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Abstract: Load forecast is the foundation of power system operation and planning. The forecast
results can guide the power system economic dispatch and security analysis. In order to improve
the accuracy of load forecast, this paper proposes a forecasting model based on the combination of
the cuckoo search (CS) algorithm and the long short-term memory (LSTM) neural network. Load
data are specific data with time series characteristics and periodicity, and the LSTM algorithm can
control the information added or discarded through the forgetting gate, so as to realize the function
of forgetting or memorizing. Therefore, the use of the LSTM algorithm for load forecast is more
effective. The CS algorithm can perform global search better and does not easily fall into local optima.
The CS-LSTM forecasting model, where CS algorithm is used to optimize the hyper-parameters of
the LSTM model, has a better forecasting effect and is more feasible. Simulation results show that
the CS-LSTM model has higher forecasting accuracy than the standard LSTM model, the PSO-LSTM
model, and the GA-LSTM model.
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1. Introduction

Power load forecasting plays a very important role in the power system. Accurate
load prediction helps to rationally arrange the start and stop of generator sets, maintain the
safety and stability of the power grid, and improve social and economic benefits [1].

Load forecast has mainly experienced three development stages [2–5]: the manual
forecasting stage, statistical forecasting stage, and the machine forecasting stage. The power
load series is a time series, which has obvious periodicity, reflected in the daily periodicity,
weekly periodicity and seasonal periodicity, and the power load between holidays and
working days also has different characteristics.

Over the past few decades, numerous methods have been applied to compute an
accurate load forecasting. Traditional methods include inter sequence methods [6], au-
toregressive methods [7], Kalman filters [8], and so on. Intelligent algorithms are mainly
machine learning algorithms represented by Support Vector Machines [9] and neural
networks [10]. In [11,12], the authors addressed the systematic design of a multistage
artificial-neural-network-based short-term load forecaster (ANNSTLF). In [13], the au-
thors presented an expert system-based algorithm as an alternative. In [14], the authors
presented an SVR-based electric load forecasting model that applied a novel algorithm,
namely Chaotic Ant Swarm optimization (CAS), to improve the forecasting performance by
searching for a suitable combination of parameters. With the emergence of deep learning,
many scholars have turned their attention to Deep Confidence Networks, Convolutional
Neural Networks, Recurrent Neural Networks, etc. A Recurrent Neural Network (RNN)
is a kind of neural network commonly used to process time series data, but it is prone to
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gradient explosion when it remembers distant information. Therefore, the direct use of
RNNs to predict power load data cannot meet the requirements of high accuracy in power
load prediction. In [15], an improved gray model was used to weigh load data, select
appropriate initial conditions, and self-adaptively optimize model parameters. Compared
with the traditional gray model, this model had a higher accuracy. In [16], an improved
GRU model was used to forecast the power load. The GRU model is a variant of the
RNN model. Experimental results showed that this method has a high fitting degree, fast
convergence rate, and a good forecasting effect. A long short-term memory neural network
(LSTM) is a kind of improved RNN, which can control the loss or increase in information
through the forgetting gate, so as to realize the function of forgetting or memory, and can
solve the problem of “forgetfulness” in the process of RNN training. Reference [17] used
the LSTM to forecast the power load, and the results showed that the proposed method can
effectively improve the accuracy of load prediction.

However, a single prediction method often fails to meet the requirements of high
precision. At present, some hybrid machine learning methods are beginning to be widely
used, and the prediction accuracy of the hybrid method is higher than that of the single
method. Reference [18] used a combination of Principal Component Analysis (PCA) and
Support Vector Machine (SVW) to improve the accuracy of power load prediction. The
results showed that compared with the standard SVM algorithm, the PCA-SVM model can
reduce the dimension of the sample set and improve the accuracy of load forecast. In [19],
the combined prediction model of SD selection, EMD and LSTM was used to forecast
short-term power loads. The forecasting accuracy of the hybrid EMD-LSTM algorithm was
higher than that of the LSTM, SD-LSTM, EMD-LSTM, ARIMA, BPNN, and SVR models.
In [20], an improved PSO-BP neural network was used to predict the short-term power load.
Experimental results showed that the improved PSO-BP algorithm has faster convergence
speed and higher forecasting accuracy than the conventional BP algorithm. A model based
on the combination of the Prophet addition model and LSTM, the experimental results
showed that the proposed method has higher forecasting accuracy than the traditional load
forecasting method and the standard Prophet and LSTM load forecasting method [21]. In
addition, studies on short-term load forecasting can be found in [22–24] and so on.

