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Abstract: This paper highlights the design of a controller established on estimated states for one-sided
Lipschitz (OSL) nonlinear systems subject to output and input delays. The controller has been devised
by involving Luenberger-like estimated states. The stability of the time-delayed nonlinear system is
reckoned by assuming a Lyapunov functional for delayed dynamics and for which a delay-range
dependent criterion is posed with a delay ranging between known upper and lower bounds. The
time derivative of the functional is further exploited with linear matrix inequality (LMI) procedures,
and employing Wirtinger’s inequality for the integral terms instead of the traditional and more
conservative Jensen’s condition. Moreover, a sufficient and necessary solution is derived for the
proposed design by involving the tedious decoupling technique to attain controller and observer
gain simultaneously. The proposed methodology validates the observer error stability between
observers and states asymptotically. The solution of matrix inequalities was obtained by employing
cone-complementary linearization techniques to solve the tiresome constraints through simulation
tools by convex optimization. Additionally, a novel scheme of an observer-based controller for the
linear counterpart is also derived for one-sided Lipschitz nonlinear systems with multiple delays.
Finally, the effectualness of the presented observer-based controller under input and output delays
for one-sided Lipschitz nonlinear systems is validated by considering a numerical simulation of
mobile systems in Cartesian coordinates.

Keywords: estimation-based control; delay-range-dependent (DRD); one-sided Lipschitz; Wirtinger’s
inequality; decoupling procedure; input and output delays

MSC: 37M05; 37M15; 37M25

1. Introduction

State estimation has attracted significant attention in the last two decades for applica-
tions in various control systems, including the design of output feedback, fault detection,
image processing incorporating high-level processing such as computer vision, cryptogra-
phy, chemical processes, and complex systems such as biochemical reactors, grid-connected
PV systems, aircraft, nuclear reactors, neural networks, and many more [1–8]. Physical
systems are subjected to observers to retrieve knowledge of inputs and respective outputs
as they constitute a more practical method, offering a unique theoretical perspective usually
associated with linear system theories of controllability, stability, and observability [3,6].
Missing state variable information, either due to sensor unavailability or infeasible con-
trol techniques, can be suitably approximated by using an observer [9]. State estimation
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subjected to unknown inputs for linear and nonlinear, time-invariant and variant control
systems with multiple variables, and full and reduced-order observers using Simulink
(an estimator for slow and fast singularly perturbed systems) is presented in the litera-
ture [8–12]. In these studies, efforts have been made to derive a single classical generic
observer to generate estimated internal states for the entire plant. M. Sławiński and T.
Kaczorek presented a method for the full reduced-order observer for continuous-time
singular linear systems [6]. A design of a positive linear observer system to approximate
states of the system with greater accuracy is presented in [7]. The authors of [9] present
linear matrix inequality (LMI)-based conditions for state and unknown input observers for
nonlinear systems under delayed dynamics. A novel approach for disturbance observers
for nonlinear systems is presented in [12] for input and output models.

Estimation-based control has been employed for both linear and non-linear control
schemes to approximate unknown states and inputs that are not measured due to sensor
unavailability or impractical control techniques [13–19]. Over recent years, observer-based
systems for adaptive control, fuzzy control, backstepping control, non-linear fault control
theory, sampled-data control, event-driven control, output-based control, Luenberger
control, convex optimization control, time-delay based control, etc., have been adopted
based on observer-based nonlinear control. In [13], observers were investigated for slow
and fast singularly perturbed linear systems to address the numerical ill-conditioning
problem of the original system. Disturbance observer-based control to estimate the states
of non-linear systems and attenuation of disturbances is accomplished by designing a two-
stage controller where both disturbance observer and controller operate separately [14].
In [15], the problem of decentralized fault tolerant control (FTC) for nonlinear systems in
the feedback form is addressed by combining backstepping and non-linear FTC theory to
develop a novel adaptive fuzzy decentralized FTC scheme. Robust observer-based fuzzy
control for nonlinear dynamic systems subjected to uncertain parameters is accomplished
in [19] using the Takagi–Sugeno fuzzy model system. The sufficient solution as linear
matrix inequality (LMIs) is derived for robust stabilization.

Various practical systems, especially those influenced by transmission, transporta-
tion, or inertial phenomena, incorporate delayed differential equations. Conventional
control methods described in the literature are not directly applicable to such delayed
dynamics systems, and hence have received considerable attention from researchers for
linear and nonlinear systems [20–29]. Time delay can be observed in input, output, or
both. Estimation-based output feedback control was presented in [20] for linear systems
with single/multiple output and input delays where the Truncated predictor feedback
technique was used. Refs. [21,22] highlighted the stabilization of open loop systems with
control and delay in state for linear and nonlinear systems. Delayed differential equations
modeled in various nonlinear physical frameworks such as industrial processes, robotics,
telecommunication systems, earth-controlled satellite devices, bio-medical engineering,
etc., employed delays in input, output, and state, or all three. Adaptive neural network
observer-based control for time-delayed stochastic SISO systems was studied by employing
dynamic surface control to avoid the intricacy of the backstepping scheme [23]. In [24], a
relatively new approach for a time-delayed dynamical scheme based on estimation-based
feedback control was presented for nonlinear systems targeting the problem of infinite
dimensioning in characteristic equations. This proposed method guaranteed all signals
to be ultimately uniformly bounded. The authors of [25] employed active disturbance
rejection control (ADRC) for systems that are non-linear, uncertain, and time-varying all at
the same time (such as many industrial processes including combustion, wastewater treat-
ment, etc.) to achieve disturbance rejection and maintenance of stability all at once. Sliding
mode observer-based fuzzy output-feedback control has been employed for stochastic and
non-linear systems incorporating multiple delays [26]. In [22], Luenberger-like estimators
were designed for nonlinear structures having delays in state and output for real-time
reconstruction of insulinemia in human beings from plasma glucose measurements. In [27],
a new method was proposed which incorporated external disturbances and delayed dy-
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namics both in output and state of the system. Adaptive consensus control based on the
dynamic surface control technique for non-linear time-delayed and multi-agent systems
was presented in [28]. In [29], ADRC was used for uncertain non-linear systems with input
time-delay which was studied with a novel extended state observer as a predictor. The
stability of time-delayed systems is exploited with delay-independent, delay-dependent,
and delay-range-dependent approaches. Extensive research has been done by scholars
on stability control and analysis of delay-independent non-linear systems [30–32], and
delay-dependent non-linear systems for various types of systems ranging from robust
filtering to adaptive and impulsive control for time-delayed non-linear systems [33–35].
Also, observers and controller designs have been investigated for delay-range-dependent
non-linear systems with the help of various controlling techniques in a variety of sys-
tems such as biomedical systems, neural networks, process control, and safe and secure
communication ([36–39], and references therein).

Control for estimation-based time-delayed Lipschitz and One-sided Lipschitz (OSL)
systems with uncertain parameters and external turbulences and OSL systems with in-
put saturation have been investigated recently by many researchers. Many techniques
such as static and dynamic gain filter structures, and functions including Lyapunov-
Krasovskii, Jensen’s Inequality, LMIs, etc., have been employed successfully to stabilize
the above-mentioned systems after parametric uncertainties and external or internal dis-
turbances [30,37,38,40–42]. The conservatism of Lipschitzian nonlinear systems as OSL
systems accompanies quadratic inner-boundedness constraints which leads to less generic
results, which is highlighted in various studies [38,43].

Employing Wirtinger’s condition for the feedback control of nonlinear and linear
dynamic systems, which requires the abstraction of estimator and controller gain simulta-
neously, is an intriguing research problem ([43,44], and references therein). For nonlinear
physical systems, information on all state vectors is required and in case of non-availability,
estimation is carried out for specific states. For such systems, state-feedback estimation-
based controllers have been devised which further engage LMI-based results. LMIs are
obtained by integrating the triple integral terms for a delay-range-dependent approach.
Previously, Jensen’s inequality performed the task of solving the integral terms, yet con-
servatism still appears for that reason. Wirtinger’s inequality fulfills the role of providing
extractable observer and controller gain by involving the decoupling techniques.

Inspired by the revealed factors, this study highlights the estimation-based control of
OSL nonlinear schemes exposed to output and input delays. The Lyapunov-Krasovskii (LK)
functional is employed as a delay-range-dependent stability criterion to derive controller
and observer gain. Time-derivation of the functional is further exploited with Wirtinger’s
condition instead of Jensen’s inequality condition [43,44], due to conservatism added by
the latter. Stability constraints for the LK functional are obtained by considering non-
zero lower and upper bounds of time-varying delays. Furthermore, the OSL condition
is incorporated instead of the Lipschitz condition which observes the local behavior of
nonlinearity. A Luenberger-like observer scheme is presented to provide an estimation of
states and to ensure the availability of all states for the feedback controller, from which the
closed-loop feedback dynamics are prepared. In order to have the observer and controller
gain simultaneously from the simulation tools, a decoupling technique ([40,43,45,46] and
references therein) is engaged which provides sufficient and necessary conditions for
nonlinear inequality. Nonlinear matrix inequality is then exploited with a convex cone
complementary linearization algorithm to obtain LMI, which renders both observer and
controller gains for a nonlinear system that has input and output delays. A simulation
example is provided by considering a moving object in 2D Cartesian coordinates to exhibit
the efficiency of the projected scheme.

