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Abstract: In this paper, the scale mixture of the Gleser (SMG) distribution is introduced. This new
distribution is the product of a scale mixture between the Gleser (G) distribution and the Beta(a, 1)
distribution. The SMG distribution is an alternative to distributions with two parameters and a heavy
right tail. We study its representation and some basic properties, maximum likelihood inference, and
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1. Introduction

The Pareto distribution (see Pareto [1]), named after Vilfredo Pareto, is a model widely
used in various applied sciences, for example, actuarial sciences, economics, finance, life
tests, climatology, and income distribution, in which the occurrence is generally described
in extreme observations. Some investigators who have used the Pareto distribution are
Beirlant et al. [2,3] and Resnick [4], among others. We say that a random variable X has a
Pareto distribution if its probability density function (pdf) is given by

fX(x; α, β) =
βαβ

xβ+1 , x ≥ α (1)

where α > 0 is the scale parameter, and β > 0 is the shape parameter. We denote this as
X∼Pareto(α, β). The cumulative distribution function (cdf) corresponding to (1) is

FX(x; α, β) = 1 −
(α

x

)β
, x ≥ α (2)

Johnson et al. [5] discuss various types of Pareto distributions, which differ from the
Pareto density given in Equation (1). The density in Equation (1) is called Pareto Type I;
however, in the present work we will refer to it simply as the Pareto distribution. Several
extensions of the Pareto distribution can be found in the literature: Pickands [6] studied
the generalized Pareto distribution and drew statistical inferences in the upper tail of
a distribution function; Choulakian and Stephens [7] give tests of fit for the generalized
Pareto distribution; additionally, Davison and Smith [8] discuss an application to hydrology,
using river flow exceedances for a particular river over a period of 35 years. Aban et al. [9]
list areas in which heavy-tailed distributions are considered applicable.
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Gupta et al. [10], introduce a family of distributions which raises any cdf with positive
support to a positive power. A particular case of this family of distributions is found when
the cdf is represented by (2)—known as the exponentiated Pareto distribution. This distribu-
tion was first studied by Stoppa [11]; see also Kleiber and Kotz [12]. It is a particular case of
the family studied by Gupta et al. [10]. Another generalization of the Pareto distribution is
the beta-Pareto distribution introduced by Akinsete et al. [13]; Boumaraf et al. [14] applied
various optimization methods to the beta-Pareto distribution. For further information on
the Pareto distribution and its extensions, readers can consult the book by Arnold [15].
Gómez-Déniz and Calderín-Ojeda [16] study a distribution with one parameter which
offers an alternative to the Pareto distribution; this distribution is considered a particular
case of the log-gamma (LG) distribution, and in this paper, we denote it as LG2. We say
that a random variable X has an LG2 distribution if its pdf is given by

fX(x; α, β) =
β2 log(x + 1 − α)

(x + 1 − α)β+1 , x ≥ α

where α ≥ 0 and β ≥ 0. We denote this as X ∼ LG2(α, β).
One function that is very necessary in this paper is the beta (B) function, which can be

expressed as follows:

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt =

∫ ∞

0

ta−1

(1 + t)a+b dt =
Γ(a)Γ(b)
Γ(a + b)

,

where a > 0, b > 0, and Γ(·) is the gamma function.
The beta function is the normalization constant of the beta distribution, i.e., we say

that the random variable Y has a beta distribution with parameters a and b if its pdf is
given by

fY(y; a, b) =
1

B(a, b)
ya−1(1 − y)b−1, 0 < y < 1

where a > 0 and b > 0.
The incomplete beta function is denoted as B(y; a, b) and can be expressed as follows:

B(y; a, b) =
∫ y

0
ta−1(1 − t)b−1dt, 0 < y < 1

where a > 0 and b > 0. Another related function is the regularized incomplete beta
function, denoted as Iy(a, b), and expressed as Iy(a, b) = B(y; a, b)/B(a, b).

The Gleser (G) distribution was introduced by Gleser [17] and studied recently by
Olmos et al. [18]; we say that a random variable X has a G distribution if its pdf is given by

fX(x; σ, α) =
σαx−α

B(α, α)(σ + x)
, x > 0

where σ > 0 is the scale parameter, 0 < α < 1 is the shape parameter, and α = 1 − α. We
denote this as X ∼ G(σ, α). Some properties of this pdf are the following:

(a) The G distribution has unimodality (at 0).
(b) Let Y ∼ Beta(1 − α, α). Then, σY

1−Y ∼ G(σ, α).
(c) The cdf of X is given by

FX(x; σ, α) = Iy(α, α), x > 0

where y = x
σ+x and Iy(·, ·) is the regularized incomplete beta function defined above.