Many studies on power load forecasting use some optimization methods to optimize
the hyperparameters of the standard model. At present, heuristic search algorithms are
often used to solve optimization problems, including Particle Swarm Optimization (PSO),
the Simulated Annealing Algorithm (SAA), and the genetic algorithm (GA) and so on,
but they often fall into local optimal solutions, and the quality of the solutions cannot be
guaranteed. In [25], the authors presented a study of short-term power load forecasting
based on improved Particle Swarm Optimization and a Recurrent Neural Network. In
view of the shortcomings of a cyclic neural networks in power load forecasting, which are
prone to local minima and weak in terms of global search ability, the idea of introducing
Simulated Annealing Algorithm probability mutation into the Particle Swarm Optimization
Algorithm search process is proposed. Similarly, in [26], a method based on the Support
Vector Machine and genetic algorithm was proposed for the power system load forecasting.
The cuckoo search (CS) algorithm, as a new heuristic search algorithm [27] is essentially a
bionic algorithm, which is based on the parasitic brood rearing behavior of cuckoos, and
is enhanced by Levy flight. The cuckoo search algorithm can carry out a global search
better, so the solution does not easily to fall into local optimization, which makes the model
prediction accuracy higher. In [28], a BP neural network optimized by the cuckoo algorithm
was used to predict the health state of lithium batteries, and the results showed that the
CS-BP algorithm resulted in fewer errors. Ref. [29] used the improved CS algorithm to
optimize power system scheduling, and the results showed that the improved algorithm
has a higher calculation accuracy. Ref. [30] used the CS algorithm to study odor sources,
and the results showed that the CS algorithm can locate odor sources more accurately.

According to the time series characteristics of power load data, this paper innovatively
combines the CS algorithm with LSTM to propose a power load forecast model based
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on CS-LSTM and verifies the rationality of the prediction model through examples. The
experimental results show that using the CS algorithm to optimize the hyperparameters of
the LSTM model, the established CS-LSTM prediction model has better prediction accuracy
and more feasibility than the standard LSTM, PSO-LSTM, and GA-LSTM prediction models.

2. Method and Principle
2.1. LSTM Neural Network

When the standard RNN deals with long-term dependence, the problem of gradient
hour or gradient explosion will occur. In order to solve this problem, Hochreiter et al. [31]
proposed an improved RNN structure, which is the LSTM neural network. Figure 1 shows
the basic structure of the LSTM memory cell.
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In Figure 1, xt−1, xt, xt+1 represent the input values, ht−1, ht, ht+1 represent the output
values, and σ, tanh represent the incentive functions.

Different from RNN, the LSTM model adds the input gate and forgetting gate to
neurons. The forgetting gate is used to solve the problem of gradient disappearance or
gradient explosion. It is mainly used to confirm which input information needs to be
updated and which information needs to be retained [31].

The LSTM operation process is as follows:

ft = σ(W f × [ht−1, xt] + b f ),
it = σ(Wi × [ht−1, xt] + bi).

C̃t = tanh(WC × [ht−1, xt] + bC),
Ct = ft·Ct−1 + it·C̃t.

ot = σ(Wo[ht−1, xt] + b0),
ht = ottanh(Ct).

(1)

In the above formula, W f , Wi, WC, Wo are the weight matrix of each structure of the
LSTM neural network; respectively, b f , bi, bC, bo are the offset vectors corresponding to each
structure; Ct, C̃t, Ct−1 indicate the cell state.

2.2. Cuckoo Search

The cuckoo search (CS) algorithm, as a new heuristic search algorithm [26], is essen-
tially a bionic algorithm. Its principle is based on the parasitic brood rearing behavior of
cuckoos, which is enhanced by Lévy flight.

Traditional optimization methods either have a short computation time but low ac-
curacy, or high accuracy but high complexity. For more complex optimization problems,
heuristic search algorithms can help researchers achieve ideal results in a relatively short
period of time.

In response to the fact that traditional heuristic search algorithms often fall into local
optima, this chapter uses the cuckoo search (CS) algorithm to optimize and tune the
model parameters.
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2.2.1. Definition of Cuckoo Search

The CS algorithm mainly has global search ability and local search ability, which
are mainly controlled by switching random walk (pa) probability. pa is expressed as the
proportion of the local search time to the total search time, for example, when pa = 1/2, the
search time of the local search and the search time of the global search are equally divided.
Therefore, when the appropriate pa value is set, the distribution of local search and global
search in this search space is more reasonable, and the global optimal solution can be found
more easily, which is more efficient than other heuristic search algorithms.

