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Abstract: We explore the most probable phase portrait (MPPP) of a stochastic single-species model
incorporating the Allee effect by utilizing the nonlocal Fokker–Planck equation (FPE). This stochastic
model incorporates both non-Gaussian and Gaussian noise sources. It has three fixed points in the
deterministic case. One is the unstable state, which lies between the two stable equilibria. Our primary
focus is on elucidating the transition pathways from extinction to the upper stable state in this single-
species model, particularly under the influence of jump-diffusion noise. This helps us to study the
biological behavior of species. The identification of the most probable path relies on solving the nonlocal
FPE tailored to the population dynamics of the single-species model. This enables us to pinpoint
the corresponding maximum possible stable equilibrium state. Additionally, we derive the Onsager–
Machlup function for the stochastic model and employ it to determine the corresponding most probable
paths. Numerical simulations manifest three key insights: (i) when non-Gaussian noise is present in the
system, the peak of the stationary density function aligns with the most probable stable equilibrium state;
(ii) if the initial value rises from extinction to the upper stable state, then the most probable trajectory
converges towards the maximally probable equilibrium state, situated approximately between 9 and
10; and (iii) the most probable paths exhibit a rapid ascent towards the stable state, then maintain a
sustained near-constant level, gradually approaching the upper stable equilibrium as time goes on.
These numerical findings pave the way for further experimental investigations aiming to deepen our
comprehension of dynamical systems within the context of biological modeling.

Keywords: single-species model; most probable phase portrait; jump-diffusion processes; Onsager–
Machlup function; extinction probability

MSC: 39A50; 45K05; 65N12

1. Introduction

Single-species dynamics is one of the core research areas in theoretical ecology. Re-
search about single-species dynamics enables the researcher to find out the conditions of
extinction and persistence of the species. The researchers’ strong motivation to develop
mathematical models is to understand the underlying causes of cyclical patterns, such as
those observed in population dynamics of stochastic single-species models [1].

Population modeling is very important for species management, for example, in
developing recovery plans for species threatened by extinction, managing fisheries for the
highest possible sustainable yield, and trying to contain or prevent the spread of invasive
species [2–4].

The biological phenomenon of the Allee effect occurs when the per capita growth
rate of a population decreases and the population size becomes significantly low. This
is a thorough biological explanation of the Allee effect that can be due to various factors,
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such as difficulties in finding resources, decreased mating opportunities, or even increased
predation risk. Incorporating the Allee effect into the model is crucial in capturing these dy-
namics, especially when modeling endangered species or those at risk of extinction. In the
literature, one can find several models of the dynamical single-species growth system; the
Gompertz growth model [5], Verhulst growth model with or without Allee effect [6], power
law growth model [7], interconnections between deterministic and stochastic systems [8],
and Gilpin–Ayala model [9] are only a few that can be mentioned.

Outside of a few clear trends, the dynamics of biological phenomena, particularly of
populations for living beings, are frequently influenced by unpredictable components due
to the complexity and variability of environmental conditions [10]. Researchers have been
extensively studying biological dynamical systems for a long time now, particularly in the
context of modeling and analyzing random fluctuations [11,12]. The study of population
events such as persistence in stationary distribution and extinction in stochastic single-
species models has become an interesting and important research field. Developing the
sufficient conditions for the persistence of biological species is one of the hot issues in
population dynamics, as mentioned in [13–15] and references therein.

The population may be affected by sudden environmental noise [16,17]. For example,
earthquakes [18], changes in temperature [19], and hurricanes [20] can be appropriately
modeled as random fluctuations or stochastic events, as their occurrence and impact are
less predictable and more influenced by stochasticity. These sudden environmental pertur-
bations may bring substantial social and economic losses. Stochastic single-species models
perturbed by Brownian motion have been extensively researched by many scholars [21–26].
However, stochastic extension of population process driven by Gaussian noise cannot
explain the aforementioned random and intermittent environmental perturbations. Intro-
ducing a Lévy process into the underlying population dynamics would explain the impact
of these random jumps. There have been a few studies investigating dynamical systems
where the noise source is a Lévy process [27]. Implying the Lévy noise in the biological
system to simulate the effect caused by the external environment is more effective and
nearer to reality than using Gaussian noise. The investigation of the single-species model is
still in its infancy, even though noisy fluctuations naturally portray random intermittent
jumps. Lévy noise is widely applied in studying natural and man-made phenomena in
science, among which we can mention biology [28], physics [29], and economics [30].

Under this research heading, we consider the population dynamics of a single-species
growth model with Allee effect perturbed by stable Lévy fluctuations. We analyze the
influence of Lévy noisy fluctuation on System (1). Investigating the impact of noisy fluctua-
tions plays a pivotal part in demonstrating the intricate interactions between single-species
models and their complex surroundings. We study how Allee effects and stochasticity
affect the population persistence together.

The most probable phase portrait was first proposed by Duan [31] (Section 5.3.3).
Cheng et al. [32] obtained the analytical results of the MPPP and showed that the MPPP
can provide useful information about the propagation of stochastic dynamics in a one-
dimensional model. Wang et al. [33] studied stochastic bifurcation by applying the qualita-
tive changes of the MPPP to a stochastic system driven by multiplicative stable Lévy noise.
In [34], the authors investigated the most probable trajectories of the tumor growth system
with immune surveillance under correlated Gaussian noises and derived the analytical
solution of the most probable steady state by utilizing the extremum theory with the local
Fokker–Planck equation for the system. A function which summarizes the behavior of
the dynamics of a continuous stochastic process was defined as the Onsager–Machlup
function [35]. The Onsager–Machlup function for stochastic models driven by both non-
Gaussian and Gaussian noises was established in [36]. The authors also examined the
corresponding MPPP of the stochastic dynamical systems. Cheng et al. [37] focused on the
impact of Gaussian noise and jump-stable Lévy noise in a genetic regulatory system; they
minimized the Onsager–Machlup action functional for the stochastic dynamics driven by
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Gaussian noise and obtained the most probable transition pathway. This inspired us to
study the MPPP of the single-species model.