Andrews and Mallows [19] developed a study of mixtures of scales of the normal
distribution, and their investigation provides a family of distributions with heavy tails (e.g.,
the well-known Student’s t distribution). These families of distributions have been used
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in the robust inference of symmetrical data. A scale mixture distribution can be obtained
by “mixing” a base density with a scale distribution. The resulting distribution can be
expressed as follows:

f (x) =
∫

g(x|κ(w))dH(w)

where g(x|κ(w) is the distribution conditional on the random variable X given that κ(w) is
a positive function of a random variable W with distribution function H(w). For example,
in the case of the Student’s t distribution, W∼Gamma(ν/2, ν/2) and κ(w) = 1/w. Another
case that has been studied several times in recent years is the case of the slash distribution,
where W∼Uni f orm(0, 1) and κ(w) = w1/q.

The object of this paper is to study the SMG distribution, which is related to the G
distribution and is a product of a scale mixture between the G and Beta distributions.
The SMG distribution has two parameters and a heavy right tail, making it a possible
alternative to the Pareto and LG2 distributions, among others, for modelling data with
atypical observations.

The paper is organized as follows. In Section 2, we study the principal properties
of the SMG distribution. In Section 3, we estimate the parameters using the maximum
likelihood (ML) method, a simulation study, and the Fisher’s information matrix, which
will be useful for calculating the asymptotic standard errors of the parameter estimates.
In Section 4, we show an application to real data. In Section 5, we offer some conclusions.

2. SMG Distribution and Properties

In this section, we introduce the SMG distribution and study some of its properties.

2.1. Density

Let Z∼SMG(σ, α), and assume that the pdf of Z is given by

fZ(z; σ, α) =
ασα

B(α, α)
z−(α+1) log

(
1 +

z
σ

)
(3)

where z > 0, σ > 0 is the scale parameter, 0 < α < 1 is a shape parameter, and B(·, ·) is the
beta function.

Figure 1 shows some plots of the SMG distribution considering different values of
its parameters.
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Figure 1. Examples of SMG(1, 0.3) (black), SMG(1, 0.7) (blue), and SMG(1, 0.9) (red) model.

Table 1 shows P (Z > z) for different values of z in the SMG distribution, illustrating
that the tails are heavier as the α parameter decreases.
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Table 1. Tails comparison.

Distribution P (Z > 5) P (Z > 10) P (Z > 15)

SMG(1, 0.9) 0.06493 0.04284 0.03310
SMG(1, 0.7) 0.26006 0.19377 0.16107
SMG(1, 0.3) 0.79235 0.73030 0.69215

2.2. Properties

The following propositions show one way of representing the SMG distribution. The
first proposition shows that the SMG distribution is the product of a scale mixture between
the G and Beta.

Proposition 1. Let Z|U = u ∼ G(σu−1, α) and U∼Beta(α, 1); then, Z∼SMG(σ, α).

Proof. Calculating the integral directly, we have

fZ(z; σ, α) =
∫

Rec(u)
f (z|u) fU(u)du =

∫ 1

0

(σu−1)αz−α

B(1 − α, α)(σu−1 + z)
αuα−1du,

the result of which is obtained with a change in variable t = σ + uz.

Proposition 2. Let X∼G(σ, α) and Y∼Beta(α, 1) be independent random variables. Then, Z =
X
Y ∼SMG(σ, α).

Proof. Using the Jacobian method, we have

Z = XY−1

V = Y

}
⇒ X = ZV

Y = V

}
⇒ J =

∣∣∣∣ ∂X
∂Z

∂X
∂V

∂Y
∂Z

∂Y
∂V

∣∣∣∣ = ∣∣∣∣ v z
0 1

∣∣∣∣ = v

fZ,V(z, v) = |J| fX,Y(zv, v)

fZ,V(z, v) = v fX(zv) fY(v) , z > 0 , 0 < v < 1

Then, marginalizing with respect to the variable V, we obtain the density function
associated with Z:

fZ(z; σ, α) = α
σB(α,α)

∫ 1

0

( zv
σ

)−αvα

1 + zv
σ

dv

= ασα−1

B(α,α)zα

∫ 1

0

1
1 + zv

σ

dv

By making the change in variables u = 1 + zv
σ , the result is obtained.