The specific implementation process of the cuckoo search algorithm based on the Levy
flight is shown in the following Algorithm 1:

Algorithm 1: CS Algorithm Based on Levy Flight

1. Objective function f (x), x = (x1, . . . , xd)
T .

2. An initial population that produces n hostsxi.
3. While (t < MaxGeneration) or (stop criterion) do
4. Take a cuckoo at random.
5. A solution is generated by Levy flight.
6. Evaluate the quality or objective function value of the solution fi.
7. Randomly select one nest from n nests (Set to j).
8. If fi < f j do
9. Replace j with solution i.
10. End if.
11. Some (pa) bad nests are abandoned.
12. A new nest solution Formula (6-3) is generated.
13. Preserve the best solution (or the nest of high-quality solution).
14. Arrange the solution to find out the best at present.
15. Update t← t + 1 .
16. End while.
17. Post-processing and visualization.

2.2.2. Principle of Cuckoo Search

The CS algorithm is based on Levy flight to carry out global random walk, and its
formula is shown in Equation (2):

Xg+1,j = Xg,j + α⊗ levy(λ). (2)

In Formula 2, g = 1, 2, . . . , M represents the current iterations, and M represents the
maximum number of iterations. α > 0 is the step size scaling factor, ⊗ represents the
dot multiplication operation; levy(λ) represents Levy flight, which is a random path [24].
The theory shows that when the µ and σ2 of Levy flight are infinite, the CS algorithm
can significantly improve the search efficiency compared to other algorithms based on a
standard Gauss process. Further combined with local search ability and global convergence,
the CS algorithm can be more efficient.

The formula for Levy flight is shown in Equation (3):

levy(λ) = t−λ. (3)

In Formula (3), t represents the number of iterations.
The Levy flight is actually a classification process, which involves multiple steps

to determine the distance from a stable distribution to a random walk. Statistically, the
simplified Mantogna algorithm can be used in this process to generate random numbers
with symmetric Levy distribution, mainly to generate random numbers based on symmetric
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Levy stable distribution [22]. Using this algorithm, the specific implementation steps of
replacing the old vector with the new vector are shown in the following Formula (4):

xi,new = W·Xi + stepsize·rand. (4)

In Formula (4), W represents the inertia weight, and its value can be set according to
Formula (5):

W = Wmax −
(

Wmax −Wmin

itermax

)
/iter. (5)

In addition, stepsize is as shown in Equation (6):

stepsize = γ·step·(Xi − Xbest). (6)

The difference factor (Xi − Xbest) shows that if the current solution is close to the
optimal solution, stepsize remains unchanged. Here, the step size is multiplied by γ, and
the setting of γ is related to the activity of the point, for example, γ = 0.01 indicates the
step/100 and represents the step length [23]; the setting of step size and multiplication is
related to the activity of the point. Among them, the step factor for finding a new nest is
step, and its specific equation is as follows:

step = (σ(β)·rand)1/β. (7)

In Formula (7), rand represents the uniformly distributed random number in the
interval [0,1]; β is a constant and satisfies 1 ≤ β ≤ 3.

However, appropriate settings must be set to avoid new solutions that may jump out
of the scope of the solution due to aggressive Levy flying [22,25].

The standard deviation α(β) can be calculated by Equation (8):

α(β) =

Γ(1 + β)· sin
(

π· β2
)

Γ
(

1+β
2

)
·β·2(

β−1
2 )


1
β

. (8)

In Equation (8), the range of β is [0.3,1.99]; Γ represents the gamma function. It has
been shown that when the absolute value of the step factor is much larger than 0, the
distribution obtained by Equation (8) is the same as the row of the Lévy distribution.

The updating process of the optimal solution is shown in Equation (9):

Xbest ← f (Xbest) < f (Xi). (9)

3. Experimental Setup
3.1. Data Preprocessing

In order to reduce the effect of seasonality on the power load data, in this paper, we
select data from 1 January to 1 March 2010 in Australia, with half-hour time intervals, for a
total of 4320 power load data values. The dataset is divided into training and test sets. The
data from the first 83 days are used as the training set, and the data from the last 7 days
are used as the test set to fit the models and build the prediction models for BP, LSTM and
CS-LSTM, PSO-LSTM and GA-LSTM, respectively.

