features, thereby elevating the overall performance of segmentation tasks.

Drawing inspiration from the lossless information transformation method [30], we in-
corporate the Daubechies wavelet transform in the downsampling module, as illustrated in
Figure 10. We refer to this as Daubechies Wavelet Downsampling (DWD), which consists of
two components: lossless feature encoding and feature representation learning. For an input
feature map of size H × W × C, after the Daubechies wavelet transform, we obtain four
components: the approximation (low-frequency) component (A), as well as the horizontal
component (H), vertical component (V), and diagonal detail (high-frequency) component
(D). The size of each component is H/2 × W/2 × Cin. The Daubechies wavelet transform
can encode partial information from the spatial dimension to the channel dimension without
any loss of information. Through this transformation, we can concatenate four components
along the channel direction, resulting in a feature map of size H/2 × W/2 × 4Cin. Subse-
quently, through the feature representation learning part, we aim to filter out redundant
information as much as possible, enabling subsequent layers to learn more effective repre-
sentative features. Furthermore, the channel number of the feature map can be adjusted by
manipulating the representation learning block.

Figure 10. The architecture of Daubechies Wavelet Downsampling.

4.2. Decoder

The primary function of the decoder is to transform abstract high-level semantic
features into more specific and interpretable forms. During this transformation process,
the decoder utilizes feature concatenation and fusion from different hierarchies to achieve
pixel-level classification and segmentation.

As depicted in Figure 11, the decoder employed in this study achieves its functionality
by aggregating features from the last three stages. It utilizes wavelet transform upsampling
to sample and aggregate the features from different stages. For an input feature map
of size H × W × C, a learned feature representation generates a feature map of size
H × W × 4C. This feature map is then split along the channel direction into four feature
components of size H × W × C. Subsequently, Haar wavelet inverse transform is applied
to recombine these components into a feature map of size 2H × 2W × C.

For the feature maps sampled and aggregated at different stages, we use a lightweight
Hamburger [31] to further model the global context, resulting in a more comprehensive and
representative feature representation. As depicted in Figure 12, the Hamburger consists
of three main parts: the middle layer, or the ham layer, which is dedicated to matrix
factorization, and the upper and lower layers, collectively known as the bread layers,
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which perform linear transformations. The lower bread layer transforms the input features
Z ∈ Rdz×n into a new feature space Rd×n, facilitated by the weight matrix Wl ∈ Rd×dz .
The ham layer then utilizes matrix factorization, denoted by M, to further process these
features, extracting a low-rank signal subspace and uncovering latent structures within
the data. The upper bread layer maps the features processed by the ham layer back to the
original feature space through another linear transformation, represented by the weight
matrix Wu ∈ Rdz×d. By integrating linear transformations with matrix factorization, the
Hamburger effectively extracts features and learns representations.

Figure 11. The architecture of Haar wavelet upsampling.

Figure 12. The architecture of the Hamburger.

Unlike most decoders, we only aggregate feature information from the last three stages.
This is because the first stage contains a significant amount of low-level information that
can negatively impact performance. Additionally, it introduces a heavy computational
burden. In the experimental section, we demonstrate that WaveSegNet outperforms other
advanced methods.

5. Experiments

To evaluate the performance of WaveSegNet, we carried out comprehensive experi-
ments across three distinct datasets. These experiments were performed on Ubuntu 20.04
using the PyTorch. For training and validation, we utilized two NVIDIA GeForce RTX 4090.
Detailed specifications of the experimental setup are provided in Table 3.

Table 3. Experimental environment information.

Experimental Configuration Detailed Information

Operating System Ubuntu 20.04
Motherboard ROG MAXIMUS Z790 HERO

CPU 13th Gen Intel(R) Core(TM) i9-13,900 K
GPU NVIDIA GeForce RTX 4090 (24 G) × 2
RAM 64 GB

Storage space 6 TB
GPU Driver Version 520.56.06

CUDA Version 11.8
Python Version 3.8.13
PyTorch Version 1.13.0
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To ensure fair comparison, all experiments were implemented using the MMSegmen-
tation library, with backbone networks of different models pretrained on ImageNet.