Two algorithms can be used to generate random numbers from the SMG model, as shown
below. Algorithm 1 uses Proposition 1 and the composition method (see Tanner [20]); Algorithm 2
uses the representation given in Proposition 2.

Algorithm 1 for simulating Z ∼ SMG(σ, α) can proceed as follows

1: Generate U ∼ Beta(α, 1).
2: Compute Z|U = u ∼ G

(
σu−1, α

)
.

Lemma 1. Let Z ∼ SMG(σ, α). Then, we have the following:

1. E
(

Z
(1+Z/σ) log(1+Z/σ)

)
= σα

2. E
(

Z(2σ+Z)
(1+Z/σ)2 log(1+Z/σ)

)
= σ2α
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Algorithm 2 for simulating Z ∼ SMG(σ, α) can proceed as follows

1: Generate V ∼ Beta(1 − α, α).
2: Compute X = σV

1−V .
3: Generate Y ∼ Beta(α, 1).
4: Compute Z = X

Y .

Proof. Both results are obtained directly using the pdf given in (3).

Proposition 3. Let Z∼SMG(σ, α). Then, the cdf of Z is given by

FZ(z; σ, α) = Iy(α, α)− σαz−α

B(α, α)
log
(

1 +
z
σ

)
, z > 0 (4)

where σ > 0, 0 < α < 1, y = z
σ+z , and Iy(·, ·) is the regularized incomplete beta function.

Proof. Applying the cdf definition directly, we have

FZ(z; σ, α) =
σα

B(α, α)

∫ z

0
t−(α+1) log

(
1 +

t
σ

)
dt

By applying the integration by parts method and considering u = log
(
1 + t

σ

)
, the re-

sult is obtained.

The survival function s(t), which is the probability that an item will not fail before
time t, is defined by s(t) = 1 − FX(t) = FX(t). The survival function for an SMG random
variable is given by

FZ(t; σ, α) = 1 − Iy(α, α) +
σαt−α

B(α, α)
log
(

1 +
t
σ

)
where y = t

σ+t . The hazards function h(t), defined by h(t) = fX(t)
FX(t)

, for an SMG random
variable is given by

h(t; σ, α) =
ασαt−(α+1) log

(
1 + t

σ

)
B(α, α)− B

( t
σ+t ; α, α

)
+ σαt−α log

(
1 + t

σ

) , t > 0

Figure 2 shows the shape of the hazards function for different values of α, considering
σ = 1.
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Figure 2. Examples of h(t) for α = 0.3 (black), α = 0.7 (blue), and α = 0.9 (red).
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Proposition 4. Let T∼SMG(σ, α). Then, the hazards function of T is decreasing for all t > 0.

Proof. Using the Theorem, item (b), given in Glaser [21], we have

η(t) = − f ′(t)
f (t)

=
α + 1

t
− 1

(σ + t) log
(
1 + t

σ

)
where f (t) is the pdf given in (3). Then, deriving the η(t) function with respect to t, we
have

η′(t) = −
(

α + 1
t2 − 1

(σ + t)2 log
(
1 + t

σ

) − 1
(σ + t)2 log2(1 + t

σ

)) < 0, ∀t > 0

and the result is concluded.

Figure 3 shows, by fixing σ = 1, that the η′(t) function is always negative. For other
different values of σ and α, the result is the same.

0 2 4 6 8

−
0.

5
−

0.
3

−
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Figure 3. Examples of η′(t) for α = 0.3 (black), α = 0.7 (blue), and α = 0.9 (red).

Proposition 5. The rth moments of the random variable Z∼SMG(1, α) do not exist for r ≥ α.

Proof. Using integration by parts, with u = log(1 + x), we have

E(Zr) =
ασα

B(α, α)

∫ ∞

0
zr−α−1 log(1 + z)dz

=
ασαzr−α log(1 + z)
(r − α)B(α, α)

∣∣∣∣∣
∞

0

− ασα

(r − α)B(α, α)

∫ ∞

0

zr−α

1 + z
dz

The expression on the left side is equal to zero if r < α and does not exist if r ≥ α; the
integral on the right side was analyzed in Proposition 1 (e) of the work of Olmos et al. [18]
and does not converge. Therefore, the complete integral diverges, and this means that no
rth moments exist for the random variable Z∼SMG(1, α).