Considering that the main factors affecting the power load include temperature,
humidity, season and holidays, etc., in addition to the power load data of 48 moments
per day, five factors are added: maximum temperature, minimum temperature, average
temperature, average humidity and type of week per day, where the relative week is
represented by a three-digit binary from Monday to Sunday. Since the data used are
from Australia, considering the differences in holidays between Australia and China, only
the week is changed to binary representation to distinguish workdays and weekends.



Mathematics 2024, 12, 1402 6 of 16

Meanwhile, the power load data is normalized to a range between [0,1]. The specific
calculation process is as follows:

xi,st =
xi − xi,min

xi,max − xi,min
(i = 1, 2, . . . , n). (10)

where xi,st denotes the standardized load data, xi denotes the power load data of the day
i, xi,min, xi,max denote, respectively, the minimum and maximum power load of the day i,
and n indicates the total number of days.

3.2. Evaluation Measures

In order to evaluate the performance of the prediction method in this paper, the
following error indexes are used, and the relevant calculation formulas are as follows:

(1) Average absolute percentage error (MAPE):

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣. (11)

(2) Mean square error (MAE):

MAE =

n
∑

i=1
|ŷi − yi|

n
. (12)

(3) Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2. (13)

In the above Formulas (11)–(13), ŷi and yi represent, respectively, the predicted value
and the true value of the prediction time, and n represents the total of forecast samples.
MAE and RMSE measure the absolute size of the deviation from the predicted value, while
MAPE measures the relative size of the deviation (that is, percentage).

3.3. Experimental Design

We evaluate the effectiveness of CS-LSTM over real-world datasets from the credit
platform by comparing it with other models. The models selected for comparison include
single and optimized models. Among them, single models include the BP model and the
LSTM model. Optimization models include the CS-LSTM model, the GA-LSTM model and
the PSO-LSTM model. Through the establishment of these comparison models and the
evaluation measures of the models, the effectiveness of the CS-LSTM model proposed in
this paper is verified.

4. Experimental Results
4.1. Power Load Forecasting Based on CS-LSTM

The dataset of 90 samples was divided into 83 training sets and 7 test sets. We used the
53 features of the previous day and the first five features of the predicted day as inputs, and
the load of the predicted 48 time points of the day as outputs. We substitute the processed
data into the CS-LSTM model and used the CS algorithm based on Levy flight to solve the
optimal LSTM hyperparameters; the parameters are set as shown in Table 1:

The meanings of each hyperparameter in the table above are as follows:
The number of training epochs for all samples is 10, the samples collected in one

iteration is 16 and the learning rate is 0.01. There are two layers of hidden layers and there
are 100 nodes in each layer. The variables input each time are five weather conditions
indicators of the previous day, 48 standardized power load data and five weather conditions
indicators of the same day. The output is the value of 48 power loads predicted for the day.
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Table 1. The LSTM neural network model hyperparameter settings.

Hyperparameter Value

num_epochs 10
batch_size 16

alpha 0.01
hidden_nodes0 100
hidden_nodes 100
input_features 58
output_class 48

The first point in the future is taken as a “historical value” using prediction. After
predicting the model with the LSTM, in order to make the model more accurate, the CS
algorithm is used to adjust the hyperparameters of the LSTM model. Among them, the
parameters of the CS algorithm are set in Table 2:

Table 2. The CS algorithm parameter settings.

Parameter Set Value

β 1.5
pa 0.25
λ 1

Number of nests 40
Max_iter 10

The meanings of the parameters in the above table are as follows:
After debugging the code in Python many times, it is found that the bird’s nest is 40,

the maximum number of iterations is 10, and the discovery rate pa is 0.25; generally, β and
λ are 1.5 and 1, and the CS model has the fastest convergence speed [24,32].

The upper and lower bounds of the LSTM neural network hyperparameter settings
are in Table 3:

Table 3. The LSTM neural network hyperparameter settings.

Hyperparameter Upper Bound Lower Bound

LSTM Number of iteration 500 100
Learning rate 0.01 0.001

Number of nodes in the first hidden layer 200 100
Number of nodes in the second hidden layer 200 100

The CS algorithm is used to optimize the hyperparameters of LSTM neural network.
After ten iterations, the results are shown in Table 4:

Table 4. The super-parameter value of the optimal solution in each iteration.