Therefore, our goal involves investigating how the most probable trajectories escape
from the single-species state to the extinction state more quickly. This investigation can
contribute to answering critical questions in the field of biology. Among these, it is impor-
tant to answer the question of whether there exists a transition between permanence and
extinction. We probe the transition pathways from the extinction state to the stable state,
which are crucial in a single-species model. This allows us to investigate the biological
behavior of species.

To the best of our knowledge, the work in [38] is closely related to our work; Y.
Jin employed a Lévy jump process to describe sudden environmental perturbations and
developed a stochastic model for a single species incorporating both the Allee effect and
jump-diffusion. She demonstrated that this model possesses a unique, global, and positive
solution; furthermore, she examined the stochastic permanence, extinction, and growth rate
of the solution, discovering that these properties are intricately linked to the jump-diffusion
component of the model.

However, our results in the present paper are different from those in [38]. We delve into
the most probable phase portrait of a stochastic single-species model that incorporates the
Allee effect and is influenced by both non-Gaussian and Gaussian noise. The deterministic
counterpart of this model exhibits three fixed points, with one being an unstable state
sandwiched between two stable equilibria. We derive the Onsager–Machlup function for
the stochastic model and proceed to determine the most probable paths that it follows.
Additionally, we conduct numerical simulations to corroborate our theoretical findings.

Gao et al. [39] proposed a fast and accurate numerical algorithm to simulate the
nonlocal Fokker–Planck equations with non-Gaussian α-stable symmetric Lévy motions,
whether on a bounded or infinite domain. Compared with this paper, the connection is
that we utilize a finite difference method, which they have also explored, to find numerical
solutions for the Fokker–Planck equation determined by a nonlocal differential equation.
The difference lies in that we obtain the maximum possible path of the population system
in the single-species model under jump-diffusion noise and determine the corresponding
maximum possible stable equilibrium state.

In this study, we compute a single-species model, concentrating on the Verhulst growth
model with the Allee effect developed by Y. Jin [38]. Explicitly, we consider the following
stochastic single-species growth model with Allee effect:

dXt = Xt−

[(
s − γ2 Xt− − γ3

γ3 γ4 Xt− + 1

)
dt + λdBt +

∫
Y

ϵ(y)Ñ(dt, dy)
]

(1)

for t ≥ 0 and X0 = x0, where Xt− is the left limit of the population size Xt. A detailed
description of parameters reflecting biological mechanisms is outlined in Table 1.

Table 1. Biological meaning of the parameters and variables in the single-species Model (1).

Parameter Definition

s The growth rate

γ2 The intraspecific competition rate

γ3 The attack rate

γ4 The handling time of predator

M = s/γ2 The carrying capacity

t Time
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Model (1) should be computationally efficient, allowing for fast simulations and
analysis. It is important for Model (1) to capture essential biological details; however,
over-complicating the model can make it more difficult to interpret and validate. Finding
the right balance between simplicity and complexity is crucial. Model (1) is applicable to
the specific biological system, organism, tissue, or cellular process of interest.

The stochastic force Ñ(dt, dy) = N(dt, dy)− να(dy)dt is a compensated Poisson ran-
dom measure with associated Poisson random measure N(dt, dy) and intensity measure
να(dy)dt, in which να(dy) is a Lévy measure on a measurable subset Y of (0, ∞) with
να(Y) < ∞.

It is important to acknowledge the need to balance biological realism with mathemati-
cal tractability. The following restriction on System (1) is natural for biological meaning:

1 + ϵ(y) > 0, y ∈ Y;

when ϵ(y) > 0, the perturbation stands for the increasing species, e.g., planting, while
ϵ(y) < 0 represents that the species is decreasing, e.g., harvesting and epidemics.

The main aim of this study is to investigate the stochastic dynamics of single-species
biological populations in random environments. We model the evolution of these pop-
ulations with first-order ordinary autonomous differential equations by introducing the
coefficients and inputs, which are stochastic processes. The two stochastic processes ger-
mane to this study are Brownian motion and Lévy process. Brownian motion describes
random fluctuations that are continuous in time but nowhere differentiable (see Section 2.1);
a Lévy process, of which Brownian motion is a special case, is used to model random
fluctuations that may have discontinuities or jumps (see Section 2.2).

Here, we develop a stochastic single-species model with the Allee effect influenced by
Gaussian and non-Gaussian noises. Model (1) accurately captures the essential biological
processes. In other words, the model is relevant and suitable for investigating the specific
aspects of biology under consideration. First, we review the deterministic version of the
model, calculate its equilibrium solutions, and describe the behavior of the fixed points.
Second, we obtain the highest possible paths and the corresponding maximum possible
stable states attracting the nearby maximum possible paths of the stochastic System (1).
We accomplish this by finding the stationary density function, which is the solution of
the nonlocal Fokker–Planck equation. To solve the nonlocal partial differential equation,
we use the finite difference method proposed in [39]. This method helps us explore to
some dynamical behaviors of the single-species system under the impact of non-Gaussian
Lévy noise.

The rest of this study is organized as follows. In Section 2, we recall the definitions
of the one-dimensional Brownian motion Bt and symmetric α-stable Lévy motion Lα

t . In
Section 3, we discuss the formulation and analysis of the deterministic single-species
Model (2) the with Allee effect. In Section 4, we explain the analysis of the stochastic
single-species Model (1) with Allee effect. We then review the definition of the Onsager–
Machlup function and most probable phase portraits in Sections 4.1 and 4.2, respectively.
The numerical results and the biological implication of our experimental findings are
presented in Section 5. We conclude our research with a brief summary in the last section.