2.3. Tail of the Distribution

The Pareto model is a distribution with heavy right tail. Based on this characteristic,
it is used in insurance to model the number of losses; hence, the size of the tail of the
distribution is fundamental if the chosen model is to capture observations very distant
from the start of the distribution support, i.e., extreme values. The concept of heavy tail is
fundamental for this and other financial scenarios. The use of distributions with a heavy
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right tail is of vital importance in economics, finance, and natural disasters. Pareto, EP,
and log normal distributions, among others, have been used to model losses in insurance,
reinsurance, and catastrophic insurance. It is known that any distribution of probability,
specified by its cdf F(x) on the real line, has a heavy right tail (see Rolski et al. [22]) if
lim sup

x→∞
(− log(s(x))/x) = 0.

An important subject in the theory of extreme values is regular variation (see Bingham [23]).
This concept is formalized in the following definition.

Definition 1. A distribution function is called regular varying at infinity with index −α if

lim
x→∞

s(tx)
s(x)

= t−α

where the parameter α ≥ 0 is called the tail index.

The following proposition establishes that the survival function of the SMG distribu-
tion is a distribution with regular variation.

Proposition 6. The survival function of the random variable X ∼ SMG(σ, α) is a survival
function with regularly varying tails.

Proof. Applying the above definition and using L’Hospital’s Rule, we have

lim
x→∞

s(tx)
s(x)

= lim
x→∞

1 − F(tx)
1 − F(x)

= t−α lim
x→∞

log
(
1 + tx

σ

)
log
(
1 + x

σ

) = t−α+1 lim
x→∞

σ + x
σ + tx

and by calculating the latter limit, the result is obtained.

3. Inference

In this section, we estimate the parameters of the SMG model using the ML method; a
simulation study and asymptotic estimation of the ML estimators are discussed.

3.1. ML Estimation

For a random sample z1, . . . , zn derived from the SMG(σ, α) distribution, the log-
likelihood function can be written as

ℓ(σ, α) = n log(α) + nα log(σ)− n log(B(α, α))− (α + 1)
n

∑
i=1

log(zi) +
n

∑
i=1

log(log(1 + zi/σ)) (5)

Setting the first derivatives equal to zero with respect to each parameter, we have

n

∑
i=1

zi
(σ + zi) log(1 + zi/σ)

= nα (6)

n

∑
i=1

log(zi) + nψ(α)− nψ(1 − α) =
n
α
+ n log(σ)

where ψ(·) is the digamma function. From (6), we obtain

α̂(σ̂) =
1
n

n

∑
i=1

zi
(σ̂ + zi) log(1 + zi/σ̂)

(7)



Mathematics 2024, 12, 1397 8 of 12

and the maximum likelihood estimator for σ (σ̂) is obtained by numerically resolving the
following equation:

1
n

n

∑
i=1

log(zi)− ψ(1 − α̂(σ̂)) + ψ(α̂(σ̂)) =
n

α̂(σ̂)
+ n log(σ̂) (8)

The estimator σ̂ is the solution to Equation (8), and replacing it in (7), we obtain
α̂. The solution for Equation (8) can be obtained by using numerical procedures such as
the Newton–Raphson algorithm. Alternatively, these estimates can be found by directly
maximizing the log-likelihood surface given by (5) and using the optim subroutine in the R
software package [24].

3.2. Simulation Study

To evaluate the effectiveness of the proposed approach, we conducted a simulation
study to assess the performance of the estimation procedure for the parameters α and σ
in the SMG model. The study involved simulating 1000 samples from the SMG model
with three different sample sizes: n = 100, 200, and 300. Table 2 shows the median of the
bias estimate for each parameter (Bias), its standard errors (SE), and the estimated root of
the mean squared error (RMSE); the empirical coverage probabilities (CPs) at 95% for the
asymptotic intervals based on ML estimators are given. From Table 2, we conclude that the
ML estimates are quite stable. The bias is reasonable and reduced when the sample size is
increased. The empirical CP also comes closer to the nominal 95% as n increases.

Table 2. ML estimations for parameters α and σ of the SMG distribution.