Number of Iterations
of CS Algorithm

The LSTM Iterative
Algebra Learning Rate Number of Nodes in

the First Layer
Number of Nodes in

the Second Layer

2 252 0.0059 166 89
3 224 0.0069 187 120
4 224 0.0069 187 120

5 152 0.0069 187 79
6 260 0.0086 87 141

7 260 0.0086 87 141
8 260 0.0086 87 141
9 260 0.0086 87 141
10 260 0.0063 87 155
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The changes in the hyperparameters during each iteration are in Figure 2:
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are in Figure 3:
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The number of iterations, learning rate and number of hidden layer nodes of the LSTM
are optimized. After setting the corresponding parameters, the upper and lower bounds
are [100,500], [0.01,0.001] and [100,200]. Python is used to train and fit the model, and the
loss curve is shown in Figure 4:



Mathematics 2024, 12, 1402 9 of 16

Mathematics 2024, 12, 1402 9 of 17 
 

 

 
Figure 3. Prediction result of the CS-LSTM model. 

The number of iterations, learning rate and number of hidden layer nodes of the 
LSTM are optimized. After setting the corresponding parameters, the upper and lower 
bounds are [100,500], [0.01,0.001] and [100,200]. Python is used to train and fit the model, 
and the loss curve is shown in Figure 4: 

 
Figure 4. Loss curve. 

It can be seen that with the increase in the number of iterations, the errors of the 
training set and the test set have been decreasing and gradually converging, indicating 
that the model has a good fitting effect. 

In order to evaluate the model from the perspective of load forecasting and evalua-
tion of the power system, Mean Absolute Percentage Error (MAPE), Mean Square Error 
(MSE), Root Mean Square Error (RMSE) are used as the evaluation indexes. The lower 
the value, the better the model fit and the better the accuracy. 

The MAPE, MSE, and MSE values of the model are shown in the Table 6 below: 
  

Figure 4. Loss curve.

It can be seen that with the increase in the number of iterations, the errors of the
training set and the test set have been decreasing and gradually converging, indicating that
the model has a good fitting effect.

In order to evaluate the model from the perspective of load forecasting and evaluation
of the power system, Mean Absolute Percentage Error (MAPE), Mean Square Error (MSE),
Root Mean Square Error (RMSE) are used as the evaluation indexes. The lower the value,
the better the model fit and the better the accuracy.

The MAPE, MSE, and MSE values of the model are shown in the Table 5 below:

Table 5. Comparison of evaluation indicators of prediction models.

Evaluation Index CS-LSTM Model

MAPE 1.82%
RMSE 232.22
MAE 170.99

In this section, the cuckoo algorithm is used to optimize the hyperparameter in the
LSTM model, which makes the prediction results more accurate. The final prediction results
of the model are better than the unoptimized model, which also confirms the feasibility of
this model. In the next section, we will compare the unoptimized models to further confirm
the feasibility of the CS-LSTM model.

4.2. Compared with Single Models (the BP, the LSTM)

The BP neural network is the most basic neural network; its output results are propa-
gated forward, and the error is carried out by back propagation. The BP neural network is
supervised learning, which is usually used in function approximation, pattern recognition,
classification, data compression and data mining.

We use the 53 features of the previous day and the first 5 features of the predicted day
as inputs and the load of the predicted 48 moments of the day as outputs.

The final fitting result is shown in Figure 5:
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According to the discussion of the LSTM model in the second chapter, the data are
substituted into the LSTM neural network model for prediction and analysis. TensorFlow
in Python is used to predict the model.

After 10 iterations, as can be seen from the figure, both training loss and testing loss
have been converged and the difference between them is very small. The prediction shows
that the model fits well. Figure 6 below shows a comparison between the predicted results
and the real values:
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Figure 7. The results comparison chart.

In Figure 7 above, the blue curve is the original data, the green curve is the fitting
data predicted by the BP model, the yellow curve is the fitting data predicted by the LSTM
model, and the red curve is the fitting data predicted by the CS-LSTM model. It can be seen
that the data fitted by the CS-LSTM model are more consistent with the original data and
have higher accuracy.