2. Preliminaries

In this section, we define the one-dimensional Brownian motion starting at time t = 0
as a process Bt and α-stable Lévy motion Lα

t , which constitute a class of stochastic processes
that have independent and stationary increments as defined below. Throughout this study,
we denote R+ = [0, ∞), R = (−∞, ∞), and Xt ∈ R+ for t ≥ 0.
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2.1. Brownian Motion

Brownian motion Bt (also called Wiener process) is a one-dimensional stochastic
process defined on the complete probability space (Ω,F ,Ft,P), which has independent
and stationary increments. Brownian motion Bt satisfies the following conditions:

(i) The process starts at the origin, i.e., B0 = 0 almost surely;
(ii) Bt has independent increments, i.e., Bt − Bs is independent of the past Bu − Bv for

0 ≤ v < u < s < t;
(iii) Bt has stationary increments, i.e., Bt − Bs ∼ Bt−s is normally distributed with mean 0

and variance t − s for any 0 ≤ s ≤ t;
(iv) Bt has continuous paths, and its paths are nowhere differentiable almost surely.

2.2. The α-Stable Lévy Motion

Lévy motions Lt are a class of non-Gaussian stochastic processes. A Lévy motion Lt
having values in R is determined by a drift coefficient b̂ ∈ R, Q̂ ≥ 0 and a Borel measure ν
defined on R \ {0}. The triplet (b̂, Q̂, ν) is the so-called generating triplet of Lévy motion Lt.
A Lévy motion can be written as a linear combination of time t, a Brownian motion, and a
pure jumping process, i.e., Lt can be expressed as the Lévy–Itô decomposition

Lt = b̂t + BQ̂(t) +
∫
|y|<1

yÑ(t, dy) +
∫
|y|≥1

yN(t, dy),

where N(t, dy) is the independent Poisson random measure on R+ ×R \ {0}, Ñ(t, dy) =
N(t, dy)− ν(dy)dt is the compensated Poisson random measure, ν(S) = E(N(1, S)) is the
jump measure, and BQ̂(t) is the independent Brownian motion.

The Lévy–Khinchin formula for Lévy motion has a specific form of its characteristic
function

E[e(i ξLt)] = etϕ(ξ), 0 ≤ t < ∞,

where

ϕ(ξ) = i ξ b̂ − Q̂
2

ξ2 +
∫
R\{0}

(ei ξz − 1 − i ξz1|z|<1)ν(dz), ξ ∈ R.

A stable distribution Sα(θ, β, γ) is the distribution for a stable random variable, where
the stability index α ∈ (0, 2), the skewness β ∈ (0, ∞), the shift γ ∈ (−∞, ∞), and scale
index θ ≥ 0. An α-stable Lévy motion Lα

t is a non-Gaussian stochastic process satisfying

(i) Lα
0 = 0, almost surely;

(ii) The random variables Lα
ti+1

− Lα
ti

are independent for 0 ≤ t1 < t2 < · · · < ti−1 < ti <
ti+1 < ∞ and for each i = 1, 2, · · · ;

(iii) Lα
t − Lα

s and Lα
t−s have the same distribution Sα((t − s)1/α, 0, 0);

(iv) Lα
t has stochastically continuous sample paths, i.e., for 0 ≤ s ≤ t and δ > 0, the

probability P(|Lα
t − Lα

s | > δ) approaches zero as t → s.

In the case of a one-dimensional isotropic α-stable Lévy motion, the Lévy triplet has
the drift factor b̂ = 0 and diffusion coefficient Q̂ = 0. In this study, we focus on a jump
process with a specific size in generating the triplet (0, 0, να) for the random distribution
Sα, which can be defined by ∆Lα

t = Lα
t − Lα

t− < ∞, t ≥ 0 (where Lα
t− is the left limit of the

α-stable Lévy motion in R at any time t). Here, να(dz) = c(α) 1
|z|1+α dz is Lévy measure with

cα = α
Γ( 1+α

2 )

21−απ
1
2 Γ(1− α

2 )
and Γ is the Gamma function.

Remark 1. Condition (iv) of α-stable Lévy motion is equivalent to the following way: t 7→ Lα
t is

a.s. càdlàg up to a modification of the process. A special case of α-stable Lévy motion is Brownian
motion when α = 2. The Poisson process, α-stable process, compound Poisson process, etc., are also
examples of Lévy processes.
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3. Dynamical Analysis of the Deterministic Model

The deterministic form of the nonlinear Model (1) without noise is provided as

dXt

dt
= Xt

(
s − γ2 Xt −

γ3

γ3 γ4 Xt + 1

)
=: F(Xt), t ≥ 0, X0 = x0. (2)

This system can be written as dX
dt = − dU(X)

dX , where U(X) is the potential function
provided by

U(X) := − s X2

2
+

γ2 X3

3
+

γ3

(γ3 γ4)2 [γ3 γ4 X + 1 − ln(γ3 γ4 X + 1)].

The single-species Model (2) with Allee effect has equilibrium points X1 = 0 and

X2,3 =
(sγ3γ4 − γ2)±

√
(sγ3γ4 − γ2)2 − 4γ2γ3γ4(γ3 − s)

2γ2γ3γ4

=
(sγ3γ4 − γ2)± (sγ3γ4 − γ2)

√
1 − β

2γ2γ3γ4

=
(sγ3γ4 − γ2)

(
1 ±

√
1 − β

)
2γ2γ3γ4

,

where β = 4γ2γ3γ4
(sγ3γ4−γ2)2 (γ3 − s). If β < 1, then the equilibrium states of System (2) are:

X1 = 0, an extinction equilibrium;

X2 =
(sγ3γ4 − γ2)

(
1 −

√
1 − β

)
2γ2γ3γ4

, a lower unstable equilibrium;

X3 =
(sγ3γ4 − γ2)

(
1 +

√
1 − β

)
2γ2γ3γ4

, an upper stable equilibrium.