The main contributions of the proposed methodology are as follows:

1. To the best of our knowledge, the delay-range-dependent stability approach to devise
an observer-based controller for OSL nonlinearity under input and output delays is
explored for the first time in the literature.
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2. The Wirtinger inequality method is employed for the solution of multiple integrals in
this study to reduce the conservatism of Jensen’s inequality, in comparison to previous
techniques reported in [43] to have a trivial solution.

3. Additionally, a necessary and sufficient solution is derived for the proposed design
by involving the tedious decoupling technique to attain controller and observer gain
simultaneously. The proposed methodology validates the observer error stability
between observers and states asymptotically.

Further content in the paper is structured in five sections, which are as follows:
Section 2 presents the system description of a one-sided nonlinear dynamical system
with delay in input and output, and observer and controller structures, and important
results to be utilized. Key results are delivered in Section 3 for the Delay-range-dependent
(DRD) stability approach of estimation-based control with comprehensive proofs. Section 4
presents simulation outcomes by considering the motion of an object in a 2D Cartesian
plane, and Section 5 is the conclusion.

2. System Explanation

Assuming a dynamical system with nonlinearity and delay encountered in the output
and input of the system as

.
x(t) = Ax(t) + Bu(t − τ1(t)) + f (t, x),
y(t) = Cx(t − τ2(t)),

(1)

for which the state of the system is given by x(t) ∈ ℜn , y(t) ∈ ℜp depicts the output
vector, control input of the system is taken as u(t) ∈ ℜm, and the nonlinearity is denoted
by f (t, x) ∈ ℜn. A, B and C are assumed as constant system matrices of appropriate
dimensions for the linear dynamics. The continuous input and output function for delay
terms are τ1(t) and τ2(t), respectively, which satisfies

0 ≤ hj1 ≤ τj ≤ hj2, ∀j = 1, 2,
.
τ j ≤ µj, ∀j = 1, 2.

Definition 1. The nonlinear function given by f (t, x), fulfills

⟨ f (t, x)− f (t, x̂), λ1 − λ2⟩ ≤ ρ∥λ1 − λ2∥2, (2)

with λ1, λ2 ∈ Rn and ρ ∈ ℜ is assumed as a one-sided Lipschitz constant [40,41,43].

Definition 2. The nonlinear function given by f (t, x) is assumed to satisfy a quadratic inner-
boundedness condition, if

( f (t, λ1)− f (t, λ2))
T( f (t, λ1)− f (t, λ2)) ≤ β∥λ1 − λ2∥2 + α ⟨ λ1 − λ2, f (t, λ1)− f (t, λ2)⟩, (3)

The OSL condition provided in Definition 1 integrated with the quadratic inner-
boundedness condition helps in extending the Lipschitz nonlinearity application and is
easily adapted to a larger class of nonlinear systems. Since the OSL constant can have any
zero or non-zero value, the extrapolation of Lipschitz nonlinearity emerged, where the
constant can only be positive and for a specific range of nonlinear systems.

Assumption 1. The nonlinear function assumed as f (t, x) in (1) corroborates OSL nonlinearity
and QIB conditions provided in relations (3) and (4).

The control input for the estimation-based control strategy for OSL nonlinear systems
is provided as

u(t) = K1 x̂(t) (4)
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where the matrix for controller gain is referred to as K1 ∈ ℜm×n and an estimate of x(t) is
given by x̂(t). A Luenberger-like observer for the nonlinear system in (1) is selected as

.
x̂(t) = Bu(t − τ1(t)) + Ax̂(t) + f (t, x̂(t)) + K2(y(t)− ŷ(t)),
ŷ(t) = Cx̂(t − τ2(t)),

(5)

where observer gain is assumed as K2 ∈ ℜn×p. Employing relations in Equations (1) and (5)
renders

.
e(t) = Ae(t)− K2Ce(t − τ2(t)) + Φ(x, x̂), (6)

where the error is provided as e(t) = x(t)− x̂(t) and the nonlinear terms are modeled as
Φ(x, x̂) = − f (t, x̂) + f (t, x). Integrating (4) and (1) renders

.
x(t) = f (t, x) + Ax(t) + BK1x(t − τ1(t))− BK1e(t − τ1(t)). (7)

By combining (6) and (7) we have an augmented system as

.
z(t) = A1z(t − τ1) + Az(t) + A2z(t − τ2) + Ig(t),
where

z(t) =
[

x(t)T e(t)T
]T

, z(t − τ1(t)) =
[

x(t − τ1(t))
T e(t − τ1(t))

T
] T

,

z(t − τ2(t)) =
[

0 e(t − τ2(t))
T
] T

,

A =

[
A 0
0 A

]
, A1 =

[
BK1 −BK1
0 0

]
, A2 =

[
0
−K2C

]
,

g(t) =
[

f (t, x)
Φ(x, x̂)

]
, I =

[
I 0
0 I

]
.

(8)

If states of the systems, i.e., x(t) and the estimation error e(t), converge asymptotically
to the vicinity of origin, then we say that the augmented system is asymptotically stable. For
this purpose, Wirtinger’s inequality is adopted in this study. Main results and inequality
are defined in the following Lemmas, also provided in [43,44].

Lemma 1. The following inequality holds, for a function M, that is continuously differentiable such
that [u, v] → ℜn, such that there is a matrix S > 0,

v∫
w

.
xT

(s)M
.
x(s)ds ≥ 1

v−w [x(v)− x(w)]T M[x(v)− x(w)]

+ 3
v−w

[
x(v) + x(w)− 2

v−w

v∫
w

x(s)ds
]T

×M
[

x(v) + x(w)− 2
v−w

v∫
w

x(s)ds
]

.

Lemma 2. For positive scalars, m, n, consider a function Ω(δ, W) for which we have the following
relation Ω(δ, W) = 1

δ ΓT RT
1 WΓR1 +

1
1−δ ΓT RT

2 WΓR2, in which W ∈ ℜn×n, Γ ∈ ℜn, R1,

R2 ∈ ℜn×m and δ exists in interval (0, 1). If there exists X ∈ ℜn×n, that is
[

W X
∗ W

]
> 0, then

the inequality minΩ(δ, W) =

[
R1Γ
R2Γ

]T[W X
∗ W

][
R1Γ R2Γ

]
, holds.

The main task of the current research is to highlight an estimation-based control of
OSL nonlinear systems which are subjected to multiple delays that are delayed in state and
output by utilizing a DRD stability scheme.
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3. Proposed Results

A synchronized approach for the attainment of observer and controller gains, simulta-
neously, is provided in the forthcoming section.

Theorem 1. Consider a dynamical system (8), incurred by integrating OSL nonlinearity in
Assumption 1, observer dynamics (5), closed-loop system (7), estimation error (6) and controller (4)
and systems (1) satisfying the time-varying delay bounds in (2). The state vector e(t) and the state
observer error e(t) converge asymptotically in the vicinity of origin for the mentioned symmetrical
vectors Pi ∈ ℜn×n, Mj ∈ ℜn×n, Ql j ∈ ℜn×n, Zlk ∈ ℜn×n and Yk ∈ ℜn×n endorsing Pi > 0,
Yk > 0, Ql j > 0 and Zlk > 0, for i = k = l = 1 and 2, and j = 1, 2, 3 and scalar ρ > 0, so that
the following matrices[

ϕ1 ϕ2
∗ −diag(Y1, Y2, Z11, Z12, Z21, Z22)

]
−ξT(t)TT

1 ϑ1T1ξ(t)− h1,12
h12−h11

ξT(t)TT
2 ϑ2T2ξ(t)− ξT(t)TT

3 ϑ3T3ξ(t)

−ξT(t)TT
4 ϑ4T4ξ(t)− h1,12

h12−h11
ξT(t)TT

5 ϑ5T5ξ(t)− h1,12
h12−h11

ξT(t)TT
6 ϑ6T6ξ(t).