The MAPE, RMSE, and MAE values of the three models are shown in the table below:
In order to more intuitively see the differences between the above models, we created

an error histogram, as shown in Figure 8 below. To keep the dimension constant, we
multiplied MAPE by 104.
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As can be seen from Table 6 above, the MAPE predicted by the standard LSTM neural
network model is 5.059%. Compared to the MAPE of the LSTM neural network, the
performance is not as good as that of the BP neural network, but it is not comparable since
the BP neural network has 10 hidden layers. In order to improve the performance of the
LSTM neural network, the algorithm of optimizing parameters is used to optimize the
model in the next chapter.
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Table 6. Comparison of evaluation indicators of prediction models.

Evaluation Index BP Model Standard LSTM Model CS-LSTM Model

MAPE 3.12% 5.059% 1.82%
RMSE 378.09 616.48 232.22
MAE 282.76 460.12 170.99

According to the conventional error MAPE of the power system, it can be seen that
the MAPE value of the CS-LSTM model is smaller, which also shows the superiority of
this model.

4.3. Compared with Optimization Models (the GA-LSTM, the PSO-LSTM)

The genetic algorithm is a targeted search optimization algorithm that integrates the
concepts of selection, crossover, and mutation into the process of solving optimization
problems by simulating the process of natural evolution. Genetic algorithms are not only
adaptive, but also have global optimization capabilities. When applied to the optimization
of LSTM neural networks, it can significantly improve the training efficiency of the neural
network and reduce the risk of falling into local optimization [26]. The PSO algorithm is a
swarm intelligence evolution technique that simulates the predatory behavior of birds. The
PSO algorithm locates the optimal particles in the solution space by adjusting the position
of the particles, and then searches for the best solution. It is an efficient optimization
algorithm that exhibits excellent optimization capabilities.

In this section, we use heuristic search algorithms to solve optimization problems,
including Particle Swarm Optimization (PSO), the genetic algorithm (GA), and so on. The
GA-LSTM and PSO-LSTM models are established to power load forecasting, and then the
optimal model is obtained.

As is the case for the BP model, the data are substituted into the GA-LSTM neural
network model for prediction and analysis. The final fitting result is shown in Figure 9:
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The blue curve is the real value curve, and the yellow curve is the predicted value curve.
The fitting results obtained by the three models are shown in Figure 11:
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In the Figure 10 above, the blue curve is the original data, the green curve is the fitting
data predicted by the PSO-LSTM model, the yellow curve is the fitting data predicted by
the GA-LSTM model, and the red curve is the fitting data predicted by the CS-LSTM model.
It can be seen that the data fitted by the CS-LSTM model are more consistent with the
original data and has higher accuracy.

The MAPE, RMSE and MAE values of the three models are shown in the Table 7 below:
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Table 7. Comparison of evaluation indicators of prediction models.

Evaluation Index The GA-LSTM
Model

The PSO-LSTM
Model The CS-LSTM Model

MAPE 0.051 0.053 0.047
RMSE 0.042 0.042 0.037
MAE 0.222 1.095 0.156

In order to more intuitively show the differences between the above models, an error
histogram is shown in Figure 12 below:
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The data in Figure 12 can more intuitively show the prediction accuracy of the three
methods. The most accurate prediction is that of the CS-LSTM. It shows that the difference
between the predicted value and the true value of the LSTM model optimized by the CS is
the smallest. The MAPE value, RMSE value and MSE value of the CS-LSTM are, respec-
tively, 0.047, 0.037 and 0.156. Compared with the GA-LSTM neural network method, the
MAPE value, RMSE value and MSE value decreased by 0.004, 0.005, and 0.066, indicating
that the predicted value of the CS-LSTM is closer to the real value and could improve the
accuracy of load prediction. Compared with the PSO-LSTM method, the MAPE value
decreased by 0.005, the RMSE value decreased by 0.005, and the MSE value decreased by
0.939. It shows that the CS algorithm can improve the LSTM model’s ability to optimize
hyperparameters, and the prediction performance of the model is obviously improved.

5. Conclusions

In this paper, a power load prediction model combining a long- and short-term
memory neural network based on the cuckoo search algorithm is used. The LSTM is
able to store long-term information, and the cuckoo search algorithm is used to optimize
the hyperparameters of the LSTM, which makes the prediction accuracy of the model
higher. The CS algorithm can effectively find the global optimal solution to optimize the
hyperparameters of the LSTM network, which can avoid the problem that the parameters
of the LSTM model are not optimal, caused by human parameter selection, and reduce the
influence of human factors on the model accuracy. The higher the accuracy of power load
forecasting, the more it can meet the needs of daily life and production and promote the
stable operation of the power grid.
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