The AdamW [32] optimizer was employed with an initial learning rate of 6 × 10−5

and a weight decay rate of 0.01. The experiments leveraged a linear learning rate decay
scheduler alongside a linear warm-up strategy over 1500 iterations. A suite of data aug-
mentation techniques were employed, encompassing random resizing (within a scale range
of 0.5–2.0), random horizontal flips, and random cropping. For the simulated scenario
dataset, the input size was cropped to 512 × 512, whereas the real-world scenario dataset
was cropped to 1024 × 1024. Further details on the experimental parameter settings are
provided in Table 4. Both single-scale (SS) and multiscale (MS) flip testing methodologies
were employed to ensure a balanced evaluation.

Table 4. Experimental parameter setting.

Parameter Simulated Scenario Real-World Parameter Description

img_scale 2048 × 512 2048 × 1024 Image resizing dimensions
ratio_range (0.5, 2.0) (0.5, 2.0) Range for image scaling ratios
crop_size 512 × 512 1024 × 1024 Image cropping size

cat_max_ratio 0.75 0.75 Maximum ratio for object cropping
prob 0.5 0.5 Image flip probability

batch size 16 8 Number of samples per batch
max_iters 40 k 160 k Training iterations
optimizer AdamW AdamW Type of optimizer

betas (0.9, 0.999) (0.9, 0.999) Momentum parameters for AdamW optimizer
lr 6 × 10−5 6 × 10−5 Learning rate

warmup linear linear Learning rate warm-up method
warmup_iters 1500 1500 Iterations for learning rate warm-up
warmup_ratio 1 × 10−6 1 × 10−6 Minimum learning rate ratio during warm-up

min_lr 0.0 0.0 Minimum learning rate
weight_decay 0.01 0.01 Weight-decay coefficient

5.1. Performance Evaluation Metrics

To thoroughly assess model performance, we employ standard metrics such as Pa-
rameters (Params), Floating Point Operations (FLOPs), and mean Intersection over Union
(mIoU). Specific definitions and methods for calculating these are provided below.

Params refers to the number of learnable parameters within the model, serving as a
crucial indicator of model complexity. Assuming a neural network consists of L layers, with
the dimension of the weight parameters at layer l denoted by Wl ∈ RCl

out×Cl
in×Hl×W l

, and
the dimension of the bias parameters by bl ∈ RCl

out , then the total number of parameters for
this network can be expressed as follows:

Params =
L

∑
l=1

(Cl
out × Cl

in × Hl × W l + Cl
out) (5)

where Cl
in and Cl

out, respectively, represent the number of input channels and output
channels at layer l, and Hl and W l denote the height and width of the channels at layer l.

FLOPs measure the number of floating-point operations required to execute the net-
work model once. This metric is commonly used to evaluate models’ computational
efficiency and processing speed. Assuming a neural network has L layers, with the input
feature map size of layer l denoted as Hl

in ×W l
in, the output feature map size as Hl

out ×W l
out,

the kernel size of the convolutional layer as Hl
k × W l

k, the number of input channels as Cl
in,

and the number of output channels as Cl
out; the total FLOPs can be represented as follows:

FLOPs =
L

∑
l=1

2 × Cl
in × Cl

out × Hl
k × W l

k × Hl
out × W l

out (6)
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The mIoU is a crucial metric for evaluating semantic segmentation. It determines the
average ratio of overlap between predicted results and ground truth across all categories.
Further, mIoU is divided into single-scale and multiscale evaluations. The mIoU(SS) can be
represented as follows:

mIoU(SS) =
1
nc

nc

∑
i=1

TPi
TPi + FPi + FNi

(7)

where nc is the number of categories, TPi is the number of true positives for category i, FPi
is the number of false positives for category i, and FNi is the number of false negatives for
category i.

The mIoU(MS) can be represented as follows:

mIoU(MS) =
1
nc

nc

∑
i=1

∑j TPi,j

∑j(TPi,j + FPi,j + FNi,j)
(8)

where TPi,j is the number of true positives for category i at scale j, FPi,j is the number
of false positives for category i at scale j, and FNi,j is the number of false negatives for
category i at scale j.