(9)

where

ϕ1 =

[
ϕ
(1)
1 0
∗ ϕ

(4)
1

]
,

ϕ
(1)
1 =



Υ1 P1BK1 0 0 0 0 0 − ε1 I
2 + αε2 I

2

∗ Γ(1)
1 0 0 0 0 0 0

∗ ∗ Γ(1)
2 0 0 0 0 0

∗ ∗ ∗ Γ(1)
3 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I


,

(10)

ϕ
(4)
1 =



Υ2 0 0 0 0 0 0 Υ3 0 0 0 0 0 Υ4

∗ Γ(2)
1 0 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ Γ(2)
2 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ Γ(2)
3 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)

1 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)

2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)

3 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε4 I


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ϕ2 =



ATh11Y1 ATh1,12Y2 0 0 0 0
KT

1 BTh11Y1 KT
1 BTY2h1,12 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

h11Y1 Y2h1,12 0 0 0 0
0 0 ATh11Z11 ATZ12h1,12 ATZ21h21 ATZ22h2,12

−KT
1 BTh11Y1 −KT

1 BTY2h1,12 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −CTKT

2 h11Z11 −CTKT
2 h1,12Z12 −CTKT

2 h21Z21 −CTKT
2 h2,12Z22

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 h11Z11 h1,12Z12 h21Z21 h2,12Z22



,

are satisfied, where

Υ1 = P1 A + AT P1 +
3
∑

i=1
Mi + ρε1 I + βε2 I,

Γ(1)
1 = −(1 − µ1)M3,

Γ(1)
2 = −M1,

Γ(1)
3 = −M2,

Υ2 = AT P2 + P2 A +
2
∑

i=1

3
∑

j=1
Qij,

Υ3 = −P2K2C,
Υ4 = P2 − ε1 I

2 + αε2 I
2 ,

Γ(i+1)
1 = −Qi3(1 − µi), for i = 1 and 2,

Γ(i+1)
2 = −Qi1, for i = 1 and 2,

Γ(i+1)
3 = −Qi2, for 1 and 2,

hi,12 = hi2 − hi1, for 1 and 2,

W̃ = W−1,

T1 =
[

GT
3 GT

4 GT
5 GT

6
]T , T2 =

[
GT

5 GT
6 GT

7 GT
8
]T ,

T3 =
[

GT
9 GT

11 GT
13 GT

15
]T , T4 =

[
GT

10 GT
12 GT

14 GT
16
]T ,

T5 =
[

GT
13 GT

15 GT
17 GT

19
]T , T6 =

[
GT

14 GT
16 GT

18 GT
20
]T ,

G3 =
[

I −I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
,

G4 =
[

I I 0 0 −2I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
,

G5 =
[

0 I −I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
,

G6 =
[

0 I I 0 0 −2I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
,

G7 =
[

0 I 0 −I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
,

G8 =
[

0 I 0 I 0 0 −2I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
,

G9 =
[

0 0 0 0 0 0 0 0 I −I 0 0 0 0 0 0 0 0 0 0 0 0
]
,

G10 =
[

0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 −I 0 0 0 0 0 0
]
,

(11)
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G11 =
[

0 0 0 0 0 0 0 0 I I 0 0 −2I 0 0 0 0 0 0 0 0 0
]
,

G12 =
[

0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 I 0 0 −2I 0 0 0
]
,

G13 =
[

0 0 0 0 0 0 0 0 0 I −I 0 0 0 0 0 0 0 0 0 0 0
]
,

G14 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I −I 0 0 0 0 0
]
,

G15 =
[

0 0 0 0 0 0 0 0 0 I I 0 0 −2I 0 0 0 0 0 0 0 0
]
,

G16 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 0 0 −2I 0 0
]
,

G17 =
[

0 0 0 0 0 0 0 0 0 I 0 −I 0 0 0 0 0 0 0 0 0 0
]
,

G18 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 −I 0 0 0 0
]
,

G19 =
[

0 0 0 0 0 0 0 0 0 I 0 I 0 0 −2I 0 0 0 0 0 0 0
]
,

G20 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I 0 0 −2I 0
]
,

ϑ1 =

[
Ỹ1 0
0 Ỹ1

]
, ϑ2 =

[
Ỹ2 0
0 Ỹ2

]
, ϑ3 =

[
Z̃11 0
0 Z̃11

]
, ϑ4 =

[
Z̃21 0
0 Z̃21

]
, ϑ5 =

[
Z̃11 0
0 Z̃11

]
, ϑ6 =

[
Z̃12 0
0 Z̃22

]
,

Ỹ1 =

[
Y1 0
0 3Y1

]
, Ỹ2 =

[
Y2 0
0 3Y2

]
, Z̃i1 =

[
Zi1 0
0 3Zi1

]
, Z̃i2 =

[
Zi2 0
0 3Zi2

]
, for i = 1, 2.

(11)

Proof. Selecting a Lyapunov Krasovskii functional for the delayed system from the litera-
ture [43,45] provided by

V(e, x, t) = eT(t)P2e(t) + xT(t)P1x(t) +
2
∑

i=1

∫ t
t−h1i

xT(α)Mix(α)dα

+
∫ t

t−τ1(t)
xT(α)M3x(α)dα +

2
∑

i=1

2
∑

j=1

∫ t
t−hij

eT(α)Qije(α)dα

+
2
∑

i=1

∫ t
t−τi(t)

eT(α)Qi3e(α)dα +
∫ 0
−h11

∫ t
t+s h11

.
x T

(α)Y1
.
x(α)dαds

+
∫ −h11
−h12

∫ t
t+s h1,12

.
xT

(α)Y2
.
x(α)dαds +

2
∑

i=1

∫ 0
−hi1

∫ t
t+s hi1

.
e T

(α)Zi1
.
e(α)dαds

+
2
∑

i=1

∫ −hi1
−hi2

∫ t
t+s hi,12

.
eT
(α)Zi2

.
e(α)dαds.

(12)

Time-derivative of function in (12) and involving the derivative of delay
.
τ j ≤ µj for

j = 1, 2, we have

.
V(e, x, t) ≤ 2eT(t)P2

.
e(t) + 2xT(t)P1

.
x(t)

+
2
∑

i=1

{
−xT(t − h1i)Mix(t − h1i) + xT(t)Mix(t)

}
−(1 − µ1)xT(t − τ1(t))M3x(t − τ1(t)) + xT(t)M3x(t)

+
2
∑

i=1

2
∑

j=1

{
−eT(t − hij

)
Qije

(
t − hij

)
+ eT(t)Qije(t)

}
+

2
∑

i=1

{
eT(t)Qi3e(t) − (1 − µi)eT(t − τi(t))Qi3e(t − τi(t))

}
+

.
x T

(t)
(

h2
11Y1 + h2

1,12Y2

) .
x(t)−

∫ t
t−h11

h11
.
xT

(α)Y1
.
x(α)dα

+
∫ t−h11

t−h12
h1,12

.
xT

(α)Y2
.
x(α)dα +

2
∑

i=1

.
e T

(t)
(

h2
i1Zi1 + h2

i,12Zi2

) .
e(t)

−
2
∑

i=1

∫ t
t−hi1

hi1
.
eT
(α)Zi1

.
e(α)dα +

2
∑

i=1

∫ t−hi1
t−hi2

hi,12
.
eT
(α)Zi2

.
e(α)dα.

(13)

Using Assumption 1, select U = V = W−1, such that it renders

ΦT(x, x̂)Q−1e(t) ≤ ρeT(t)W−1e(t) . (14)
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Integrating (6)–(7) and (13)–(14), renders

.
V(e, x, t) ≤ 2eT(t)P2(Φ(x, x̂) + Ae(t)− K2Ce(t − τ2(t)))

+2xT(t)P1(BK1x(t − τ1(t)) + Ax(t)− BK1e(t − τ1(t)) + f (t, x))

−
2
∑

i=1
xT(t − h1i)Mix(t − h1i)− (1 − µ1)xT(t − τ1(t))M3x(t − τ1(t))

+
2
∑

i=1

3
∑

j=1
eT(t)Qije(t)−

2
∑

i=1

2
∑

j=1
eT(t − hij

)
Qije

(
t − hij

)
+

3
∑

j=1
xT(t)Mjx(t)

−
2
∑

i=1
(1 − µi)eT(t − τi(t))Qi3e(t − τi(t))−

∫ t
t−h 11

h11
.
xT

(α)Y1
.
x(α)dα

+( f (t, x) + Ax(t) + BK1x(t − τ1(t))− BK1e(t − τ1(t)))
T
(

h2
11Y1 + h2

1,12Y2

)
×( f (t, x) + Ax(t) + BK1x(t − τ1(t))− BK1e(t − τ1(t)))

−
∫ t−h11

t−h 12
h1,12

.
xT

(α)Y2
.
x(α)dα −

2
∑

i=1

∫ t
t−h i1

hi1
.
e(α)TZi1

.
e(α)dα

+
2
∑

i=1

[
(Φ(x, x̂) + Ae(t)− K2Ce(t − τ2(t)))

T
(

h2
i1Zi1 + h2

i,12Zi2

)
×(Φ(x, x̂) + Ae(t)− K2Ce(t − τ2(t)))]

−
2
∑

i=1

∫ t−hi1
t−h i2

hi,12
.
e(α)TZi2

.
e(α)dα.