If β = 1, then the equilibria X2 and X3 collide. The single-species deterministic
Model (2) has only two equilibrium states:

stable state X1 = 0, and unstable state X∗ =
sγ3γ4 − γ2

2γ2γ3γ4
.

The derivative of F(X) is

F′(X) = s − 2γ2X − γ3

(γ3 γ4 X + 1)2 .

For simplicity and convenience of discussion, we choose the parameters γ3 γ4 = 1,

s = 1, 0 < γ2 < 1, and 0 < γ3 < (1+γ2)
2

4 γ2
; therefore, β = 4γ2(γ3−1)

(1−γ2)2 and X∗ = 1−γ2
2 γ2

. For
β < 1, the extinction state X1 = 0 and the equilibrium solution X3 are stable, while X2 is
unstable. Figure 1b reveals that when the value of the attack rate γ3 increases, the unstable
state X2 and stable state X3 become closer to each other, then become one solution X∗, and
finally disappear. This indicates the occurrence of saddle-node bifurcation.

Remark 2. The reason we choose γ3γ4 = 1 is to simplify the problem. If we change this assumption,
there will be no violation, because whether the equilibria X2 and X3 collide into X∗ depends on
whether β is equal to 1.
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Figure 1. (a) A plot of the bistable potential function U(X) of the nonlinear Model (2). Dashed black
lines indicate local unstable and stable equilibria at X2 = 2.6159 and X3 = 6.3841, respectively. (b) The
phaselines of the single-species Model (2). Parameters: s = 1, γ2 = 0.1, γ3 = 2.67, and γ4 = 1

γ3
in the

graph of dX
dt .

The critical value of the attack rate γc = 2.67 of the deterministic single-species
system (2) with Allee effect is obtained by solving the equation U(X1) = U(X3). This value
is an important indication of the transition phenomena between the unstable and stable
states for the deterministic single-species growth model. The steady extinction state X1 is
stable if γ3 > γc, and the steady state X3 exhibits the stability property for γ3 < γc.

4. Dynamical Analysis of the Stochastic System

In this section, we discuss the behavior of the solution of the stochastic System (1).
First, we recall the definition of the Onsager–Machlup function for the stochastic differ-
ential equation (SDE) driven by jump noise. This helps to measurethe Onsager–Machlup
functional induced by the jump process. Second, we examine the corresponding most
probable paths. Finally, we present the findings of a numerical experiment using the finite
difference method [39]. The numerical solution of the stochastic model provides useful
information for understanding the dynamical behavior of the stochastic system (1).

4.1. Onsager–Machlup Functional

The Onsager–Machlup functional determines a probability density for a stochastic
process in which the probability density is estimated implicitly. It can be used for the
purposes of reweighting and sampling trajectories as well as for determining the most
probable trajectory based on variational arguments. The most probable transition pathway
can be obtained by minimizing the Onsager–Machlup function. The whole procedure
enables us to detect the dynamics of the most probable path [40].

As proved by Jin [38], the stochastic single-species System (1) with Allee effect has a
unique global and positive solution with the initial condition X0 = x0. The jump-diffusion
process Xt is adapted and càdlàg (see Figure 2); when λ = 0 and ϵ = 0.9, the yellow trajectory
in Figure 2a shows a specific biological scenario where the Allee effect is likely to manifest.
The intensity of the jump is sufficiently large that the species becomes extinct.

We denote the space of càdlàg paths starting at x0 of a solution process X =
{

Xt, t ≥ 0
}

of (1) by

Dx0 =
{

X : for any t ≥ 0, lim
s↑t

Xs = Xt−, lim
s↓t

Xs = Xt exist and X0 = x0
}

.
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This space equipped with Skorokhod’s J1-topology generated by the metric dR+ is a
Polish space [41]. For functions x1, x2 ∈ Dx0 , we define

dR+ (x1, x2) = inf
{

ε > 0 : |x1(t)− x2(λ̄ t)| ≤ ε,
∣∣∣∣ln arctan(λ̄ t)− arctan(λ̄ s)

arctan(t)− arctan(s)

∣∣∣∣ ≤ ε, for every t, s ≥ 0 and some λ̄ ∈ ΛR+
}

,

where ΛR+
=

{
λ̄ : R+ → R; λ̄ is injective increasing, lim

t→0
λ̄(t) = 0, lim

t→∞
λ̄(t) = ∞

}
.
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Figure 2. The numerical simulation of System (1) when it is persistent or extinct at different value initial
condition x0. (a) Persistent sample paths of Model (1): the initial condition is x0 = 5. (b) Extinct sample
paths of Model (1) with initial condition x0 = 0.3. Parameters: s = 1, γ2 = 0.1, γ3 = 2.67, γ4 = 1,
α = 1.5, β = 0.27 < 1.

We consider the corresponding jump-diffusion process Xt(ω) := ω(t), t ∈ [0, T]
defined on the canonical probability space (R[0,T],B(R)[0,T],PT). As the paths of X are
càdlàg, we identify Xt on the space (DT

x0
,BT

x0
,P) instead of (R[0,T],B(R)[0,T],PT), where

DT
x0

is defined similarly as the space Dx0 on the time interval [0, T]. The associated Borel
σ-algebra is BT

x0
= B(R)[0,T] ∩ DT

x0
, and (DT

x0
,BT

x0
) is then a separable metric space. The

probability measure P is generated by P(A ∩ DT
x0
) := PT(A) for each A ∈ B(R)[0,T].