True Esti-
Value mator n = 100 n = 200 n = 300

σ α Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

1 0.1 α 0.0068 0.0093 0.0116 0.9190 0.0071 0.0066 0.0097 0.8460 0.0062 0.0053 0.0083 0.7990
σ 0.4032 2.2812 4.0426 0.9350 0.3730 1.2368 1.6858 0.9640 0.3860 0.8955 1.1496 0.9710

0.25 α 0.0071 0.0093 0.0120 0.9250 0.0065 0.0065 0.0093 0.8620 0.0065 0.0053 0.0083 0.7960
σ 4.0440 22.4201 34.7855 0.9390 3.5141 11.7503 15.3452 0.9600 3.5002 8.8431 11.3256 0.9780

0.5 α 0.0030 0.0265 0.0273 0.9630 0.0012 0.0185 0.0194 0.9470 −0.0002 0.0149 0.0153 0.9420
σ 0.0919 0.9833 1.2023 0.9110 0.0365 0.5801 0.6274 0.9300 0.0287 0.4429 0.4736 0.9320

0.75 α 0.0017 0.0266 0.0285 0.9580 0.0018 0.0184 0.0185 0.9570 0.0011 0.0150 0.0158 0.9550
σ 1.4353 10.1717 12.4871 0.9090 0.4046 5.7823 6.4739 0.9360 0.2705 4.5401 5.3019 0.9390

0.9 α 0.0000 0.0645 0.0663 0.9190 0.0006 0.0470 0.0486 0.9290 −0.0009 0.0389 0.0378 0.9390
σ 0.0090 1.3658 2.1311 0.8800 0.0027 0.7859 0.9812 0.8930 −0.0025 0.5698 0.6251 0.9090

10 0.1 α 0.0031 0.0643 0.0629 0.9210 0.0015 0.0471 0.0488 0.9270 0.0013 0.0388 0.0387 0.9390
σ 0.2496 12.7439 24.3474 0.8950 0.4281 8.0812 10.7496 0.9060 0.3605 5.9643 6.8460 0.9230

0.25 α −0.0026 0.0381 0.0423 0.9560 −0.0023 0.0262 0.0271 0.9540 −0.0017 0.0213 0.0224 0.9590
σ −0.0281 0.6856 0.7240 0.8880 −0.0512 0.4548 0.4745 0.9130 −0.0301 0.3663 0.3837 0.9210

0.5 α −0.0033 0.0381 0.0420 0.9450 −0.0016 0.0261 0.0265 0.9470 −0.0011 0.0211 0.0217 0.9530
σ −0.7347 6.8163 7.3233 0.8840 −0.3695 4.6192 4.8007 0.9290 −0.2962 3.6364 3.8096 0.9060

0.75 α 0.0001 0.0116 0.0122 0.9550 −0.0005 0.0081 0.0082 0.9470 −0.0005 0.0066 0.0069 0.9470
σ −0.0263 0.7099 0.7945 0.8810 −0.0256 0.4557 0.4643 0.9150 −0.0227 0.3672 0.3941 0.9230

0.9 α −0.0016 0.0117 0.0120 0.9600 −0.0002 0.0081 0.0083 0.9400 −0.0004 0.0066 0.0066 0.9480
σ −0.7632 6.7365 7.6937 0.8640 −0.4858 4.5617 4.9562 0.9070 −0.1317 3.6848 3.8046 0.9260

3.3. Fisher’s Information Matrix

Let us now consider Z ∼ SMG(σ, α). For a single observation z of Z, the log-likelihood
function for θ = (σ, α) is given by

ℓ(θ) = log(α) + α log(σ)− log(B(α, α))− (α + 1) log(z) + log(log(1 + z/σ))

The corresponding first and second partial derivatives of the log-likelihood function
are derived in Appendix A. It can be shown that the Fisher’s information matrix, denoted
by IF(·), for the G distribution is provided by

IF(θ)=

(
αaα

σ2B(α,α) − 1
σ

− 1
σ ψ′(α) + ψ′(α) + 1

α2

)
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where ψ′(·) is the trigamma function and aα =
∫ ∞

0
u1−α

(1+u)2 log(1+u)du.

Hence, for large samples, the ML estimator, θ̂, of θ is asymptotically normal bivariate,
that is, the following is true;

√
n
(

θ̂− θ
) L−→ N2(0, IF(θ)

−1)

the asymptotic variance of the ML estimator θ̂ is, therefore, the inverse of Fisher’s informa-
tion matrix IF(θ). Since the parameters are unknown, the observed information matrix is
usually considered, where the unknown parameters are estimated by ML.