(15)

Engaging the integral terms in (15) as

−
∫ t

t−h11

h11
.
xT

(s)Y1
.
x(s)ds ≤ −

∫ t

t−τ1

h11
.
xT

(s)Y1
.
x(s)ds −

∫ t−τ1

t−h11

h11
.
xT

(s)Y1
.
x(s)ds. (16)

Involving Lemma 1 for Wirtinger’s inequality, the integral term renders

−
∫ t

t−τ1
h11

.
xT

(s)Y1
.
x(s)ds −

∫ t−τ1
t−h11

h11
.
xT

(s)Y1
.
x(s)ds ≤ − h11

τ1
[x(t)− x(t − τ1)]

TY1[x(t)− x(t − τ1)]

− 3h11
τ1

[
x(t)− x(t − τ1)− 2

τ1

t∫
t−τ1

x(s)ds

]T

Y1

[
x(t)− x(t − τ1)− 2

τ1

t∫
t−τ1

x(s)ds

]
− h11

h11−τ1
[x(t − τ1)− x(t − h11)]

TY1[x(t − τ1)− x(t − h11)]

− 3h11
h11−τ1

[
x(t − τ1)− x(t − h11)− 2

h11−τ1

∫ t−τ1
t−h11

x(s)ds
]T

×Y1

[
x(t − τ1)− x(t − h11)− 2

h11−τ1

∫ t−τ1
t−h11

x(s)ds
]
.

(17)

Defining

ξ(t) =

[
xT(t) xT(t − τ1(t)) xT(t − h11) xT(t − h12)

1
τ1(t)

t∫
t−τ1(t)

xT(s)ds

1
h11−τ1(t)

t−τ1(t)∫
t−h11

xT(s)ds 1
h12−τ1(t)

t−τ1(t)∫
t−h12

xT(s)ds f T(t, x) eT(t) eT(t − τ1(t))

eT(t − h11) eT(t − h12)
1

τ1(t)

t∫
t−τ1(t)

eT(s)ds 1
h11−τ1(t)

t−τ1(t)∫
t−h11

eT(s)ds 1
h12−τ1(t)

t−τ1(t)∫
t−h12

xT(s)ds

eT(t − τ2(t)) eT(t − h21) eT(t − h22)
1

τ2(t)

t∫
t−τ2(t)

eT(s)ds 1
h21−τ2(t)

t−τ2(t)∫
t−h21

eT(s)ds

1
h22−τ2(t)

t−τ2(t)∫
t−h22

eT(s)ds ΦT(x, x̂)

]
,

(18)

since we have a relation as
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[
x(t) x(t − τ1)

]
=
[

I −I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
ξ(t)

= G3ξ(t),[
x(t) x(t − τ) 2

τ1(t)

t∫
t−τ1(t)

xT(s)ds

]
=
[

I I 0 0 −2I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
ξ(t)

= G4ξ(t),[
x(t − τ1) x(t − h11)

]
=
[

0 I −I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
ξ(t)

= G5ξ(t),
and[

x(t − τ1) x(t − h11)
2

h11−τ1(t)

t−τ1(t)∫
t−h11

xT(s)ds

]
=
[

0 I I 0 0 −2I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
ξ(t)

= G6ξ(t).

(19)

Furthermore, inputting values from (19), the relation in (17) renders

−
∫ t

t−h11
h11

.
xT

(s)Y1
.
x(s)ds ≤ − h11

τ1
ξT(t)GT

3 Y1G3ξ(t)− 3h11
τ1

ξT(t)GT
4 Y1G4ξ(t)

− h11
h11−τ1

ξT(t)GT
5 Y1G5ξ(t)− 3h11

h11−τ1
ξT(t)GT

6 Y1G6ξ(t),
(20)

−
∫ t

t−h11
h11

.
xT

(s)Y1
.
x(s)ds ≤ − h11

τ1
ξT(t)

[
GT

3 GT
4
][ Y1 0

0 3Y1

][
G3
G4

]
ξ(t)

− h11
h11−τ1

ξT(t)
[

GT
5 GT

6
][ Y1 0

0 3Y1

][
G5
G6

]
ξ(t).

(21)

Defining κ1 = τ1
h11

and Ỹ1 =

[
Y1 0
0 3Y1

]
, incorporating terms gives

−
∫ t

t−h11
h11

.
xT

(s)Y1
.
x(s)ds ≤ − 1

κ1
ξT(t)

[
GT

3 GT
4
]
Ỹ1

[
G3
G4

]
ξ(t)

− 1
1−κ1

ξT(t)
[

GT
5 GT

6
]
Ỹ1

[
G5
G6

]
ξ(t).

(22)

Using Lemma 2 and defining ϑ1 =

[
Ỹ1 0
0 Ỹ1

]
, we have

−
∫ t

t−h11

h11
.
xT

(s)Y1
.
x(s)ds ≤ −ξT(t)

[
GT

3 GT
4 GT

5 GT
6
]
ϑ1


G3
G4
G5
G6

ξ(t). (23)

Taking TT
1 =

[
GT

3 GT
4 GT

5 GT
6
]

which makes

−
∫ t

t−h11

h11
.
xT

(s)Y1
.
x(s)ds ≤ −ξT(t)TT

1 ϑ1T1ξ(t). (24)

Other integrals in the Lyapunov functional in (15) result into

−
∫ t−h11

t−h 12

h1,12
.
xT

(α)Y2
.
x(α)dα = −

∫ t−h11

t−τ 1

h1,12
.
xT

(α)Y2
.
x(α)dα −

∫ t−τ 1

t−h 12

h1,12
.
xT

(α)Y2
.
x(α)dα. (25)

Note that for this, terms are
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[
x(t − τ1) x(t − h12)

]
=
[

0 I 0 −I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
ξ(t)

= G7ξ(t),[
x(t − τ1) x(t − h12)

2
h12−τ1(t)

t−τ1(t)∫
t−h12

xT(s)ds

]
=
[

0 I 0 I 0 0 −2I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
ξ(t)

= G8ξ(t).

(26)

Utilizing G5 and G6 defined in (19) and G7 and G8 defined in (26), the relation in (25) becomes

−
∫ t−h11

t−h 12
h1,12

.
xT

(α)Y2
.
x(α)dα = − h1,12

h11−τ1
ξT(t)GT

5 Y2G5ξ(t)− 3h1,12
h11−τ1

ξT(t)GT
6 Y2G6ξ(t)

− h1,12
h12−τ1

ξT(t)GT
7 Y2G7ξ(t)− 3h1,12

h12−τ1
ξT(t)GT

8 Y2G8ξ(t),

−
∫ t−h11

t−h 12
h1,12

.
xT

(α)Y2
.
x(α)dα ≤ − h1,12

h11−τ1
ξT(t)

[
GT

5 GT
6
][ Y2 0

0 3Y2

][
G5
G6

]
ξ(t)

− h1,12
h12−τ1

ξT(t)
[

GT
7 GT

8
][ Y2 0

0 3Y2

][
G7
G8

]
ξ(t).

(27)

Utilizing κ2 = τ1−h11
h12−h11

and Ỹ2 =

[
Y2 0
0 3Y2

]
in (27) results into

−
∫ t−h11

t−h 12
h1,12

.
xT

(α)Y2
.
x(α)dα ≤ − h1,12

h12−h11

[
1
κ2

ξT(t)
[

GT
5 GT

6
]
Ỹ2

[
G5
G6

]
ξ(t)

]
− h1,12

h12−h11

[
1

1−κ2
ξT(t)

[
GT

7 GT
8
]
Ỹ2

[
G7
G8

]
ξ(t)

]
.

(28)

Using Lemma 2 and defining ϑ2 =

[
Ỹ2 0
0 Ỹ2

]
, the relation in (28) renders

−
∫ t−h11

t−h 12

h1,12
.
xT

(α)Y2
.
x(α)dα ≤ − h1,12

h2 − h1
ξT(t)

[
GT

5 GT
6 GT

7 GT
8
]
ϑ2


G5
G6
G7
G8

ξ(t). (29)

Utilizing T2 =
[
GT

5 GT
6 GT

7 GT
8
]

in (29) gives

−
∫ t−h11

t−h 12

h1,12
.
xT

(α)Y2
.
x(α)dα ≤ − h1,12

h12 − h11
ξT(t)TT

2 ϑ2T2ξ(t). (30)

The integral terms for error in (15) will be rendered by using

−
2

∑
i=1

∫ t

t−h i1

hi1
.
e(α)TZi1

.
e(α)dα = −

2

∑
i=1

[∫ t

t−τ i

hi1
.
e(α)TZi1

.
e(α)dα −

∫ t−τ i

t−h i1

hi1
.
e(α)TZi1

.
e(α)dα

]
. (31)

For this, terms are represented as
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[
e(t) e(t − τ1)

]
=
[

0 0 0 0 0 0 0 0 I −I 0 0 0 0 0 0 0 0 0 0 0 0
]
ξ(t)

= G9ξ(t),[
e(t) e(t − τ2)

]
=
[

0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 −I 0 0 0 0 0 0
]
ξ(t)

= G10ξ(t),[
e(t) e(t − τ1)

1
τ1(t)

t∫
t−τ1

e(s)ds

]
=
[

0 0 0 0 0 0 0 0 I I 0 0 −2I 0 0 0 0 0 0 0 0 0
]
ξ(t)

= G11ξ(t).[
e(t) e(t − τ2)

1
τ2(t)

t∫
t−τ2

e(s)ds

]
=
[

0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 I 0 0 −2I 0 0 0
]
ξ(t)

= G12ξ(t).[
e(t − τ1) e(t − h11)

]
=
[

0 0 0 0 0 0 0 0 0 I −I 0 0 0 0 0 0 0 0 0 0 0
]
ξ(t)

= G13ξ(t).[
e(t − τ2) e(t − h21)

]
=
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I −I 0 0 0 0 0
]
ξ(t)

= G14ξ(t).[
e(t − τ1) e(t − h11)

1
h11−τ1(t)

t−τ1(t)∫
t−h11

eT(s)ds

]
=
[

0 0 0 0 0 0 0 0 0 I I 0 0 −2I 0 0 0 0 0 0 0 0
]
ξ(t)

= G15ξ(t).[
e(t − τ2) e(t − h21)

1
h21−τ2(t)

t−τ2(t)∫
t−h21

eT(s)ds

]
=
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 0 0 −2I 0 0
]
ξ(t)

= G16ξ(t).