Because every càdlàg function on [0, T] is bounded, we equip DT
x0

with the uniform norm

∥x∥ = sup
t∈[0,T]

|x(t)|, x(t) ∈ DT
x0

,

hence, DT
x0

is a Banach space. In order to find the most probable tube of Xt, we should
determine the probability that the paths lie within the closed tube

K(z, ε) =
{

x ∈ DT
x0

: ∥ x − z ∥≤ ε, z ∈ DT
x0

, ε > 0
}

, (3)

which is a subset of the space DT
x0

of càdlàg functions on the interval from 0 to T containing
a function z together with its ε-neighborhood. We define the measure µX on B(R)[0,T]

induced by the solution process Xt for the stochastic nonlinear Model (1) via

µX(B) = P({w : Xt(ω) ∈ B}), for B ∈ B(R)[0,T].

For sufficiently small ε > 0, the main contribution of the above probability is provided
by the measure of the trajectories in the ε-tube of z ∈ DT

x0
:

µX(K(z, ε)) = P({w : Xt(ω) ∈ K(z, ε)}), (4)
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where K(z, ε) ∈ B(R)[0,T]. As the ε-tube K(z, ε) depends on the reference path z, it is
necessary for us to look for the “most probable” trajectory z which maximizes the measure
µX(K(z, ε)) in Equation (4). When we focus on the differentiable functions z ∈ DT

x0
, we

have the following meaningful definition.

Definition 1. Let 0 < ε ≪ 1 be given. For an ε-tube surrounding a reference path z(t), the
probability of the solution process Xt, t ∈ [0, T] lying in this tube is estimated by

P(∥ X − z ∥≤ ε) ∝ C(ε) exp
{
−1

2

∫ T

0
OM(ż, z)dt

}
,

where the integrand OM(ż, z) is called the Onsager–Machlup function and ∝ denotes the equiv-
alence relation for sufficiently small ε. The intergral

∫ T
0 OM(ż, z)dt is the Onsager–Machlup

functional.

Remark 3. The Onsager–Machlup function is similar to the Lagrangian function of a dynamical system
in classical mechanics, and the Onsager–Machlup functional would correspond to the action functional. In
particular, for an SDE with pure jump Lévy noise, Definition 1 remains applicable and the minimizer of
the Onsager–Machlup functional

∫ T
0 OM(ż, z)dt provides the most probable path for this non-Gaussian

stochastic system. Moreover, the minimizer z may be chosen from a more general function space.

Our vital result about the expression of the Onsager–Machlup function for a jump-
diffusion process is clearly presented in the main theorem.

Theorem 1. For the stochastic nonlinear System (1) with jump measure satisfying
∫
Y ϵ(y)να(dy) < ∞,

the Onsager–Machlup function [35] is characterized up to an additive constant by

OM(ż, z) =

 ż − z
(

s − γ2 z − γ3
γ3 γ4 z+1

)
λz

2

+ s − 2γ2z − γ3

(γ3 γ4 z + 1)2

+ 2
ż − z

(
s − γ2 z − γ3

γ3 γ4 z+1

)
λ2z

∫
Y

ϵ(y)να(dy),

where z ∈ DT
x0

is a differentiable function. The contribution of the pure jump Lévy noise to the
Onsager–Machlup function is the nonlocal integral. When the jump measure is absent, we cover the
Onsager–Machlup function for the case of diffusion. In terms of the Onsager–Machlup function,
the measure of the tube K(z, ε) defined in (3) can be approximated as follows:

µX(K(z, ε)) ∝ µYc(K(0, ε)) exp
{
−1

2

∫ T

0
OM(ż, z)dt

}
where Yc

t is defined by

dYc
t = Yc

t

(
λ Yc

t dBt +
∫
Y

ϵ(y)Ñ(dt, dy)
)

, t ∈ [0, T].

The proof of Theorem 1 is provided in [36] (Theorem 4.1).
In the Gaussian noise case (ϵ(y) = 0), the stochastic single-species Model (1) becomes

dXt = Xt

[(
s − γ2 Xt −

γ3

γ3 γ4 Xt + 1

)
dt + λdBt

]
, t ≥ 0, X0 = x0. (5)

We apply Lamperti transforms to solve the SDE driven by multiplicative noise [31]
(Example 6.48). This method allows us to transform the multiplicative noise into addi-
tive noise. Numerically solving an additive-noise SDE is usually easier than solving a
multiplicative-noise SDE, as in Equation (5).
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We assume g ∈ C2(R) and define Yt = g = ln(Xt). Then, the new SDE has the
following form:

dYt = G(Yt)dt + λ dBt (6)

where

G(Yt) =

(
h(Xt)−

λ2

2

)∣∣∣
Xt = exp(Yt)

and
h(Xt) = s − γ2 Xt −

γ3

γ3 γ4 Xt + 1
.

Because the most probable transition path for a stochastic single-species model is the
minimizer of the Onsager–Machlup action functional, denoted by Zm, it can be obtained
from the following least action principle when the first variation vanishes, i.e.,

δ
∫ T

0
OM(ż, z)dt = 0,

where the integrand function (Onsager–Machlup function) [37] is provided by

OM(ż, z) =
(

G(z)− ż
λ

)2

+ Ġ(z). (7)

Thus, Equation (7) satisfies the following Euler–Lagrange equation:

d
dt

∂OM(ż, z)
∂ż

=
∂OM(ż, z)

∂z
. (8)

The most probable transition pathway Zm(t) of System (6) is characterized by

Z̈m(t) =
λ2

2
G̈(Zm) + Ġ(Zm) G(Zm), 0 < t < T,

Zm(0) = X1, Zm(T) = X3. (9)

The way of determining the most probable transition paths of the stochastic dynamical
System (5) is translated into solving the second-order Euler–Lagrange Equation (8) with two
boundary conditions. To solve the two-point boundary value problem in Equation (9), we
apply the shooting method with Newton iteration.