5.2. Semantic Segmentation on Scrap Steel
5.2.1. Simulated Scenario Dataset

As shown in Table 5, we evaluated the key metrics of the different models and an-
alyzed their mIoU on the single scale (SS) and multiscale (MS). Among these models,
WaveSegNet exhibits superior segmentation performance across different scales. Firstly,
WaveSegNet attained mIoUs of 73.1% and 73.7% on the single scale (SS) and multiscale
(MS), respectively, outperforming other models. The mIoU is pivotal in assessing the
precision of a model’s segmentation outcomes, highlighting WaveSegNet’s superior ability
to accurately interpret the semantic content of images and achieve better segmentation out-
comes. Secondly, although the performance improvement of WaveSegNet is not markedly
significant compared with the Swin and ConvNeXt, its parameter count is only half of those
models, and its computational demand is reduced to one-sixth. This indicates a higher
efficiency in model architecture and parameter utilization for WaveSegNet, which is crucial
for real-time segmentation tasks with limited computational resources. Even compared
with Segformer, which has a similar scale of parameters and computational requirements,
WaveSegNet demonstrates superior performance.

Table 5. Semantic segmentation result on simulated scenario dataset. The arrows indicate the
desirable direction for each metric: (↓) for Params and FLOPs, indicating lower is better; (↑) for mIoU,
indicating higher is better.

Model Params (M) ↓ FLOPs (G) ↓ mIoU (SS) ↑ mIoU (MS) ↑

WaveSegNet 34.1 321 73.1 73.7
DeepLabv3+ [8] 43.6 1403 71.9 72.4

MPViT [33] 105.2 2365 69.6 71.4
Segformer [34] 24.7 325 71.9 72.5

Swin [35] 59.8 1879 72.2 72.4
ConvNeXt [36] 60.1 1868 72.5 73.4

Bold values indicate optimal quantities.

In Figure 13, the segmentation results of different models on scrap steel images are
presented, with WaveSegNet demonstrating exceptional performance in delineating object
details. It precisely identifies and segments various components within the scrap steel
images, capturing subtle features and edges.
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Figure 13. The comparison of performance of different models on simulated scenario dataset.

5.2.2. Real-World Scenario Dataset

As demonstrated in Table 6, WaveSegNet achieved the highest IoU in both single-scale
(SS) and multiscale (MS) evaluations, with results of 69.8% and 74.8%, respectively. This
underscores WaveSegNet’s exceptional capability in performing scrap steel segmentation
tasks in real-world scenarios. Compared with DeepLabv3+ and Segformer, WaveSegNet
demonstrated substantial enhancements in segmentation efficiency, despite possessing
a parameter count that is comparable. Specifically, within the single-scale evaluation,
WaveSegNet exceeded the performance of DeepLabv3+ and Segformer by margins of
4.6% and 4.1%, respectively. In the multiscale assessment, the respective advancements
stood at 8.5% and 4.0%. It is particularly noteworthy that WaveSegNet not only showcases
pronounced advantages in terms of parameter count and computational efficiency relative
to Swin and ConvNeXt but also excels in segmentation performance. Additionally, the
experimental results suggest that MPViT may not be suitable for scrap steel segmentation
and rating. In summary, WaveSegNet not only showcases exemplary segmentation perfor-
mance but also stands out in terms of parameter efficiency and computational economy,
revealing its substantial potential in scrap steel image segmentation.

Table 6. Semantic segmentation results on the real-world dataset. The arrows indicate the desirable
direction for each metric: (↓) for Params and FLOPs, indicating lower is better; (↑) for mIoU, indicating
higher is better.

Model Params (M) ↓ FLOPs (G) ↓ mIoU (SS) ↑ mIoU (MS) ↑

WaveSegNet 34.1 322 69.8 74.8
DeepLabv3+ 43.6 1404 65.2 66.3

MPViT 105.2 2368 57.3 58.5
Segformer 27.4 420 65.7 70.8

Swin 59.8 1880 64.1 66.3
ConvNeXt 60.1 1869 65.6 69.0

Bold values indicate optimal quantities.