(32)

Utilizing relations defined in (32), the integral term in (31) becomes

−
2
∑

i=1

∫ t
t−h i1

hi1
.
e(α)TZi1

.
e(α)dα = − h11

τ1
ξT(t)GT

9 Z11G9ξ(t)− 3h11
τ1

ξT(t)GT
11Z11G11ξ(t)

− h11
h11−τ1

ξT(t)GT
13Z11G13ξ(t)− 3h11

h11−τ1
ξT(t)GT

15Z11G15ξ(t)
− h21

τ1
ξT(t)GT

10Z21G10ξ(t)− 3h21
τ1

ξT(t)GT
12Z21G12ξ(t)

− h11
h11−τ1

ξT(t)GT
14Z21G14ξ(t)− 3h11

h11−τ1
ξT(t)GT

16Z21G16ξ(t),

(33)

−
2
∑

i=1

∫ t
t−h i1

hi1
.
e(α)TZi1

.
e(α)dα ≤ − h11

τ1
ξT(t)

[
GT

9 GT
11
][ Z11 0

0 3Z11

][
G9
G11

]
ξ(t)

− h11
h11−τ1

ξT(t)
[

GT
13 GT

15
][ Z11 0

0 3Z11

][
G13
G15

]
ξ(t)

− h21
τ2

ξT(t)
[

GT
10 GT

12
][ Z21 0

0 3Z21

][
G10
G12

]
ξ(t)

− h21
h21−τ2

ξT(t)
[

GT
14 GT

16
][ Z21 0

0 3Z21

][
G14
G16

]
ξ(t).

(34)
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Utilizing κ3 = τ1
h11

, κ4 = τ2
h21

, Z̃i1 =

[
Zi1 0
0 3Zi1

]
, for i = 1, 2, in (34) results into

−
2
∑

i=1

∫ t
t−h i1

hi1
.
e(α)TZi1

.
e(α)dα ≤ − h11

τ1

[
1
κ3

ξT(t)
[

GT
9 GT

11
]
Z̃11

[
G9
G11

]
ξ(t)

]
− h11

h11−τ1

[
1

1−κ3
ξT(t)

[
GT

13 GT
15
]
Z̃11

[
G13
G15

]
ξ(t)

]
− h21

τ2

[
1
κ4

ξT(t)
[

GT
10 GT

12
]
Z̃21

[
G10
G12

]
ξ(t)

]
− h21

h21−τ2

[
1

1−κ4
ξT(t)

[
GT

14 GT
16
]
Z̃21

[
G14
G16

]
ξ(t)

]
.

(35)

Using Lemma 2 and define

ϑ3 =

[
Z̃11 0
0 Z̃11

]
, ϑ4 =

[
Z̃21 0
0 Z̃21

]
,

the relation in (35) renders

−
2
∑

i=1

∫ t
t−h i1

hi1
.
e(α)TZi1

.
e(α)dα ≤ −ξT(t)

[
GT

9 GT
11 GT

13 GT
15
]
ϑ3


G9
G11
G13
G15

ξ(t)

−ξT(t)
[

GT
10 GT

12 GT
14 GT

16
]
ϑ4


G10
G12
G14
G16

ξ(t).

(36)

Utilizing T3 =
[
GT

9 GT
11 GT

13 GT
15
]

and T4 =
[
GT

10 GT
12 GT

14 GT
16
]
, in (36) gives

−
2

∑
i=1

∫ t

t−h i1

hi1
.
e(α)TZi1

.
e(α)dα ≤ −ξT(t)TT

3 ϑ3T3ξ(t)− ξT(t)TT
4 ϑ4T4ξ(t). (37)

A similar approach for the second term of error in (15) results in

−
2

∑
i=1

∫ t−hi1

t−h i2

hi,12
.
e(α)TZi2

.
e(α)dα = − h1,12

h12 − h11
ξT(t)TT

5 ϑ5T5ξ(t)− h2,12

h21 − h22
ξT(t)TT

6 ϑ6T6ξ(t), (38)

in which[
e(t − τ1) e(t − h12)

]
=
[

0 0 0 0 0 0 0 0 0 I 0 −I 0 0 0 0 0 0 0 0 0 0
]
ξ(t)

= G17ξ(t).[
e(t − τ2) e(t − h22)

]
=
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 −I 0 0 0 0
]
ξ(t)

= G18ξ(t).[
e(t − τ1) e(t − h12)

2
h11−τ1(t)

t−τ1(t)∫
t−h11

eT(s)ds

]
=
[

0 0 0 0 0 0 0 0 0 I 0 I 0 0 −2I 0 0 0 0 0 0 0
]
ξ(t)

= G19ξ(t),

which renders (15) as
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V̇(e, x, t) ≤ 2eT(t)P2(Φ(x, x̂) + Ae(t)− K2Ce(t − τ2(t)))

+ 2xT(t)P1(Ax(t) + BK1x(t − τ1(t))− BK1e(t − τ1(t)) + f (t, x))

−
2

∑
i=1

xT(t − h1i)Mix(t − h1i)− (1 − µ1)xT(t − τ1(t))M3x(t − τ1(t))

+
2

∑
i=1

3

∑
j=1

eT(t)Qije(t)−
2

∑
i=1

(1 − µi)eT(t − τi(t))Qi3e(t − τi(t))

−
2

∑
i=1

2

∑
j=1

eT(t − hij
)
Qije

(
t − hij

)
+

3

∑
j=1

xT(t)Mjx(t)

+ ( f (t, x) + Ax(t) + BK1x(t − τ1(t))− BK1e(t − τ1(t)))
T
(

h2
11Y1 + h2

1,12Y2

)
× ( f (t, x) + Ax(t) + BK1x(t − τ1(t))− BK1e(t − τ1(t)))

+
2

∑
i=1

[
(Ae(t) + Φ(x, x̂)− K2Ce(t − τ2(t)))

T
(

h2
i1Zi1 + h2

i,12Zi2

)
×(Ae(t) + Φ(x, x̂)− K2Ce(t − τ2(t)))]− ξT(t)TT

1 ϑ1T1ξ(t)

− h1,12

h12 − h11
ξT(t)TT

2 ϑ2T2ξ(t)− ξT(t)TT
3 ϑ3T3ξ(t)− ξT(t)TT

4 ϑ4T4ξ(t)

− h1,12

h12 − h11
ξT(t)TT

5 ϑ5T5ξ(t)− h2,12

h21 − h22
ξT(t)TT

6 ϑ6T6ξ(t).

(39)

Involving the Assumption 1 relation for OSL and QIB for scalars εi > 0 for i = 1, 2, 3, 4, provides an equivalent form
that can be seen in Appendix A as Equations (A1)–(A4). Integrating all the relations of OSL and QIB with (39)

.
V(x, e, t) ≤ ξT(t)

[
ϕ1 ϕ2
∗ −diag(Y1, Y2, Z11, Z12, Z21, Z22)

]
ξ(t) (40)

To show
.

V(x, e, t) < 0, ϕ1 < 0 and ϕ2 < 0 are mandatory. Further engaging the Schur
complement to ϕ1 < 0 and ϕ2 < 0 renders (9), which delivers Theorem 1. □

Remark 1. The methodology highlighted in Theorem 1 incorporates the novel observer-based
control for the OSL nonlinear dynamical systems subjected to input and output delays which
vary between upper and lower bounds. They are also applicable to time-delayed systems with
both larger and smaller delays in comparison to conventional techniques for Lipschitz and OSL
nonlinear systems [37,40,43]. The proposed method integrates the OSL nonlinearity condition for
an observer-based scheme along with delayed dynamics. In contrast to [43], the present work reduces
the conservatism of the quadratic inner-boundedness condition by including this GOSL inequality
which extends the applicability of estimation techniques for nonlinear systems.