4.2. Most Probable Phase Portraits

Suppose that the solution Xt of System (1) has a conditional probability density p(X, t|x0, 0).
For convenience, we drop the initial condition and simply denote it by p(X, t). For the solution of
the Fokker–Planck equation, the probability density function p(X, t) is a surface in (X, t, p)-space.
For a given time t, the maximizer Xm(t) for p(X, t) (i.e., Xm(t) = maxX∈(0,∞)p(X, t)) shows the
most probable (i.e., maximum likelihood) location of this orbit at time t. The orbit traced out by
Xm(t) is called a most probable orbit starting at x0. Thus, the deterministic orbit Xm(t) follows the
top ridge of the surface in the (X, t, p)-space as time goes on.

Nonlocal Fokker–Plank Equation

The Fokker–Planck equation describes the time evolution of the probability density
function; however, it can be solved analytically only in special cases. Here, we are interested
in the steady-state probability distribution (equilibrium distribution) and want to express
the stationary solution of the nonlocal Fokker–Planck equation. This makes estimating
of the most probable phase portrait in the Lévy noise case possible both numerically and
algorithmically.
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Let f : R → R be a smooth function. On the one hand,

E f (Xt) =
∫
R

f (X)p(X, t)dX,

thus,
d
dt
E f (Xt) =

∫
R

f (X)
∂

∂t
p(X, t)dX;

on the other hand, by virtue of Itô’s formula,

d f (Xt) =Xt−

(
s − γ2 Xt− − γ3

γ3 γ4 Xt− + 1

)
f ′(Xt)dt

+
∫
Y

(
f (Xt + ϵ(y)Xt−)− f (Xt)− ϵ(y)Xt− f ′(Xt)

)
να(dy)dt. (10)

Taking the expectation on both sides of (10), we obtain

dE f (Xt) =E
[

Xt−

(
s − γ2 Xt− − γ3

γ3 γ4 Xt− + 1

)
f ′(Xt)dt

+
∫
Y

(
f (Xt + ϵ(y)Xt−)− f (Xt)− ϵ(y)Xt− f ′(Xt)

)
να(dy)dt

]
. (11)

Noting that the infinitesimal generator of the solution Xt for System (1) is

Ap(X, t) =X
(

s − γ2 X − γ3

γ3 γ4 X + 1

)
∂X p(X, t)

+
∫
Y

(
f (X + ϵ(y)X)− f (X)− ϵ(y)X∂X p(X, t)

)
να(dy).

Equation (11) is rewritten as

d
dt
E f (Xt) =E

[
Xt−

(
s − γ2 Xt− − γ3

γ3 γ4 Xt− + 1

)
f ′(Xt)

+
∫
Y

(
f (Xt + ϵ(y)Xt−)− f (Xt)− ϵ(y)Xt− f ′(Xt)

)
να(dy)

]
=

∫
R

[
X
(

s − γ2 X − γ3

γ3 γ4 X + 1

)
f ′(X)

+
∫
Y

(
f (X + ϵ(y)X)− f (X)− ϵ(y)X f ′(X)

)
να(dy)

]
p(X, t)dX. (12)

As a result, the Fokker–Planck equation for the stochastic nonlinear System (1) of the

solution process X =
{

Xt, t ≥ 0
}

with initial condition p(X, 0) =
√

40
π e−40(X−x0)

2
is

∂t p(X, t) =−
(

s − 2γ2X − γ3

(γ3 γ4 X + 1)2

)
p(X, t)− X

(
s − γ2 X − γ3

γ3 γ4 X + 1

)
∂X p(X, t)

+
∫
Y

(
f (X + ϵ(y)X)− f (X)− ϵ(y)X f ′(X)

)
να(dy)p(X, t). (13)

To simulate the nonlocal Fokker–Planck Equation (13), we apply the numerical finite
difference method provided in Gao et al. [39].

If the Lévy motion is replaced by Brownian motion, then the local Fokker–Planck
equation has the following form:

∂t p(X, t) = −∂X

[
X
(

s − γ2 X − γ3

γ3 γ4 X + 1

)
p(X, t)

]
+

λ2

2
∂XX

(
X2 p(X, t)

)
. (14)
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The stationary probability density function ps(X) of Equation (14) can be solved by

0 = −∂X

[
X
(

s − γ2 X − γ3

γ3 γ4 X + 1

)
ps(X)

]
+

λ2

2
∂XX

(
X2 ps(X)

)
, (15)

or equivalently by

0 = −
[

X
(

s − γ2 X − γ3

γ3 γ4 X + 1

)
ps(X)

]
+

λ2

2
∂X

(
X2 ps(X)

)
, (16)

=⇒ 0 =

[
X
(

s − γ2 X − γ3

γ3 γ4 X + 1

)
− λ2 X

]
ps(X)− λ2 X2

2
∂X ps(X).

Due to the complexity of the stationary solution, we take the extrema of the stationary
probability density function located at xs directly; in other words, the stationary probability
density function satisfies ∂X( ps(xs)) = 0. Because ps(xs) ̸= 0, Equation (16) reduces to

X
(

s − γ2 X − γ3

γ3 γ4 X + 1

)
− λ2 X = 0. (17)

Because of the presence of noise with the λ term, Equation (17) is completely different
from the equilibrium state of the deterministic Model (2). The numerical solution of
Equation (17) is plotted in Figure 3b.
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Figure 3. (a) Most probable transition pathways Zm(t), starting at the extinction state X1 = 0 and
ending at the upper equilibrium stable state X3 = 9.0846, under white noise with respect to the seven
different values of λ from 0 to 1. (b) The most probable steady state xs versus the attack rate γ3 for
different values of Gaussian noise intensity with λ term.