Figure 14 showcases the IoU and Accuracy (Acc) of WaveSegNet for different cate-
gories of scrap steel in the segmentation task. Notably, the model demonstrates exceptional
performance in eliminating background interference, with the IoU for the background
reaching 98.86% and an Acc of 99.56%. For the majority of scrap steel categories, both
IoU and Acc exceed 80%, with some categories even surpassing 90%, which emphatically
validates the effectiveness and reliability of the model proposed in this study. However,
it is important to highlight that certain scrap metal categories, such as steel_bar (2 m)
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and steel_bar (0.7–1.2 m), exhibit comparatively weaker performance. This is primarily
attributed to two reasons: first, the relatively limited sample size of these specific categories
in the dataset poses challenges for the model; second, these categories of scrap steel often
present as elongated shapes, which lack distinctive features, thereby complicating the
segmentation task. In contrast, despite having only 76 annotated samples for the over-
weight, the model achieves optimal segmentation performance due to its pronounced
distinguishing features.

Figure 14. Segmentation results of different categories of scrap steel.

In Figure 15, we present the segmentation results of various models on the real-world
scenario dataset. Notably, WaveSegNet stands out in its handling of object details.

Figure 15. The comparison of performance of different models on the real-world dataset.

In brief, the excellent performance of WaveSegNet in scrap steel segmentation can be
attributed to the following aspects:
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• Lossless wavelet transform: WaveSegNet uses lossless wavelet transform for upsam-
pling and downsampling, ensuring the integrity of image information and accurately
segmenting the boundaries of scrap steel.

• Multiscale perception focusing: WaveSegNet adopts a multiscale perception focusing
mechanism to concentrate the attention on the scrap steel area, thereby reducing the
impact of background interference.

• Task-specific customization: WaveSegNet is tailor-made and fine-tuned for the specific
task, aligning with the unique features and demands of scrap steel images.

5.3. Semantic Segmentation on Cityscapes

To facilitate a more comprehensive benchmark comparison with other models, we
additionally selected the widely used Cityscapes dataset, which is a public dataset for
semantic segmentation tasks for benchmark testing. The Cityscapes [37] dataset comprises
high-resolution images with annotations for 19 different classes. Specifically, it consists of
5000 finely annotated images, out of which 2975 were allocated for model training, 500 for
validation, and 1525 for testing. The detailed parameter settings for the experiment are
consistent with those used in the real-world dataset in the experiment shown in Table 4.

As shown in Table 7, we evaluated several semantic segmentation models and com-
pared them with WaveSegNet in terms of key indicators, such as model parameters, com-
putational complexity (FLOPs), and mIoU. We found that WaveSegNet has a slightly higher
parameter count than Segformer, but has lower computational complexity and achieves a
higher mIoU of 81.8%. Compared with Deeplabv3, WaveSegNet achieves a performance
improvement of 2.5% with a reduction in parameter count by half and a reduction in
computation by 85%. Compared with Transformer-based Swin and CNN-based ConvNeXt,
WaveSegNet achieves superior performance using less than 60% of the parameter count
and 20% of the computation. In summary, WaveSegNet exhibits significant advantages
in terms of parameter size, computational complexity, and mIoU, and achieves the best
performance in the Cityscapes semantic segmentation task.

Table 7. Semantic segmentation result on Cityscapes validation set. The arrows indicate the desirable
direction for each metric: (↓) for Params and FLOPs, indicating lower is better; (↑) for mIoU, indicating
higher is better.

Model Params (M) ↓ FLOPs (G) ↓ mIoU ↑

WaveSegNet 34.1 322 81.8
Deeplabv3 [7] 68.1 2157 79.3
Deeplabv3+ 43.6 1414 80.1
Segformer 27.5 420 81.0

Swin 59.8 1871 79.5
ConvNeXt 61.1 1869 80.7

Bold values indicate optimal quantities.

5.4. Ablation Study

In this section, we conduct ablation studies on key components in WaveSegNet to
verify the effectiveness of these designs.