Remark 2. To extend the scope and provide better results for time-delayed systems, the delay-
independent stability criterion utilized in older studies is extended to the delay-range-dependent
criterion for input and output delayed systems in this study [45]. Delay-range-dependent stabi-
lization employed in this strategy is further exploited with the Wirtinger inequality to have less
conservative results in contrast to the conventional Jensen’s inequality procedure. Previously,
estimation techniques with delayed dynamics were treated with Jensen’s inequality to provide the
solution of integral terms in the Lyapunov functional of time-delayed systems [37,40,45]. In this
study, the Wirtinger inequality presents the results for the systems which were previously treated
with Jensen’s inequality. To the best of the authors’ knowledge, an estimation-based scheme of
control for OSL nonlinear schemes with multiple delays processed with a delay-range-dependent
stability approach using the Wirtinger inequality is being covered here for the first time. The present
study includes the solution for various convex routines to obtain the controller and observer gains
simultaneously through simulation tools.
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Remark 3. A distinctive Lyapunov-Krasovskii functional (provided in [43,45]) is nominated in
Theorem 1 to have an observer-based control scheme that may address multiple time delays as
compared to the orthodox techniques [36,39]. Physical systems integrate both input and output
delays; the proposed technique may also render the solution of any one of the delays by just assuming
other terms as zero. If input delay τ1(t) is required to be zero, a special case of Theorem 1 can
be incurred by the selection of corresponding matrices Mi for i = 1, 2, 3, Z1i, for i = 1, 2, 3,
Q1i , for i = 1, 2, 3, Yi, for i = 1, 2, taken as zero. Likewise, results for systems with no delay can
be obtained by assuming τ2(t) = 0, Z21 = Z22 = Z23 = 0 and Q21 = Q22 = Q23 = 0.

The proposed methodology in Theorem 1 ensures the convergence of states in (1) and estimation
error by obtaining the controller and estimation gain assumed as K1 and K2. Whereas simultaneous
tuning of K1 and K2 is not possible in the present form of Theorem1, therefore decoupling techniques
provided in [40,43,46] are employed to have both gain matrices independently.

Theorem 2. The solution of constraints in Theorem 1 deduced from a necessary and sufficient
condition is such that there should be matrices P1 ∈ ℜn×n, P̃2 ∈ ℜn×n, Mj ∈ ℜn×n, Vk ∈ ℜn×n,
Q̃l j ∈ ℜn×n and Z̃lk ∈ ℜn×n endorsing P1 > 0, P̃2 > 0, Q̃l j > 0, Mj > 0, Z̃lk > 0, Vk > 0 for
j = 1, 2, 3, and k = l = 1, 2 so that the given matrices

Ω1 =



Υ̃1 BX1 0 0 0 0 0 − ε1 I
2 + αε2 I

2 P1 ATh11 P1 ATh1,12

∗ Γ̃(1)
1 0 0 0 0 0 0 X1BTh11 X1BTh1,12

∗ ∗ Γ(1)
2 0 0 0 0 0 0 0

∗ ∗ ∗ Γ(1)
3 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I h11 I h1,12 I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −V1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −V2


−ξT(t)TT

1 ϑ1CT1ξ(t)− h1,12
h12−h11

ξT(t)TT
2 ϑ2CT2ξ(t) .

(41)

Ω2 =

[
ϕ
(4)
1 ϕ̃2

∗ −diag(Z̃11, Z̃12, Z̃21, Z̃22)

]
− ξT(t)TT

3 ϑ3oT3ξ(t)

−ξT(t)TT
4 ϑ4oT4ξ(t) − h1,12

h12−h11
ξT(t)TT

5 ϑ5oT5ξ(t)− h2,12
h21−h22

ξT(t)TT
6 ϑ6oT6ξ(t),

(42)

where

ϕ
(4)
1 =



Υ̃2 0 0 0 0 0 0 Υ̃3 0 0 0 0 0 Υ4

∗ Γ(2)
1 0 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ Γ(2)
2 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ Γ(2)
3 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)

1 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)

2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)

3 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε4 I


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ϕ̃2 =



ATh11P̃2 AT P̃2h1,12 ATh21P̃2h1,12 ATh2,12P̃2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−CTXT
2 h11 −CTXT

2 h1,12 −CTXT
2 h21 −CTXT

2 h2,12
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

h11P̃2 h1,12P̃2 h21P̃2 h2,12P̃2



,

Υ̃1 = P1 A + AT P1 +
3
∑

i=1
Mi + ρε1 I + βε2 I,

Γ(1)
1 = −(1 − µ1)M3,

Γ(1)
2 = −M1,

Γ(1)
3 = −M2,

Υ̃2 = P̃2 A + AT P̃2 +
2
∑

i=1

3
∑

j=1
Qij + ρε3 I + βε4 I,

Υ̃3 = −X2C,

Υ4 = I − ε3 P̃2
2 + αε4 P̃2

2 ,
Γ(i+1)

1 = −(1 − µi)Qi3, for i = 1 and 2,
Γ(i+1)

2 = −Qi1, for i = 1 and 2,
Γ(i+1)

3 = −Qi2, for i = 1 and 2,
hi,12 = hi2 − hi1, for i = 1 and 2.

Proof. Sufficiency: By applying the Schur complement procedure to inequalities (41) and (42),
treated further by the congruence transformation, diag(P1, P1, I, I, I, I, I, I, Ỹ−1

1 , Ỹ−1
2 ), in

which P1 = P̃−1
1 , X1 = K1P1, Y1 = P1Ỹ1P1, Y2 = P1Ỹ2P1, T1 = P1Y−1

1 P1 and

T2 = P1Y−1
2 P1, we have[

ϕ̂1 0
∗ ϕ̂2

]
− ξT(t)TT

1 ϑ1T1ξ(t)− h1,12
h12−h11

ξT(t)TT
2 ϑ2T2ξ(t) − ξT(t)TT

3 ϑ3T3ξ(t)

−ξT(t)TT
4 ϑ4T4ξ(t) − h1,12

h12−h11
ξT(t)TT

5 ϑ5T5ξ(t)− h2,12
h21−h22

ξT(t)TT
6 ϑ6T6ξ(t).

(43)

ϕ̂1 =



Υ̃1 P̃1BK1 0 0 0 0 0 − ε1 I
2 + αε2 I

2 ATh11Ỹ1 ATh1,12Ỹ2

∗ Γ̃(1)
1 0 0 0 0 0 0 KT

1 BTh11Ỹ1 KT
1 BTh1,12Ỹ2

∗ ∗ Γ(1)
2 0 0 0 0 0 0 0

∗ ∗ ∗ Γ(1)
3 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I h11Ỹ1 h1,12Ỹ2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ỹ1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ỹ2



, (44)
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−ξT(t)TT
1 ϑ1cT1ξ(t)− h1,12

h12−h11
ξT(t)TT

2 ϑ2cT2ξ(t)

ϑ1c =


Y1 0 0 0
0 3Y1 0 0
0 0 Y1 0
0 0 0 3Y1

, ϑ2c =


Y2 0 0 0
0 3Y2 0 0
0 0 Y2 0
0 0 0 3Y2

,
(44)

where the resultant is obtained by employing the Schur compliment. Similarly for the
remaining, apply congruence transformation by involving a block-diagonal matrix no-
tation diag

(
I, I, I, I, I, I, I, I, I, I, I, I, I, I, P̃2Z̃−1

11 , P̃2Z̃−1
12 , P̃2Z̃−1

21 , P̃2Z̃−1
22

)
and by substituting

X2 = P̃2K2, V11 = P̃2Z̃−1
11 P̃2, V12 = P̃2Z̃−1

12 P̃2, V21 = P̃2Z̃−1
21 P̃2 and V22 = P̃2Z̃−1

22 P̃2.

ϕ̂2 =

[
ϕ
(4)
1 ϕ̃2
∗ −diag(Z̃11, Z̃12, Z̃21, Z̃22)

]
− ξT(t)TT

3 ϑ3oT3ξ(t)

−ξT(t)TT
4 ϑ4oT4ξ(t) − h1,12

h12−h11
ξT(t)TT

5 ϑ5oT5ξ(t)− h2,12
h21−h22

ξT(t)TT
6 ϑ6oT6ξ(t),

ϑ3o =


Z11 0 0 0
0 3Z11 0 0
0 0 Z11 0
0 0 0 3Z11

, ϑ4o =


Z21 0 0 0
0 3Z21 0 0
0 0 Z21 0
0 0 0 3Z21

,

ϑ5o =


Z12 0 0 0
0 3Z12 0 0
0 0 Z12 0
0 0 0 3Z12

, ϑ6o =


Z22 0 0 0
0 3Z22 0 0
0 0 Z22 0
0 0 0 3Z22

,

(45)

ϕ̃2 =



ATh11Z̃11 ATh1,12Z̃12 ATh21Z̃21 ATh2,12Z̃22
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−CTKT
2 h11Z̃11 −CTKT

2 Z̃12h1,12 −h21CTKT
2 Z̃21 −CTKT

2 Z̃22h2,12
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

h11Z̃11 h1,12Z̃12 h21Z̃21 h2,12Z̃22



, (46)

Υ̃1 = P̃1 A + AT P̃1 +
3
∑

i=1
M̃i + βε2 I + ρε1 I,

Γ̃(1)
1 = −(1 − µ1)M̃3,

are comparable to the matrix inequalities (43)–(46) when treated with the Schur complement.
Further, inequalities (44) and (45) imply[