5. Numerical Results and Biological Implications

To allow readers to better understand our results, we performed numerical simulations
to illustrate our theoretical results. Based on the finite difference method [39], numerical
simulations are very useful in the study of real population examples. In the present section,
we define the bifurcation time as the time between the changes in number of maximally
likely equilibrium states. This is a time scale for the birth of a new most probable stable
equilibrium state. In addition, we show the intervals in which there exist one or two
maximally likely stable equilibrium states, the value of the equilibrium states, and the point
where the number of metastable states of the stochastic single-species Model (1) varies.
Because the numerical solutions of a model depend on the values of all its deterministic
parameters and noise intensities, we discuss the effect of the parameters in Table 1 on the
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investigated System (1). For simplicity, we simulated the four most probable transition
pathways together with the initial conditions selected in different intervals.

When plotting the figures, we fixed the deterministic parameters s = 1, γ2 = 0.1,
γ3 = 2.67, γ4 = 1/γ3, the noise intensity ϵ = 0.5, and the stability index α = 1.5.

The potential function denoted by U(X) in Figure 1a has two stable steady states X1 and X3
and an unstable steady state X2 for β < 1. This function has a maximum value at the unstable
equilibrium solution X2. The potential function attains its minima at the stable fixed points X1
and X3. For the value of β > 1, the nonlinear System (2) has only one equilibrium point, which is
the trivial point X1 = 0.

In Figure 1b, we sketch the equilibrium states versus attack rate γ3. For β < 1, there
exist two stable equilibrium states X1 and X3 and one unstable equilibrium state X2. While
β > 1, X1 = 0 is the unique equilibrium state that is stable;thus, the parameter β = 1 is the
bifurcation parameter value.

The distance between the unstable equilibrium X2 and the stable fixed point X3
becomes very small when β approaches 1. This indicates that the expected time to extinction
may be too short, as clarified in Figure 1b.

Figure 2 displays the numerical simulation of the stochastic single-species Model (1)
with Allee effect when it is persistent or extinct at different value of initial condition x0.
This figure proves that the solutions of the stochastic nonlinear System (1) are positive and
that species extinction occurs when the initial condition is less than the value of X2, as
demonstrated in Figure 2b. While the initial condition is greater than the value of X2, there
is stochastic persistence.

In Figure 3a, we depict the most probable transition pathways Zm(t) of System (6) for
seven distinct values of λ ranging from 0 to 1. The method of finding the most probable
transition paths of System (5) is equivalent to solving the one-dimensional boundary value
problem in (9). A numerical technique for computing solutions of the second-order Euler–
Lagrange differential in Equation (8) is the shooting method. Figure 3b demonstrates the
curves for the most probable steady state xs of the stochastic single-species Model (1) with
ϵ(y) = 0 driven by Gaussian noise at different values of the noise intensity λ. The steady-
state curves exhibit a bi-stability in the interval (a1, a2). For γ3 > a1, the stable steady state
stays at the extinction state, while for γ3 < a1 it is located at the stable equilibrium state.
Because of the presence of Gaussian noise with λ term, the numerical result in Figure 3b is
completely different from the numerical result in Figure 1b. By perturbing the parameters
and observing the resulting changes in model output, it is evident that Model (1) is sensitive
to changes in its parameters.

Concerning the question of why the most probable transition pathways shown in
Figure 3a are not related to the numerical simulations shown in Figure 2, it is because we
simulated six true trajectories of the stochastic single-species Model (1) under different
noise intensities in Figure 2. However, the most probable transition pathways depicted in
Figure 3a are reference trajectories, which are not necessarily the true trajectories of the
stochastic single-species Model (1), although their tubes are likely to contain the largest
number of true trajectories of the system.

The most probable trajectories of the stochastic single-species Model (1) with Allee
effect are plotted graphically in Figures 4 and 5a. Here, the values of the noise intensities
are set as λ = 0 and ϵ = 0.5, respectively. We choose the stability index α = 1.5, and the
interval D = (0, 15). These figures evolve as the initial value x0 changes, telling us that the
maximal likely equilibrium state (maximizer) Xm(t) lies between 9 and 10 at the bifurcation
time 1.13; in other words, the maximizer in high concentration is between 9 and 10. This is
different from the deterministic equilibrium stable solution X3 = 9.0846 due to the effects
of external noise.
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Figure 4. Most probable orbits and most probable equilibrium states for the stochastic nonlinear
System (1) with respect to the initial condition x0 and its values relative to the thresholds X2 and X3:
(a) when the initial condition x0 is less than the unstable equilibrium state X2, i.e., x0 < X2; (b) when
the initial condition is between X2 and X3, i.e., X2 < x0 < X3; and (c) when the initial condition is
greater than X3, i.e., x0 > X3. (d) For the initial condition x0, there is one value (0.001) which is less
than X2, two values (0.55 and 8) which are between X2 and X3, and one value (12) which is greater
than X3. Parameters: s = 1, γ2 = 0.1, γ3 = 2.67, γ4 = 1, α = 1.5, ϵ = 0.5, β = 0.27 < 1, λ = 0, and
bifurcation time at 1.13 (dotted vertical line).
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Figure 5. (a) Most probable orbits and most probable equilibrium states for System (1) with equi-
librium state Xm between 9 and 10. For the initial condition x0, there is one value (0.0001) which is
less than X2, two values (1 and 8) between X2 and X3, and one value (10) which is greater than X3.
(b) The solution of the FPE of Model (1). The stationary density function of the FPE has its maximum
value at the equilibrium state Xm. The other parameters are fixed: s = 1, γ2 = 0.1, γ3 = 2.67, γ4 = 1,
α = 1.5, ϵ = 0.5, β = 0.27 < 1, λ = 0, and x0 ∈ (0, 10]. The bifurcation time is 1.13.
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Figure 5a draws the MPPP for different values of the initial point x0. As seen in
Figure 5a, the most probable growth state is attracted to the maximally likely equilibrium
state of extinction, then leads to the maximally likely equilibrium state in the high con-
centration as time moves forward. For the initial point x0 with two values of 0.0001 and 1
around X2, the two trajectories of Xm starting from them are relatively close. Given two
specific values 8 and 10 of the initial point x0 that are around X3, the ascending trajectory
of Xm starting from x0 = 8 and the descending trajectory starting from x0 = 10 coincide at
a specific time point, which is 0.5.