4. Application with Real Data

In this section, we analyze an application to a real dataset, comparing the Pareto and
LG2 distributions with the fit of the SMG distribution. To compare the models, we use the
Akaike information criterion, AIC (see Akaike [25]), and the Bayesian information criterion,
BIC (see Schwarz [26]). The dataset represents accident indices (annual data in billions
of USD) for earthquake insurance in California from 1971 to 1993 for values greater than
zero. The data are given in Embrechts et al. [27]. The descriptive statistics of these data are
shown in Table 3, where CS is the coefficient of asymmetry of the sample, and CK is the
coefficient of kurtosis of the sample. The CK is quite high, and this shows the presence of
atypical observations. The boxplot in Figure 4 shows the existence of two very extreme
data. These atypical data make the right tail heavier.

Table 3. Descriptive statistics for loss ratios data.

n Median Mean Variance CS CK

19 5.0 15.72 889.582 3.204 12.648

●●

0 20 40 60 80 100 120

Figure 4. Boxplot for of loss ratios data.

Table 4 shows the ML estimates together with standard errors (in brackets) for the
parameters of the SMG, Pareto, and LG2 models, as well as the values of the AIC and BIC
criteria for each model. For the Pareto and LG2 models, the value α = 0.1 was used.
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Table 4. Loss ratios data: model, ML estimates, and AIC and BIC values.

Model ML Estimates AIC BIC

SMG(σ, α) σ̂ = 2.0190(0.793),
α̂ = 0.573(0.069) 151.815 153.704

Pareto(α, β) β̂ = 0.249(0.057) 157.878 158.822
LG2(α, β) β̂ = 0.688(0.112) 176.332 177.277

We observe that the smallest values of the AIC and BIC criteria correspond to the
SMG model, meaning that the SMG model fits the data better than the Pareto and LG2
models. The SEs of the ML of the SMG model were calculated using the method described
in Section 3.3.

Table 5 shows three goodness-of-fit tests for all the distributions considered; this shows
that the classic Pareto distribution is rejected for this dataset.

Table 5. Test statistics (p-values) of goodness-of-fit tests of the considered models.

Model Kolmogorov–Smirnov Anderson–Darling Cramér–Von Misses

SMG(σ, α) 0.238(0.197) 0.215(0.823) 0.033(0.783)
Pareto(α, β) 0.360(0.010) 3.574 (0.014) 0.706(0.012)
LG2(α, β) 0.255(0.142) 0.239(0.746) 0.039(0.675)

We observe that the goodness-of-fit tests indicate that the SMG and LG2 distributions
are appropriate for fitting these data; the selection criteria of the AIC and BIC models
indicate that the SMG distribution provides a better fit than the other two. For this reason,
the SMG distribution may be considered as an alternative to the classic Pareto distribution.
Figure 5 shows the Q–Q plot of the quantile residuals (QRs) of the SMG distribution (see
Dunn and Smyth [28]).
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Figure 5. Q–Q plots of the QRs for SMG distribution.
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5. Conclusions

This paper presents a study of the SMG distribution; we study some of its properties,
estimate the parameters using the ML method, and analyze an application to real data.
The SMG distribution is the product of a scale mixture of the G and Beta distributions.
This distribution has two parameters, making it interesting as a competitor with several
two-parameter models used, for example, in actuarial statistics. The SMG model appears to
be a viable alternative for fitting data with atypical observations. Some other characteristics
of the SMG model are as follows:

• The right tail of the SMG model is heavier for small values of parameter α.
• There are representations of the SMG model, given in Propositions 1 and 2.
• The SMG distribution has a heavy right tail, see Proposition 6
• The pdf, cdf, and hazard function are explicit and are represented by known functions.
• The analysis of the application shows that the SMG distribution is a good candidate

for modeling loss ratios data, performing better than two well-known distributions,
the Pareto and LG2 distributions.
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Appendix A

The first derivatives of ℓ(θ) are given by

∂ℓ(θ)

∂σ
=

α

σ
− z

σ2(1 + z/σ) log(1 + z/σ)

∂ℓ(θ)

∂α
=

1
α
+ log(σ) + ψ(α)− ψ(α)− log(z)

The second derivatives of l(θ) are

∂2ℓ(θ)

∂σ2 = − α

σ2 +
z(2σ + z)

σ2(σ + z)2 log(1 + z/σ)
− z2

σ2(σ + z)2 log2(1 + z/σ)

∂2ℓ(θ)

∂σ∂α
=

1
σ

∂2ℓ(θ)

∂α2 = − 1
α2 − ψ′(α)− ψ′(α)

where ψ(·) and ψ′(·) are the digamma and trigamma functions, respectively.
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