ϕ̂1 ΠT

Π λϕ̂2

]
< 0, for i = 1, 2, (47)
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in which we have λ which is an adequately large number greater than zero and

ΠT =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −Ỹ1h11BK1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −Ỹ2h1,12BK1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(48)

Suppose Ii signifies a block of n × 19n order. The identity matrix Ii includes the
ith block and all remaining blocks are considered as zero. Integrating (43), (44), and
(48) into (47), and further by the pre- and post-multiplication of

[
IT
1 , IT

2 , IT
3 , IT

4 , IT
5 , IT

14, IT
15,

IT
6 , IT

7 , IT
8 , IT

9 , IT
10, IT

11, IT
12, IT

13, IT
16, IT

17, IT
18, IT

19
]T and its transposed matrix in the subsequent

matrices, correspondingly, ends up into the inequalities in (9)–(10) for provided P1 = P̃1,
P2 = λP̃2, Y1 = Ỹ1, Y2 = Ỹ2, Zl1 = λZ̃l1, Zl2 = λZ̃l2, Mi = M̃i, Qi = λQ̃i, α1 = λα̃1 and
α2 = λα̃2 (for i = 1, 2, 3 and l = 1, 2, 3), which provides relation as in (9).

Necessity: Considering the form of a positive definite matrix as

P =

[⌣
P1 υ
∗ υ

]
and P =

[
υ υ

∗
⌣
P2

]
,

which satisfies the conditions of Theorem 1, and also υ is an entry that did not affect the
derivation steps. Employing the relations of P in (9)[

ψ1 ψ2
∗ ψ3

]
− ξT(t)TT

1 ϑ1T1ξ(t)− h1,12

h2 − h1
ξT(t)TT

2 ϑ2T2ξ(t) < 0, (49)

in which ψ1, ψ2 and ψ3 can be observed in Appendix A as Equation (A5) and similarly
for other

ς =

[
τ1 τ2
∗ τ3

]
− ξT(t)TT

3 ϑ3oT3ξ(t)− ξT(t)TT
4 ϑ4oT4ξ(t)

− h1,12
h12−h11

ξT(t)TT
5 ϑ5oT5ξ(t)− h2,12

h21−h22
ξT(t)TT

6 ϑ6oT6ξ(t) < 0,
(50)

where τ1, τ2 and τ3 are shown in Appendix A as (A6)–(A8). Further, (49) and (50) are pre-
and post-multiplied with



P̆−1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 P̆−1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ỹ−1

1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ỹ−1

1 0


,
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

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0



,

and


⌣
P2Z̃−1

11 0 0 0 0 0 0

0 0
⌣
P2Z̃−1

12 0 0 0 0

0 0 0 0
⌣
P2Z̃−1

21 0 0

0 0 0 0 0 0
⌣
P2Z̃−1

22

,

respectively, and further engaging
⌣
P
−1

1 = P1 and
⌣
P
−1

2 = P̂2, renders inequalities (41) and (42)
which ends the proof. □

Remark 4. The proposed results in Theorem 2 add exquisiteness to obtain the gain of the controller.
The estimator assumed as K1 and K2 individually for the augmented system for the delay-range-
dependent estimation-based control of OSL nonlinear time-varying delayed system (1). Compared
to the proposed Theorem 1, the solution in Theorem 2 is manageable and easy to solve due to
the eradication of complex relations in the matrix Π. The novel solution provided in Theorem 2
is more generic and renders necessary and sufficient stipulation for the constraints presented in
Theorem 1. Decoupling techniques furnish observer and controller gains simultaneously through
simulation tools.

By taking f (t, x) = 0, the proposed scheme is modeled for a linear system with multiple delays
in the succeeding corollary.

Corollary 1. Consider an augmented system (8), incurred by integrating observer dynamics (5),
closed-loop system (7), estimation error (6), and controller (4) and systems (1) underlying time-
varying delay limits in (2) and assuming nonlinear terms as f (t, x) = 0. The state vector e(t) and
the state estimation error e(t) converge asymptotically in the vicinity of origin for given matrices
P1 ∈ ℜn×n, P̃2 ∈ ℜn×n, Mj ∈ ℜn×n, Q̃l j ∈ ℜn×n, Vk ∈ ℜn×n and Z̃lk ∈ ℜn×n validating
P1 > 0, P̃2 > 0, Q̃l j > 0, Mj > 0 and Vk > 0, for j = 1, 2, 3, k = l = 1, 2, and there exists the
solution of Theorem 1 as it satisfies the following matrix inequalities

Ω1 =

[
κ1 κ2
∗ −diag(V1, V2)

]
,

−ξT(t)TT
1 ϑ1CT1ξ(t)− h1,12

h12−h11
ξT(t)TT

2 ϑ2CT2ξ(t) .
(51)

Ω2 =

[
ϕ
(4)
1 ϕ̃2

∗ −diag(Z̃11, Z̃12, Z̃21, Z̃22)

]
− ξT(t)TT

3 ϑ3oT3ξ(t)

−ξT(t)TT
4 ϑ4oT4ξ(t) − h1,12

h12−h11
ξT(t)TT

5 ϑ5oT5ξ(t)− h2,12
h21−h22

ξT(t)TT
6 ϑ6oT6ξ(t),

(52)
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where

κ1 =



Υ̃1 BX1 0 0 0 0 − ε1 I
2 + αε2 I

2

∗ Γ̃(1)
1 0 0 0 0 0

∗ ∗ Γ(1)
2 0 0 0 0

∗ ∗ ∗ Γ(1)
3 0 0 0

∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2 I


,

κ2 =



P1 ATh11 P1 ATh1,12
X1BTh11 X1BTh1,12
0 0
0 0
0 0
0 0
h11 I h1,12 I


,

ϕ
(4)
1 =



Υ̂2 0 0 0 0 0 0 Υ̃3 0 0 0 0 0 Υ̂4

∗ Γ(2)
1 0 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ Γ(2)
2 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ Γ(2)
3 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)

1 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)

2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)

3 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε4 I



ϕ̃2 =



ATh11P̃2 ATh1,12P̃2 ATh21P̃2 ATh2,12P̃2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−CTXT
2 h11 −CTXT

2 h1,12 −CTXT
2 h21 −CTXT

2 h2,12
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

h11P̃2 h1,12P̃2 h21P̃2 h2,12P̃2



,
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Υ̃1 = P1 A + AT P1 +
3
∑

i=1
Mi + P1(ρε1 I + βε2 I)P1,

Γ(1)
1 = −(1 − µ1)M3,

Γ(1)
2 = −M1,

Γ(1)
3 = −M2,

Υ̂2 = P̃2 A + AT P̃2 +
2
∑

i=1

3
∑

j=1
Qij,

Υ̃3 = −X2C,

Υ̂4 = I − ε1 P̃2
2 + αε2 P̃2

2 ,
Γ(i+1)

1 = −(1 − µi)Qi3, for i = 1 and 2,
Γ(i+1)

2 = −Qi1, for i = 1 and 2,
Γ(i+1)

3 = −Qi2, for i = 1 and 2,
hi,12 = hi2 − hi1, for i = 1 and 2.

The gain for the controller assumed as K1 and the estimator assumed as K2 is obtained by
assessing K1 = X1P−1

1 and K2 = P̃−1
2 X2, respectively.

Remark 5. Corollary 1 delivers the solution of an estimation-based control technique for a lin-
ear counterpart exposed to interval time-varying multiple lags. Delay-range-dependent stability
approaches for a linear counterpart are not exploited to that extent in various studies, for in-
stance [47,48]. Furthermore, Corollary 1 presents the estimation-based control technique for linear
systems subjected to interval output and input delays, which additionally elucidates the innova-
tion of nonlinear outcomes in Theorems 1 and 2. This result also contributes to the simultaneous
obtainment of controller and observer gains for linear systems using the decoupling technique.

The constraints in Theorem 2 (or in derived results of Corollary 1) incorporate bilinear
constraints which are required to be treated by engaging convex optimization through a cone
complementary linearization algorithm approach [36,37,43,45]. The constraints (41) and (42) are
solvable through convex optimization



min Trace
(

2
∑

k=1

(
VkVk + YkYk + SikSik + YkSk + P1YkP1Sik + P1SkP1Vk

)
+ P̃1P1

)
,

subject to[
P̃1 I
∗ P1

]
≥ 0 ,

[
Vk I
∗ Vk

]
≥ 0,

[
Yk I
∗ Yk

]
≥ 0,

[
Yk I
∗ Sk

]
≥ 0,

[
Vk P1
∗ Sk

]
≥ 0,

[
Yk P1
∗ Sik

]
≥ 0,

k = 1 and 2 and inequality (41) .