From Figure 5b, it can be observed that the maximum value of the stationary density
function p(X, t) is situated at the maximum likely stable state Xm(t) = 9.0846 with the

initial condition p(X, 0) =
√

40
π e−40(X−x0)

2
. As the initial condition x0 increases, it raises

the peak point of the stationary density function p(X, t). This shows that the extinction
of the species may not happen, and the high peak occurs at the maximum likely stable
state Xm(t).

When there is no jump in the stochastic single-species Model (1), i.e., ϵ(y) = 0,
Figure 3a illustrates the most probable transition paths in the (Zm, t)-plane with initial
condition Zm(0) = 0 and terminal condition Zm(10) = 9.0846 under the same transition
time interval t ∈ [0, 10] for different values of λ. Figure 3b displays the most probable
steady state xs determined by (17) (computed by numerical simulations under γ2 = 0.1)
for different values of λ. When there exist jumps in the stochastic single-species Model
(1) with ϵ = 0.5 and λ = 0, we calculated the four most probable transition pathways
using simulations based on the system dynamics and the given parameters, as exhibited in
Figures 4 and 5a. Regardless of the starting point, these most probable transition pathways
eventually converge to a specific horizontal line with Xm between 9 and 10. The fact that
the high peak of the stationary density function is located at 9.0846 effectively corroborates
this point, as demonstrated in Figure 5b. The most probable transition pathways ultimately
provide a more comprehensive understanding of the system’s behavior and validate the
predicted dynamics of the system through numerical simulations.

Figure 6a tells us that as time increases, the most probable paths converge quickly to
the stable state X3 and remain at a nearly constant level, then approach the high stable
equilibrium state. Although the values of the initial point x0 are different, these most
probable transition pathways invariably converge towards a specific horizontal line posi-
tioned within the range of Xm between 9 and 10. This convergence is firmly supported by
the observation that the stationary density function peaks precisely at 9.0846, as clearly
illustrated in Figure 6b. Ultimately, these transition pathways offer a deeper understanding
of the system’s behavior, effectively validating the predicted dynamics.

The rising rate of the two trajectories of Xm initiating from 0.0001 and 1 in Figure 5a
differs significantly from that of the two trajectories of Xm commencing from 0.001 and 4
in Figure 6a. While the peak heights of the probability density function in Figure 5b are
different from those in Figure 6b, the locations of the peaks are surprisingly consistent, all
precisely at 9.0846. We compare the peak heights of the probability density function while
noting the surprising consistency in the location of the peaks.
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Figure 6. (a) Most probable orbits and most probable equilibrium states for System (1) with equi-
librium state Xm between 9 and 10. For the initial condition x0, there is one value (0.001) which is
less than X2, two values (4 and 8) between X2 and X3, and one value (10) which is greater than X3.
(b) The solution of the FPE of Model (1). The stationary density function of the FPE has maximum
value at the equilibrium state Xm. The other parameters are fixed: s = 1, γ2 = 0.1, γ3 = 2.67, γ4 = 1,
α = 1.5, ϵ = 0.5, β = 0.27 < 1, λ = 0, and x0 ∈ (0, 10]. The bifurcation time is 1.2.

6. Conclusions

In the present work, we have studied the Onsager–Machlup functional and the most
probable phase portraits of the stochastic growth Model (1) for a single-species population
with strong Allee effects driven by Lévy noise, focusing on the effect of different values for
the initial condition on the MPPP of the nonlinear dynamical system. We have observed
the dynamic changes in the biological System (1) over time by simulating responses to
perturbations or interventions as well as capturing natural fluctuations. Small disturbances
may cause a transition between the extinction stable state X1 and the upper equilibrium state
X3. Thus, we have been able to develop a deterministic quantity, namely, the maximally likely
trajectory, to analyze the transition phenomena in a stochastic jump environment.

In order to find the most likely pathways in transition phenomena, we have calculated
the most probable paths of the stochastic differential Equation (1) using the stationary
density function of the nonlocal Fokker–Planck equation associated with a nonlocal partial
differential equation. We have investigated the impact of the deterministic parameters,
noise intensities, and domain size on the FPE. In addition, we have studied the dependence
of the probability density on the initial condition x0. Our findings demonstrate that the
maximum of the stationary density function is positioned at the most probable stable
equilibrium state Xm.

In conclusion, Model (1) shows good performance in predicting biological processes.
Its accuracy and reproducibility ensure that it will continue to contribute to future research
and a deeper understanding of biological systems. The most probable path has been used as



Mathematics 2024, 12, 1377 17 of 18

a reliable and informative indicator that can assist in understanding the stochastic dynamics
of the single-species Model (1) based on the evolution of the probability density function
over time. Evaluating the biological relevance and validation of our modeling approach
has involved assessing the model’s ability to accurately represent biological processes,
comparing its predictions with numerical data, and ensuring its robustness and predictive
power. By considering these aspects, the modeling approach has proven to be effective in
enhancing our understanding of biological systems. This has been clearly documented,
enabling others to extend the work.
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