Focusing Branch. Multiscale perceptual aggregation includes three branches. Accord-
ing to the experimental results in Table 8, when we remove the smallest 7 × 7 focusing
branch, the performance slightly decreases, with a decrease of 0.2% on Cityscapes and a
decrease of 0.2% on the scrap steel dataset. However, these performance losses are not
significant. On the other hand, if we remove the largest 21 × 21 focusing branch, the
performance on Cityscapes would decline from 81.8% to 80.5%, while performance on the
scrap steel dataset would decrease from 73.1% to 71.9%. This shows that the largest scale
branch contributes more significantly to performance, and removing it leads to greater
performance loss. By removing different scales of focusing branches, we can find that each
scale of focusing branch contributes to the final performance.
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Table 8. The ablation experiment results of WaveSegNet on Cityscapes and the simulated scenario
dataset. Symbols used: (✓) indicates inclusion of a feature, (×) indicates exclusion.

Ablation Variant
Cityscapes Simulated Scenario Dataset

Params
(M)

FLOPs
(G) mIoU Params

(M)
FLOPs

(G) mIoU

Baseline WaveSegNet 34.14 321.52 81.8 34.13 321.36 73.1

Focus
Branch

Remove 7 × 7 branch 33.75 316.80 81.6 33.74 313.92 72.9

Remove 11 × 11 branch 33.27 310.96 81.2 33.26 310.80 72.5

Remove 21 × 21 branch 31.25 286.40 80.5 31.24 286.16 71.9

Downsampling Upsampling

Wavelet
Transform

✓ × 30.30 296.56 81.6 30.30 296.40 73.0

× ✓ 35.21 327.76 81.5 35.21 327.52 72.7

× × 31.38 302.80 81.2 31.37 302.56 72.5

Wavelet Transform. To validate the impact of the proposed wavelet transform down-
sampling and upsampling on performance, we conducted ablation studies by replacing
them with traditional stride convolution downsampling and linear interpolation upsam-
pling. The experimental results are summarized in Table 8. We attempted to replace the
Haar wavelet transform upsampling in the decoder with a traditional bilinear interpolation
upsampling. However, it can be observed that on different datasets, the segmentation
performance decreased to varying degrees. For the encoder, we replaced the Daubechies
wavelet downsampling with traditional stride convolution. Similarly, we observed a de-
crease in segmentation performance of 0.3% on Cityscapes and a decrease of 0.4% on
the scrap steel dataset. When both the encoder and decoder used traditional methods
instead of wavelet transforms, the results decreased more significantly. This suggests that
wavelet transforms can better preserve details and semantic information during upsam-
pling and downsampling.

6. Conclusions and Future Works
6.1. Conclusions

In this study, we proposed the WaveSegNet based on wavelet transform and multi-
scale focusing structure for scrap steel segmentation. By applying wavelet transform to
the images, we are able to extract features at different frequencies, effectively capturing
the fine details and structural information of the images. Furthermore, the introduction
of a multiscale focusing mechanism enhances the accuracy by enabling the extraction and
perception of features across different scales. Through experiments conducted on publicly
dataset Cityscapes and our custom-built scrap steel dataset, we demonstrate that WaveSeg-
Net exhibits superior performance and efficiency in the domain of semantic segmentation,
surpassing other advanced models. These experimental results confirm the substantial
potential of WaveSegNet for intelligent scrap steel rating and offer a new solution for the
scrap steel recycling industry.

6.2. Limitations and Future Work

We acknowledge that our dataset may not fully capture the diversity and complex-
ity present in scrap steel. Consequently, we warmly invite further exploration by fellow
researchers in this field. Our team is committed to sharing our findings and insights to
foster a more complete understanding of intelligent scrap steel recycling and to collectively
advance the state of research in this vital area. In the future, we plan to continue expand-
ing the scrap steel dataset, collecting a more comprehensive set of images that covers a
broader range of types and scenarios. Additionally, we aim to explore further optimization
strategies to enhance the performance of WaveSegNet in scrap steel image processing.
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Furthermore, we plan to collaborate with additional enterprises to apply this method in
practical production.
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