(53)

Similarly, for (42), matrix inequality constraints can be determined by

min Trace

(
2
∑

j=1

2
∑

i=1

(
Z̃ijSij + P2SijP2Vij + VijVij

)
+ P̃2P2

)
,

subject to[
P̃2 I
∗ P2

]
≥ 0 ,

[
Z̃ij I
∗ Sij

]
≥ 0,

[
Vij I
∗ Vij

]
≥ 0,

[
Sij P2
∗ Vij

]
≥ 0,

i = 1, 2, j = 1, 2 and inequality (42) in Theorem 2.

(54)

Remark 6. Results presented in proposed Theorem 2 and respectively derived Corollary 1, in
comparison to Theorem 1, render the controller and the estimator gain vectors directly by the
utilization of LMI tools and a cone complementary convex linearization procedure. The present
study proposed an LMI-based strategy in (53)–(54) as a noteworthy elaboration to the approach
in [45] for input and output delays, for the gain of the controller K1 and the gain of the observer
K2. Notably, the presented technique of estimation-based controller involving the DRD stability
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approach for GOSL nonlinear systems solved through convex optimization techniques can be adopted
for systems under actuation and measurement delays.

4. Simulation Results

Assuming dynamics of motion of an object system in 2D Cartesian coordinates sub-
jected to output and input delay to show the effectualness of the presented approach, and
assuming the dynamical nonlinear system (1) stated in [36,43] as

f (x) = −
(
x2

1 + x2
2
)[ x1

x2

]
,

A =

[
1 1
−1 1

]
, B =

[
1 0
0 10

]
, C =

[
1
0

]T

.
(55)

Input and output vectors for delay are assumed as 0.01 sin 2t+0.03 and 0.013 sin 3t + 0.065,
correspondingly, taking the OSL nonlinearity constant as ρc = 0.00008 and ρo = 0.009
and delay-derivative bound for both controller and observer as µ1 = 2 and µ2 = 0.04,
respectively. Furthermore, working out the optimization problems from (53) and (54) and
employing a cone complementary algorithm, the viable solution obtained for the observer-
based controller is accomplished for delay bounds h11 = 0.001 and h21 = 0.01 for the
controller and h12 = 0.065 and h22 = 0.065 for the observer. The controller gain referred to
K1 and the estimation gain K2 are calculated as

K1 =

[
−1.1112 − 0.1074
0.1047 − 1.1053

]
(56)

K2 =

[
2.698
3.348

]
(57)

Both the measured states and estimated states convergence are shown in Figures 1
and 2 whereas the estimation error converging to origin is presented in Figure 3, which
is obtained by improvising the proposed estimation-based control technique. Further, it
confirms the potential of this novel scheme for implementation in industrial applications.
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Figure 3. Estimation error for plant and estimated states subject to input and output delays.

An analysis of the upper bounds of delayed dynamics for the stability of multiple
delayed systems is provided in Table 1 for h12 = h22, for h11 = h21 = 10. This comparison
study shows that the methodology proposed in this work is viable for the broader ranges
of delays as well as for multiple delayed systems, in contrast to [45], as the Lipschitz
nonlinearity counterpart leads to an infeasible solution. Furthermore, the technique applies
to systems with delay in the output of state as in [36,43]. Moreover, the presented scheme
can be deliberated for the range of delays when the lower bound is not equal to zero,
i.e., h11 = h21 ̸= 0.
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Table 1. Upper allowed limit of h12 = h22, assuming h11 = h21 = 10s.

Methods Estimation Technique in [36,43,45] Proposed Methodology

h12 = h22
(for observer)

Inapplicable
≈ 1011 s

h12 = h22
(for controller) ≈ 1008 s

5. Conclusions

In this work, an observer-based controller design approach for one-sided Lipschitz non-
linear systems in the presence of multiple time-varying delays was presented. Estimation-
based control techniques for multiple delayed dynamics and nonlinear systems of a broader
range are the main scope of the study. This technique integrates an observer-based con-
troller technique, one-sided Lipschitz nonlinearity, multiple time-delayed dynamics, and
nonlinear matrix inequalities to ensure the asymptotic conjunction of estimation error to
origin. The availability of observer and controller gains is guaranteed by using a Lyapunov-
Krasovskii functional for systems with delays. This functional leverages the time-derivative
of delayed dynamics along with a delay-range-dependent criterion, replacing the conserva-
tive Jensen’s inequality with Wirtinger’s inequality condition. Additionally, the process
involves the OSL condition, convex optimization techniques, and finally, the decoupling
method for systems with multiple delays. Decoupling techniques aid the simultaneous
extraction of controller and observer gains using the cone-complementary linearization
technique by convex optimization. Furthermore, a sufficient and necessary solution for a
novel main design is provided for one-sided Lipschitz nonlinear multi-delayed systems.
Numerical simulation for the motion of an object in the Cartesian plane is furnished to
show the usefulness of the proposed results, showing the pragmatic impact on a broader
class of nonlinear systems subject to multiple delays. The proposed methodology may
be considered for systems with consensus control or multi-agent systems. Moreover,
the method for estimation-based control under multiple delays can also be explored for
event-triggered systems.
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Appendix A

ξT(t)



ρε1 I 0 0 0 0 0 0 − ε1 I
2 0 0 0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0



ξ(t) > 0. (A1)

ξT(t)



βε2 I 0 0 0 0 0 0 αε2 I
2 0 0 0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0



ξ(t) > 0. (A2)
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ξT(t)



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ρε3 I 0 0 0 0 0 0 0 0 −ε3
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0



ξ(t) > 0. (A3)

and

ξT(t)



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ βε4 I 0 0 0 0 0 0 0 0 αε4 I

2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε4 I



ξ(t) > 0. (A4)
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ψ1 =



Υ1 υ P1BK1 υ 0 υ 0 υ 0 υ 0 υ 0 υ
∗ υ υ υ υ υ υ υ υ υ υ υ υ υ

∗ ∗ Γ(1)
1 υ 0 υ 0 υ 0 υ 0 υ 0 υ

∗ ∗ ∗ υ υ υ υ υ υ υ υ υ υ υ

∗ ∗ ∗ ∗ Γ(1)
2 υ 0 υ 0 υ 0 υ 0 υ

∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ υ υ υ

∗ ∗ ∗ ∗ ∗ ∗ Γ(1)
3 υ 0 υ 0 υ 0 υ

∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 υ 0 υ 0 υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 υ 0 υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ v



,

ψ2 =



− ε1 I
2 + αε2 I

2 υ ATh11Ỹ1 υ ATh1,12Ỹ2 υ

v υ KT
1 BTh11Ỹ1 υ KT

1 BTh1,12Ỹ2 υ
0 υ 0 υ 0 υ
v υ υ υ υ υ
0 υ 0 υ 0 υ
v υ υ υ υ υ
0 υ 0 υ 0 υ
v υ υ υ υ υ
0 υ 0 υ 0 υ
v υ υ υ υ υ
0 υ 0 υ 0 υ
v υ υ υ υ υ
0 υ 0 υ 0 υ
v υ υ υ υ v



,

ψ3 =



−ε2 I υ h11Ỹ1 υ h1,12Ỹ2 υ
∗ υ υ υ υ υ
∗ ∗ −Ỹ1 υ 0 υ
∗ ∗ ∗ υ υ υ
∗ ∗ ∗ ∗ −Ỹ2 υ
∗ ∗ ∗ ∗ ∗ v

,

(A5)
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τ1 =



υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ
∗ Υ̃2 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ υ Υ̃3 υ 0 υ 0 υ 0 υ 0 υ 0 υ Υ4
∗ ∗ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ

∗ ∗ ∗ Γ(2)
1 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0

∗ ∗ ∗ ∗ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ

∗ ∗ ∗ ∗ ∗ Γ(2)
2 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0

∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ υ υ υ υ υ υ υ υ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(1)
3 υ 0 υ 0 υ 0 υ 0 υ 0 υ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ υ υ υ υ υ υ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)
2 υ 0 υ 0 υ 0 υ 0 υ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ υ υ υ υ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ(3)
3 υ 0 υ 0 υ 0 υ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 υ 0 υ 0 υ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 υ 0 υ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 υ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ υ υ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε4 I



(A6)

τ2 =



υ υ υ υ υ υ υ υ

υ ATh11Z̃11 υ ATh1,12Z̃12 υ ATh21Z̃21 υ ATh2,12Z̃22
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ

υ −CTKT
2 h11Z̃11 υ −CTKT

2 Z̃12h1,12 υ −CTKT
2 Z̃21h21 υ −CTKT

2 Z̃22h2,12
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ
υ 0 υ 0 υ 0 υ 0
υ υ υ υ υ υ υ υ

υ h11Z̃11 υ h1,12Z̃12 υ Z̃21h21 υ h2,12Z̃22



, (A7)
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τ3 =



υ υ υ υ υ υ υ υ

υ Z̃11 υ υ υ υ υ υ
υ υ υ υ υ υ υ υ

υ υ υ Z̃12 υ υ υ υ
υ υ υ υ υ υ υ υ

υ υ υ υ υ Z̃21 υ υ
υ υ υ υ υ υ υ υ

υ υ υ υ υ υ υ Z̃22


. (A8)
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